SlideShare a Scribd company logo
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (1/46) CGLAB 이명규
2019/07/26
재귀적 Denoising AE를 통한
MC렌더링 이미지 시퀀스의
실시간 복원 기법
Interactive Reconstruction of
Monte Carlo Image Sequences using a
Recurrent Denoising Autoencoder
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (2/46)
I N D E X
01
02
03
04
05
Introduction
Recurrent AE
Proposed Method
Experiments
Conclusion
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (3/46)
Introduction
Part 01
1. 논문소개
2. 관련 연구 요약
3. Monte Carlo Rendering
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (4/46)
↳
논문소개1-1
• 발표 : SIGGRAPH 2017
• 저자 : Chakravarty R. Alla Chaitanya et al.
(NVIDIA, University of Montreal and McGill University)
• 인용횟수 : 63회
• Monte Carlo 렌더링에서 낮은 spp로 인해 발생되는 노이즈를
Recurrent AutoEncoder로 Denoising하는 연구
저널정보 및 논문소개
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (5/46)
↳
https://www.youtube.com/watch?v=YjjTPV2pXY0
논문소개1-1
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (6/46)
논문소개1-1
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (7/46)
↳
관련 연구 요약1-2
• Offline Denoising for MC Rendering
• Non-linear image space filters to indirect diffuse illumination (Jenson et al.)
• Looking at the frequency analysis of light transport (Egan et al.)
• Train parameters of a non-local means filter using ML
Good quality, but slow.
• Interactive Denoising for MC Rendering
• Separate direct/indirect illumination and filter the latter using edge-avoiding
filters
• edge-avoiding À-trous wavelets, adaptive manifolds, guided image filters
Local detail may be lost
Related Works – Image Denoising
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (8/46)
↳
관련 연구 요약1-2
• Image Restoration using Deep Learning
• Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections
[Mao et al.]
• The denoising of images corrupted with Gaussian noise is an active research topic.
• But in this paper, some samples have a very high energy while most areas appear black.
• Video Super Resolution
• Using RNNs(Huang et al. 2015) or LSTM block in bottleneck of the AE(Pătrăucean et al.)
Related Works – Reconstruction of Images
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (9/46)
↳
Monte Carlo Rendering1-3
Monte Carlo Integral
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (10/46)
↳
Monte Carlo Rendering1-3
Monte Carlo Integral
https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S08/lectures/17_monte_carlo.pdf
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (11/46)
↳
Monte Carlo Rendering1-3
Monte Carlo Rendering
https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S08/lectures/17_monte_carlo.pdf
Bidirectional Reflectance Distribution Function
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (12/46)
↳
Monte Carlo Rendering1-3
Monte Carlo Rendering
https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S08/lectures/17_monte_carlo.pdf
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (13/46)
↳
Monte Carlo Rendering1-3
Monte Carlo Rendering Our Problem
https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S08/lectures/17_monte_carlo.pdf
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (14/46)
