SlideShare a Scribd company logo
Aalborg University
Optimizing RDF Data Cubes for Efficient Processing of
Analytical Queries
Kim Ahlstrøm Jakobsen
Alex B. Andersen
Katja Hose
Torben Bach Pedersen
Database Technology,
Department of Computer Science,
Aalborg University
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 1 / 19
Aalborg University
Motivation
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 2 / 19
Aalborg University
Motivation
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 2 / 19
Aalborg University
Motivation
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 2 / 19
Aalborg University
Motivation
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 2 / 19
Aalborg University
Motivation
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 2 / 19
Aalborg University
Motivation
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 2 / 19
Aalborg University
Future Goal
Goal
Analytical queries on internal data & external linked data
Benefits
Enables exploratory queries
Increasing amount of linked data
Integrates with heterogeneous data
Semantic reasoning
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 3 / 19
Aalborg University
Future Goal
Goal
Analytical queries on internal data & external linked data
Benefits
Enables exploratory queries
Increasing amount of linked data
Integrates with heterogeneous data
Semantic reasoning
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 3 / 19
Aalborg University
The First Steps
Efficient Processing of Analytical Querying on RDF Data Cubes.
Denormalize the cube dimensions
Reduce the subject-object joins (expensive)
Increase the subject-subject joins
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 4 / 19
Aalborg University
The First Steps
Efficient Processing of Analytical Querying on RDF Data Cubes.
Denormalize the cube dimensions
Reduce the subject-object joins (expensive)
Increase the subject-subject joins
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 4 / 19
Aalborg University
Workflow
Internal optimization
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 5 / 19
Aalborg University
Workflow
Internal optimization
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 5 / 19
Aalborg University
Workflow
Internal optimization
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 5 / 19
Aalborg University
Workflow
Internal optimization
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 5 / 19
Aalborg University
Workflow
Internal optimization
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 5 / 19
Aalborg University
Workflow
Internal optimization
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 5 / 19
Aalborg University
Workflow
Internal optimization
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 5 / 19
Aalborg University
Workflow
Internal optimization
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 5 / 19
Aalborg University
Workflow
Internal optimization
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 5 / 19
Aalborg University
Building the Cube
Purpose
Organize data with purpose of
analysis
Easier to understand
What is a cube
Facts: The subject of the analysis
Dimensions: Perspectives of the data
Levels: Concepts in the dimensions
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 6 / 19
Aalborg University
Building the Cube
Purpose
Organize data with purpose of
analysis
Easier to understand
What is a cube
Facts: The subject of the analysis
Dimensions: Perspectives of the data
Levels: Concepts in the dimensions
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 6 / 19
Aalborg University
Analytical Queries
Example Query 1
What is the revenue per country?
Example Query 2
What are the top k products bought by customers from Denmark?
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 7 / 19
Aalborg University
Analytical Queries
Example Query 1
What is the revenue per country?
Example Query 2
What are the top k products bought by customers from Denmark?
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 7 / 19
Aalborg University
Patterns
Snowflake Pattern
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 8 / 19
Aalborg University
Patterns
Star Pattern
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 9 / 19
Aalborg University
Patterns
Fully Denormalized Pattern
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 10 / 19
Aalborg University
Special Cases:
Unbalanced Hierarchies
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 11 / 19
Aalborg University
Special Cases:
Property Collision
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 12 / 19
Aalborg University
Special Cases:
Property Collision
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 12 / 19
Aalborg University
Special Cases:
Property Collision
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 12 / 19
Aalborg University
Semantic Web OLAP Denormalization Algorithm
Input
QB4OLAP ontology
Snowflake pattern RDF data
cube
Output
Star pattern RDF data cube
Fully Denormalized pattern RDF
data cube
Features
Top-down traversal
Property renaming
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 13 / 19
Aalborg University
Unbalanced Hierarchies Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 14 / 19
Aalborg University
Unbalanced Hierarchies Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 14 / 19
Aalborg University
Unbalanced Hierarchies Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 14 / 19
Aalborg University
Unbalanced Hierarchies Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 14 / 19
Aalborg University
Unbalanced Hierarchies Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 14 / 19
Aalborg University
Unbalanced Hierarchies Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 14 / 19
Aalborg University
Query rewriting
SELECT ?name sum(? p r i c e )
WHERE {
? l i n e i t e m : e x t e n d e d p r i c e ? p r i c e ;
: h a s o r d e r ? o r d e r .
? o r d e r skos : broader ? customer .
? customer skos : broader ? natio n .
? nation : name ?name .
}
GROUP BY ?name
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 15 / 19
Aalborg University
Query rewriting
SELECT ?name sum(? p r i c e )
WHERE {
? l i n e i t e m : e x t e n d e d p r i c e ? p r i c e ;
: h a s o r d e r ? o r d e r .
? o r d e r skos : broader ? customer .
? customer skos : broader ? natio n .
? nation : name ?name .
}
GROUP BY ?name
SELECT ?name sum(? p r i c e )
WHERE {
? l i n e i t e m : e x t e n d e d p r i c e ? p r i c e ;
: h a s o r d e r ? o r d e r .
? o r d e r : nation name ?name .
}
GROUP BY ?name
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 16 / 19
Aalborg University
Results
Virtuoso
Star Denormalized
Increase in Triples 16 % 173 %
Avg. Decease in Query Time 600 % 700 %
Geo. M. Decease in Query Time 110 % 140 %
Cost of triple storage
Static and frequently changing data
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 17 / 19
Aalborg University
Future Work
More cube optimizations
Consider data provenance and
quality
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 18 / 19
Thank you
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
SWOD Abstract
Example
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19
Aalborg University
Figure Credits
Workman – Licence: CC BY 3.0
Credit: www.clipartbest.com
Cube – Licence: CC BY 3.0
Credit: www.clipartbest.com
Turing machine
http://www.felienne.com/
Steps
http://www.cliparthut.com/
Future-work
http://www.horsesforsources.com/
Kim Ahlstrøm Jakobsen Optimizing RDF Data Cubes 19 / 19