↳
Monte Carlo Rendering1-3
Monte Carlo Rendering
https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S08/lectures/17_monte_carlo.pdf
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (15/46)
Recurrent AE
Part 02
1. AutoEncoder
2. RCNN(Recurrent CNN)
3. Recurrent AE
4. Additional Slides
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (16/46)
↳
AutoEncoder2-1
Linear vs. Non-Linear Dimension Reduction
https://www.jeremyjordan.me/autoencoders/
“Why using AE in this paper?”
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (17/46)
↳
AutoEncoder2-1
Concept of AutoEncoder
• AE는 입력 데이터를 하위 차원 매니폴드*로 매핑하기 위한 vector field를 학습
• 즉 고차원 공간 속에 분포하는 저차원의 Manifold hypothesis를 알아서 찾는것이 목표
*Manifold : 데이터가 분포하고 있는 공간의 표면을 의미(locally homeomorphic to euclidean space)
Self-supervised Learning
(Input을 target으로 사용)
Bottleneck
(Important features)
Target→
Predicted→
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (18/46)
↳
RCNN(Recurrent CNN)2-2
Concept of RNN
• 시퀀스 데이터 모델링을 위해 등장
• Hidden state(≈기억)를 갖고 있는 것이 기존 네트워크와의 차이
• 네트워크의 hidden state는 현재 state까지 요약된 입력 데이터와 같음
• 새로운 입력이 들어올 때마다 hidden state가 수정됨
New
Hidden state
Input data
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (19/46)
↳
RCNN(Recurrent CNN)2-2
Concept of RNN
https://pythonkim.tistory.com/57
ℎ𝑡𝑡 = 𝑓𝑓𝑤𝑤(ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡)
New State
Some function with
parameters 𝑾𝑾
Old State
Input vector at
some time step
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (20/46)
↳
RCNN(Recurrent CNN)2-2
Concept of RNN
https://dreamgonfly.github.io/rnn/2017/09/04/understanding-rnn.html
𝒐𝒐
𝑾𝑾 𝑾𝑾 𝑾𝑾
𝑺𝑺𝒊𝒊 𝒊𝒊𝒊𝒊𝒊𝒊 𝑺𝑺𝒕𝒕−𝟏𝟏 𝑺𝑺𝒕𝒕 𝑺𝑺𝒕𝒕+𝟏𝟏
𝒙𝒙𝒕𝒕−𝟏𝟏 𝒙𝒙𝒕𝒕−𝟏𝟏 𝒙𝒙𝒕𝒕−𝟏𝟏
𝑼𝑼 𝑼𝑼 𝑼𝑼
𝑽𝑽 • 𝒙𝒙𝒕𝒕 ∈ 𝑹𝑹𝟐𝟐𝟐𝟐
• 𝑼𝑼 ∈ 𝑹𝑹𝟐𝟐𝟐𝟐×𝟏𝟏𝟏𝟏𝟏𝟏
• 𝑺𝑺𝒕𝒕 ∈ 𝑹𝑹𝟏𝟏𝟏𝟏𝟏𝟏
• 𝑾𝑾 ∈ 𝑹𝑹𝟏𝟏𝟏𝟏𝟏𝟏×𝟏𝟏𝟏𝟏𝟏𝟏
• 𝑽𝑽 ∈ 𝑹𝑹𝟏𝟏𝟏𝟏𝟏𝟏×𝟏𝟏𝟏𝟏
• 𝒐𝒐 ∈ 𝑹𝑹𝟏𝟏𝟏𝟏
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (21/46)
https://www.youtube.com/watch?v=UNmqTiOnRfg
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (22/46)
https://www.youtube.com/watch?v=UNmqTiOnRfg
1
0
0
0
1
1
0
0
0
1
0
0
0
0
1
1
1
0
1
0
1
2
1
0
0
0
0
1
0
최댓값=1, 나머지=0
0
0
1
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (23/46)
↳
RCNN(Recurrent CNN)2-2
Concept of RNN
• 입력과 출력 단계의 거리가 멀수록 Vanishing Gradient 발생
• RNN은 가장 최근의 입력을 제일 강하게 기억하기 때문
• RCNN = RNN + CNN
• RNN의 단점을 보완한 LSTM 등이 제안되었으나 본 논문에서는
vanilla RNN 사용
• 이미지 내의 크고 다양한 사이즈의 영역에 부정적인 영향을 미칠 수
있다고 판단
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (24/46)
↳
Recurrent AE2-3
Why AE + RCNN?
• AE구조에 RCNN을 접목하면 Temporal stability가 증가됨
• 또한 AE를 사용하면 이를 end-to-end learning으로 감독 없이
자동으로 auxiliary pixel features를 잘 활용하도록 학습이 가능
• auxiliary pixel features : depth, normal 등등
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (25/46)
↳
Additional slides2-4
What is Auxiliary Pixel Features?
• G-buffer에 저장되는 정보로 Scene의 Geometry에 대한 정보들을 포함
• Rasterization path→reconstruction algorithm으로 보내는 정보
• HDR RGB image, Depth, Roughness, View-space shading normal
• 3(FP16)+4(1 FP16+3 FP8)=7 scalar values per pixel
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (26/46)
↳
2-4
What is Geometry Buffer?
• Per-pixel lighting에 필요한 모든 정보를 저장하는 buffer
• Normal, Position, Diffuse/Specular Albedo, …