More Related Content

Similar to Optimizing RDF Data Cubes for Efficient Processing of Analytical Queries (20)

Concepts of Query Processing in ADBMS.pptx
Concepts of Query Processing in ADBMS.pptxConcepts of Query Processing in ADBMS.pptx
Concepts of Query Processing in ADBMS.pptx
AaradhyaDixit6
 
OLAP Basics and Fundamentals by Bharat Kalia
OLAP Basics and Fundamentals by Bharat Kalia OLAP Basics and Fundamentals by Bharat Kalia
OLAP Basics and Fundamentals by Bharat Kalia
Bharat Kalia
 
Apache Kylin @ Big Data Europe 2015
Apache Kylin @ Big Data Europe 2015Apache Kylin @ Big Data Europe 2015
Apache Kylin @ Big Data Europe 2015
Seshu Adunuthula
 
Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!
Julian Hyde
 
Validating statistical Index Data represented in RDF using SPARQL Queries: Co...
Validating statistical Index Data represented in RDF using SPARQL Queries: Co...Validating statistical Index Data represented in RDF using SPARQL Queries: Co...
Validating statistical Index Data represented in RDF using SPARQL Queries: Co...
Jose Emilio Labra Gayo
 
An Efficient Approach for Clustering High Dimensional Data
An Efficient Approach for Clustering High Dimensional DataAn Efficient Approach for Clustering High Dimensional Data
An Efficient Approach for Clustering High Dimensional Data
IJSTA
 
Big Data Analytics V2
Big Data Analytics V2Big Data Analytics V2
Big Data Analytics V2
Marko Grobelnik
 
Leveraging Big Data and Real-Time Analytics at Cxense
Leveraging Big Data and Real-Time Analytics at CxenseLeveraging Big Data and Real-Time Analytics at Cxense
Leveraging Big Data and Real-Time Analytics at Cxense
Simon Lia-Jonassen
 
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...
eswcsummerschool
 
Design cube in Apache Kylin
Design cube in Apache KylinDesign cube in Apache Kylin
Design cube in Apache Kylin
Yang Li
 