Additional slides
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (27/46)
Proposed Method
Part 03
1. Interactive Path Tracer
2. Network Architecture
3. Training Data
4. Loss Functions
5. Analysis
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (28/46)
↳
3-1
Overview
I n t e r a c t i v e Pa t h
T r a c e r
Visible Surface
Rasterization
Tracing path using
NVIDIA OptiX GPU
Ray Tracer
• 1-sample unidirectionally path tracer 사용 (Indirect bounce = 1)
• 1-Direct lighting path(Cam→surface→light),
1-Indirect path(Cam→surface→ surface→ light)로 구성
• DoF, Motion blur는 G-buffer에서 노이즈를 유발하므로 Post process에서 처리
• Sampling light source
• Sampling scattering directions
(low-discrepancy Halton sequences)
• Apply path space regularization to
glossy & specular materials
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (29/46)
↳
3-2
기존 Image Restoration 방식의 문제
Network Architecture
• CNN with hierarchical skip connection[Mao et al.]의 문제점
• Full resolution(1080p)에서 매우 느림
• MC Rendering에서는 흔한 Spatially very sparse samples에는 취약함
• Frame들이 독립되어 있어 temporally unstable한 결과물이 나옴
Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections - https://arxiv.org/pdf/1606.08921.pdf
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (30/46)
↳
3-2
Network Overview – AE+RCNN
Network Architecture
• Denoising AE와 함께 시간 개념을 더하기 위해 RNN구조를 적용
• Recurrent connections를 통해 시간 경과에 따른 조명 정보를 누적
• 입력이 encoder에서 더 sparse하므로 Encoder에만 recurrent 구조를 적용
Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections - https://arxiv.org/pdf/1606.08921.pdf
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (31/46)
↳
3-2
Network Overview – AE+RCNN
Network Architecture
Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections - https://arxiv.org/pdf/1606.08921.pdf
7View space shading
Normals
(FP8, 2ch)
Depth map
(FP16, 1ch)
Material’s Roughness
map
(FP8, 1ch)
Noisy HDR RGB
(FP16, 3ch)
1024*1024
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (32/46)
↳
3-3
Trian Data Overview
Training Data
• 7개의 fly-through 동영상 시퀀스 사용
• 시퀀스 내에서 무작위 시간 범위를 골라 sub-sequence 학습에 사용
• 무작위로 앞/뒤 재생 및 다양한 카메라 움직임
• Data Augmentation
• 무작위로 선택된 시퀀스에 대해 90/180/270도 무작위 회전 적용
• 각 색상 채널별로 0~2 범위에서 무작위 색상 변조를 한 후 모든 시퀀스에 적용
(채널 독립성과 input-target 간의 linear한 관계를 더 잘 학습하게 함)
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (33/46)
↳
3-4
Overview of Loss Functions
Loss Functions
ℒ = 𝑤𝑤𝑠𝑠ℒ𝑠𝑠 + 𝑤𝑤𝑔𝑔ℒ𝑔𝑔 + 𝑤𝑤𝑡𝑡ℒ𝑡𝑡
𝒘𝒘𝒔𝒔, 𝒘𝒘𝒈𝒈, 𝒘𝒘𝒕𝒕: Weights
Spatial 𝑳𝑳𝟏𝟏 Loss
Gradient domain
𝑳𝑳𝟏𝟏 Loss
Temporal
𝑳𝑳𝟏𝟏 Loss
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (34/46)
↳
3-4
Loss with Isolated Images
Loss Functions
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℒ𝑠𝑠 =
𝟏𝟏
𝑵𝑵
�
𝒊𝒊
𝑵𝑵
𝑷𝑷𝒊𝒊 − 𝑻𝑻𝒊𝒊
• L2대신 L1 loss를 사용하면 reconstructed image에서 splotchy artifacts를
감소시킬 수 있음.
ℒ = 𝑤𝑤𝑠𝑠ℒ𝑠𝑠 + 𝑤𝑤𝑔𝑔ℒ𝑔𝑔 + 𝑤𝑤𝑡𝑡ℒ𝑡𝑡
𝑷𝑷𝒊𝒊: Predicted, 𝑻𝑻𝒊𝒊: Target
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (35/46)
↳
3-4
Loss with Isolated Images
Loss Functions
𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℒ𝑔𝑔 =
𝟏𝟏
𝑵𝑵
�
𝒊𝒊
𝑵𝑵
𝜵𝜵𝑷𝑷𝒊𝒊 − 𝜵𝜵𝑻𝑻𝒊𝒊
• ∇는 HFEN(High Frequency Error Norm)으로 계산
• Edge detection에 Laplacian 방식을 사용
• 노이즈에 취약하기 때문에 Gaussian filter(𝝈𝝈 = 𝟏𝟏. 𝟓𝟓)로 pre-smoothing