OLAP IN DATA MINING
OLAP IN DATA MININGOLAP IN DATA MINING
OLAP IN DATA MINING
wilifred
 
qCube: Efficient integration of range query operators over a high dimension d...
qCube: Efficient integration of range query operators over a high dimension d...qCube: Efficient integration of range query operators over a high dimension d...
qCube: Efficient integration of range query operators over a high dimension d...
Rodrigo Rocha Silva
 
Blinkdb
BlinkdbBlinkdb
Blinkdb
Nitish Upreti
 
Apache Kylin – Cubes on Hadoop
Apache Kylin – Cubes on HadoopApache Kylin – Cubes on Hadoop
Apache Kylin – Cubes on Hadoop
DataWorks Summit
 
Apache Kylin - OLAP Cubes for SQL on Hadoop
Apache Kylin - OLAP Cubes for SQL on HadoopApache Kylin - OLAP Cubes for SQL on Hadoop
Apache Kylin - OLAP Cubes for SQL on Hadoop
Ted Dunning
 
Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!
Julian Hyde
 
Data cube computation
Data cube computationData cube computation
Data cube computation
Rashmi Sheikh
 
Lazy beats Smart and Fast
Lazy beats Smart and FastLazy beats Smart and Fast
Lazy beats Smart and Fast
Julian Hyde
 
IBANK - Big data www.ibank.uk.com 07474222079
IBANK - Big data www.ibank.uk.com 07474222079IBANK - Big data www.ibank.uk.com 07474222079
IBANK - Big data www.ibank.uk.com 07474222079
ibankuk
 
rhbase_tutorial
rhbase_tutorialrhbase_tutorial
rhbase_tutorial
Aaron Benz
 
Concepts of Query Processing in ADBMS.pptx
Concepts of Query Processing in ADBMS.pptxConcepts of Query Processing in ADBMS.pptx
Concepts of Query Processing in ADBMS.pptx
AaradhyaDixit6
 
OLAP Basics and Fundamentals by Bharat Kalia
OLAP Basics and Fundamentals by Bharat Kalia OLAP Basics and Fundamentals by Bharat Kalia
OLAP Basics and Fundamentals by Bharat Kalia
Bharat Kalia
 
Apache Kylin @ Big Data Europe 2015
Apache Kylin @ Big Data Europe 2015Apache Kylin @ Big Data Europe 2015
Apache Kylin @ Big Data Europe 2015
Seshu Adunuthula
 
Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!Don’t optimize my queries, optimize my data!
Don’t optimize my queries, optimize my data!
Julian Hyde
 
Validating statistical Index Data represented in RDF using SPARQL Queries: Co...
Validating statistical Index Data represented in RDF using SPARQL Queries: Co...Validating statistical Index Data represented in RDF using SPARQL Queries: Co...
Validating statistical Index Data represented in RDF using SPARQL Queries: Co...
Jose Emilio Labra Gayo
 
An Efficient Approach for Clustering High Dimensional Data
An Efficient Approach for Clustering High Dimensional DataAn Efficient Approach for Clustering High Dimensional Data
An Efficient Approach for Clustering High Dimensional Data
IJSTA
 
Leveraging Big Data and Real-Time Analytics at Cxense
Leveraging Big Data and Real-Time Analytics at CxenseLeveraging Big Data and Real-Time Analytics at Cxense
Leveraging Big Data and Real-Time Analytics at Cxense
Simon Lia-Jonassen
 
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...
ESWC SS 2013 - Wednesday Tutorial Marko Grobelnik: Introduction to Big Data A...
eswcsummerschool
 
Design cube in Apache Kylin
Design cube in Apache KylinDesign cube in Apache Kylin
Design cube in Apache Kylin
Yang Li
 
OLAP IN DATA MINING
OLAP IN DATA MININGOLAP IN DATA MINING
OLAP IN DATA MINING
wilifred
 
qCube: Efficient integration of range query operators over a high dimension d...
qCube: Efficient integration of range query operators over a high dimension d...qCube: Efficient integration of range query operators over a high dimension d...
qCube: Efficient integration of range query operators over a high dimension d...
Rodrigo Rocha Silva
 