ℒ = 𝑤𝑤𝑠𝑠ℒ𝑠𝑠 + 𝑤𝑤𝑔𝑔ℒ𝑔𝑔 + 𝑤𝑤𝑡𝑡ℒ𝑡𝑡
𝑷𝑷𝒊𝒊: Predicted, 𝑻𝑻𝒊𝒊: Target
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (36/46)
↳
ℒ = 𝑤𝑤𝑠𝑠ℒ𝑠𝑠 + 𝑤𝑤𝑔𝑔ℒ𝑔𝑔 + 𝑤𝑤𝑡𝑡ℒ𝑡𝑡
𝑷𝑷𝒊𝒊: Predicted, 𝑻𝑻𝒊𝒊: Target
3-4
Loss that Penalize Temporal Incoherence
Loss Functions
𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ℒ𝑔𝑔 =
𝟏𝟏
𝑵𝑵
�
𝒊𝒊
𝑵𝑵
∂𝑷𝑷𝒊𝒊
∂𝒕𝒕
−
∂𝑻𝑻𝒊𝒊
∂𝒕𝒕
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (37/46)
↳
3-4
𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝓛𝓛𝒔𝒔 vs. 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳
Loss Functions
• 𝒘𝒘𝒔𝒔, 𝒘𝒘𝒈𝒈, 𝒘𝒘𝒕𝒕의 scale은 0.8, 0.1, 0.1로 대강 맞춤
• 영상 시퀀스가 끝나갈 때 loss weight를 높게 줄수록
temporal gradient를 증폭 가능
• Gaussian Curve를 이용해 수치 변경 (0.011, 0.044, 0.135, 0.325, 0.607, 0.882, 1)
• 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝓛𝓛𝒔𝒔: 0.9335, 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳: 0.9417
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (38/46)
↳
3-5
Analysis of Auxiliary Features
Analysis
• Using untextured lighting improves
the convergence speed
• Normals help network to detect
silhouettes of objects
• Add depth, roughness to get
more improvements.
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (39/46)
↳
3-5
Network Properties Analysis
best best
Analysis
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (40/46)
Experiments
Part 04
1. Reconstruction Quality
with low samples
2. Performance
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (41/46)
↳
4-1
Overview of Network
Reconstruction Quality with low samples
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (42/46)
↳
4-1 Reconstruction Quality with low samples
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (43/46)
↳
4-2
Environment
Performance
• Train
• Training network using NVIDIA DGX-1
16H for training 500epoch(1H for preprocessing data)
• Optimizer: ADAM(lr 0.001, decay rates 𝜷𝜷𝟏𝟏 = 𝟎𝟎. 𝟗𝟗, 𝜷𝜷𝟐𝟐 = 𝟎𝟎. 𝟗𝟗𝟗𝟗)
• Initialize parameters using He et al.’s method
• Apply LeakyReLU( 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝜶𝜶 = 𝟎𝟎. 𝟏𝟏, except last layer)+MaxPooling
• Reconstruction Performance
• CUDA kernel + cuDNN 5.1
• 720p reconstruction에 54.9ms 소요(TitanX)
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-print-infographic-738238-nvidia-web.pdf
“149,000$”
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (44/46)
Conclusion
Part 05
1. Conclusion
2. Limitations
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (45/46)
↳
Conclusion5-1
• Conclusion
• First application of recurrent denoising AE
• Producing noise-free and temporally coherent
animation sequence with GI(Global illumination)
• Future work
• 네트워크에 렌즈와 시간 좌표를 제공해 motion blur, DoF와 같은 효과도 처리
요약
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (46/46)
↳
Limitations5-2
• 머리카락과 같이 정교한 geometry에서는 spp가 낮을 때
파괴된 이미지 구조를 복구하지 못함
• 학습 데이터가 적을 경우 Flickering 현상 발생
본 논문의 한계
• Right: Noisy 1 spp input RGB sequence
• Middle: Reconstructed sequence
• Left: Reference 4096 spp sequence
https://github.com/yuyingyeh/rdae
CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (47/46)
Thank you for Listening.
Email : brstar96@naver.com (or brstar96@soongsil.ac.kr)
Mobile : +82-10-8234-3179
Ad