Apache Kylin – Cubes on Hadoop
Apache Kylin – Cubes on HadoopApache Kylin – Cubes on Hadoop
Apache Kylin – Cubes on Hadoop
DataWorks Summit
 
Apache Kylin - OLAP Cubes for SQL on Hadoop
Apache Kylin - OLAP Cubes for SQL on HadoopApache Kylin - OLAP Cubes for SQL on Hadoop
Apache Kylin - OLAP Cubes for SQL on Hadoop
Ted Dunning
 
Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!Don't optimize my queries, organize my data!
Don't optimize my queries, organize my data!
Julian Hyde
 
Data cube computation
Data cube computationData cube computation
Data cube computation
Rashmi Sheikh
 
Lazy beats Smart and Fast
Lazy beats Smart and FastLazy beats Smart and Fast
Lazy beats Smart and Fast
Julian Hyde
 
IBANK - Big data www.ibank.uk.com 07474222079
IBANK - Big data www.ibank.uk.com 07474222079IBANK - Big data www.ibank.uk.com 07474222079
IBANK - Big data www.ibank.uk.com 07474222079
ibankuk
 
rhbase_tutorial
rhbase_tutorialrhbase_tutorial
rhbase_tutorial
Aaron Benz
 

Recently uploaded (20)

Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptxArtificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
AbhijitPal87
 
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost  Data Protection People.pdfGDPR Audit - GDPR gap analysis cost  Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
Data Protection People
 
Tableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdfTableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdf
elinavihriala
 
BADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and InterpretationBADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and Interpretation
srishtisingh1813
 
How Data Annotation Services Drive Innovation in Autonomous Vehicles.docx
How Data Annotation Services Drive Innovation in Autonomous Vehicles.docxHow Data Annotation Services Drive Innovation in Autonomous Vehicles.docx
How Data Annotation Services Drive Innovation in Autonomous Vehicles.docx
sofiawilliams5966
 
lecture 33333222234555555555555555556.pptx
lecture 33333222234555555555555555556.pptxlecture 33333222234555555555555555556.pptx
lecture 33333222234555555555555555556.pptx
obsinaafilmakuush
 
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptxMulti-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
VikashVats1
 
IST606_SecurityManagement-slides_ 4 pdf
IST606_SecurityManagement-slides_ 4  pdfIST606_SecurityManagement-slides_ 4  pdf
IST606_SecurityManagement-slides_ 4 pdf
nwanjamakane
 
Chapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I willChapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I will
SotheaPheng
 
How to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing SoftwareHow to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing Software
skalatskayaek
 
Artificial-Intelligence-in-Autonomous-Vehicles (1).pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1).pptxArtificial-Intelligence-in-Autonomous-Vehicles (1).pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1).pptx
AbhijitPal87
 
delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)
jamespromind
 
Cyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptxCyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptx
vilakshbhargava
 
"Machine Learning in Agriculture: 12 Production-Grade Models", Danil Polyakov
"Machine Learning in Agriculture: 12 Production-Grade Models", Danil Polyakov"Machine Learning in Agriculture: 12 Production-Grade Models", Danil Polyakov
"Machine Learning in Agriculture: 12 Production-Grade Models", Danil Polyakov
Fwdays
 
Chapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statisticsChapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statistics
SotheaPheng
 
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
elinavihriala
 
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptxrefractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
KannanDamodaram
 
llm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blahllm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blah
saud140081
 
Math arihant handbook.pdf all formula is here
Math arihant handbook.pdf all formula is hereMath arihant handbook.pdf all formula is here
Math arihant handbook.pdf all formula is here
rdarshankumar84
 
GROUP 7 CASE STUDY Real Life Incident.pptx
GROUP 7 CASE STUDY Real Life Incident.pptxGROUP 7 CASE STUDY Real Life Incident.pptx
GROUP 7 CASE STUDY Real Life Incident.pptx
mardoglenn21
 
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptxArtificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1)-1.pptx
AbhijitPal87
 
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost  Data Protection People.pdfGDPR Audit - GDPR gap analysis cost  Data Protection People.pdf
GDPR Audit - GDPR gap analysis cost Data Protection People.pdf
Data Protection People
 
Tableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdfTableau Cloud - what to consider before making the move update 2025.pdf
Tableau Cloud - what to consider before making the move update 2025.pdf
elinavihriala
 
BADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and InterpretationBADS-MBA-Unit 1 that what data science and Interpretation
BADS-MBA-Unit 1 that what data science and Interpretation
srishtisingh1813
 
How Data Annotation Services Drive Innovation in Autonomous Vehicles.docx
How Data Annotation Services Drive Innovation in Autonomous Vehicles.docxHow Data Annotation Services Drive Innovation in Autonomous Vehicles.docx
How Data Annotation Services Drive Innovation in Autonomous Vehicles.docx
sofiawilliams5966
 
lecture 33333222234555555555555555556.pptx
lecture 33333222234555555555555555556.pptxlecture 33333222234555555555555555556.pptx
lecture 33333222234555555555555555556.pptx
obsinaafilmakuush
 
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptxMulti-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
Multi-Agent-Solution-Architecture-for-Unified-Loan-Platform.pptx
VikashVats1
 
IST606_SecurityManagement-slides_ 4 pdf
IST606_SecurityManagement-slides_ 4  pdfIST606_SecurityManagement-slides_ 4  pdf
IST606_SecurityManagement-slides_ 4 pdf
nwanjamakane
 
Chapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I willChapter 5.1.pptxsertj you can get it done before the election and I will
Chapter 5.1.pptxsertj you can get it done before the election and I will
SotheaPheng
 
How to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing SoftwareHow to Choose the Right Online Proofing Software
How to Choose the Right Online Proofing Software
skalatskayaek
 
Artificial-Intelligence-in-Autonomous-Vehicles (1).pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1).pptxArtificial-Intelligence-in-Autonomous-Vehicles (1).pptx
Artificial-Intelligence-in-Autonomous-Vehicles (1).pptx
AbhijitPal87
 
delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)delta airlines new york office (Airwayscityoffice)
delta airlines new york office (Airwayscityoffice)
jamespromind
 
Cyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptxCyber Security Presentation(Neon)xu.pptx
Cyber Security Presentation(Neon)xu.pptx
vilakshbhargava
 
"Machine Learning in Agriculture: 12 Production-Grade Models", Danil Polyakov
"Machine Learning in Agriculture: 12 Production-Grade Models", Danil Polyakov"Machine Learning in Agriculture: 12 Production-Grade Models", Danil Polyakov
"Machine Learning in Agriculture: 12 Production-Grade Models", Danil Polyakov
Fwdays
 
Chapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statisticsChapter4.1.pptx you can come to the house and statistics
Chapter4.1.pptx you can come to the house and statistics
SotheaPheng
 
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
1022_ExtendEnrichExcelUsingPythonWithTableau_04_16+04_17 (1).pdf
elinavihriala
 
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptxrefractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
refractiveindexexperimentdetailed-250528162156-4516aa1c.pptx
KannanDamodaram
 
llm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blahllm lecture 3 stanford blah blah blah blah
llm lecture 3 stanford blah blah blah blah
saud140081
 
Math arihant handbook.pdf all formula is here
Math arihant handbook.pdf all formula is hereMath arihant handbook.pdf all formula is here
Math arihant handbook.pdf all formula is here
rdarshankumar84
 
GROUP 7 CASE STUDY Real Life Incident.pptx
GROUP 7 CASE STUDY Real Life Incident.pptxGROUP 7 CASE STUDY Real Life Incident.pptx
GROUP 7 CASE STUDY Real Life Incident.pptx
mardoglenn21
 
Ad

Optimizing RDF Data Cubes for Efficient Processing of Analytical Queries