More Related Content

What's hot (20)

Review-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learningReview-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learning
Trong-An Bui
 
Pr045 deep lab_semantic_segmentation
Pr045 deep lab_semantic_segmentationPr045 deep lab_semantic_segmentation
Pr045 deep lab_semantic_segmentation
Taeoh Kim
 
Rethinking Attention with Performers
Rethinking Attention with PerformersRethinking Attention with Performers
Rethinking Attention with Performers
Joonhyung Lee
 
150807 Fast R-CNN
150807 Fast R-CNN150807 Fast R-CNN
150807 Fast R-CNN
Junho Cho
 
(Research Note) Delving deeper into convolutional neural networks for camera ...
(Research Note) Delving deeper into convolutional neural networks for camera ...(Research Note) Delving deeper into convolutional neural networks for camera ...
(Research Note) Delving deeper into convolutional neural networks for camera ...
Jacky Liu
 
Batch normalization presentation
Batch normalization presentationBatch normalization presentation
Batch normalization presentation
Owin Will
 
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
taeseon ryu
 
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
IJERA Editor
 
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation..."Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
Edge AI and Vision Alliance
 
#6 PyData Warsaw: Deep learning for image segmentation
#6 PyData Warsaw: Deep learning for image segmentation#6 PyData Warsaw: Deep learning for image segmentation
#6 PyData Warsaw: Deep learning for image segmentation
Matthew Opala
 
2020 11 2_automated sleep stage scoring of the sleep heart
2020 11 2_automated sleep stage scoring of the sleep heart2020 11 2_automated sleep stage scoring of the sleep heart
2020 11 2_automated sleep stage scoring of the sleep heart
JAEMINJEONG5
 
Background Subtraction Algorithm for Moving Object Detection Using Denoising ...
Background Subtraction Algorithm for Moving Object Detection Using Denoising ...Background Subtraction Algorithm for Moving Object Detection Using Denoising ...
Background Subtraction Algorithm for Moving Object Detection Using Denoising ...
International Journal of Science and Research (IJSR)
 
Pr057 mask rcnn
Pr057 mask rcnnPr057 mask rcnn
Pr057 mask rcnn
Taeoh Kim
 
Batch normalization
Batch normalizationBatch normalization
Batch normalization
Yuichiro Iio
 
Mask-RCNN for Instance Segmentation
Mask-RCNN for Instance SegmentationMask-RCNN for Instance Segmentation
Mask-RCNN for Instance Segmentation
Dat Nguyen
 
2021 05-04-u2-net
2021 05-04-u2-net2021 05-04-u2-net
2021 05-04-u2-net
JAEMINJEONG5
 
DeconvNet, DecoupledNet, TransferNet in Image Segmentation
DeconvNet, DecoupledNet, TransferNet in Image SegmentationDeconvNet, DecoupledNet, TransferNet in Image Segmentation
DeconvNet, DecoupledNet, TransferNet in Image Segmentation
NamHyuk Ahn
 
Learning deep features for discriminative localization
Learning deep features for discriminative localizationLearning deep features for discriminative localization
Learning deep features for discriminative localization
太一郎 遠藤
 
[Paper] Multiscale Vision Transformers(MVit)
[Paper] Multiscale Vision Transformers(MVit)[Paper] Multiscale Vision Transformers(MVit)
[Paper] Multiscale Vision Transformers(MVit)
Susang Kim
 
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Yan Xu
 
Review-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learningReview-image-segmentation-by-deep-learning
Review-image-segmentation-by-deep-learning
Trong-An Bui
 
Pr045 deep lab_semantic_segmentation
Pr045 deep lab_semantic_segmentationPr045 deep lab_semantic_segmentation
Pr045 deep lab_semantic_segmentation
Taeoh Kim
 
Rethinking Attention with Performers
Rethinking Attention with PerformersRethinking Attention with Performers
Rethinking Attention with Performers
Joonhyung Lee
 
150807 Fast R-CNN
150807 Fast R-CNN150807 Fast R-CNN
150807 Fast R-CNN
Junho Cho
 
(Research Note) Delving deeper into convolutional neural networks for camera ...
(Research Note) Delving deeper into convolutional neural networks for camera ...(Research Note) Delving deeper into convolutional neural networks for camera ...
(Research Note) Delving deeper into convolutional neural networks for camera ...
Jacky Liu
 
Batch normalization presentation
Batch normalization presentationBatch normalization presentation
Batch normalization presentation
Owin Will
 
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
taeseon ryu
 
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
IJERA Editor
 
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation..."Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
"Semantic Segmentation for Scene Understanding: Algorithms and Implementation...
Edge AI and Vision Alliance
 
#6 PyData Warsaw: Deep learning for image segmentation
#6 PyData Warsaw: Deep learning for image segmentation#6 PyData Warsaw: Deep learning for image segmentation
#6 PyData Warsaw: Deep learning for image segmentation
Matthew Opala
 
2020 11 2_automated sleep stage scoring of the sleep heart
2020 11 2_automated sleep stage scoring of the sleep heart2020 11 2_automated sleep stage scoring of the sleep heart
2020 11 2_automated sleep stage scoring of the sleep heart
JAEMINJEONG5
 
Pr057 mask rcnn
Pr057 mask rcnnPr057 mask rcnn
Pr057 mask rcnn
Taeoh Kim
 
Batch normalization
Batch normalizationBatch normalization
Batch normalization
Yuichiro Iio
 
Mask-RCNN for Instance Segmentation
Mask-RCNN for Instance SegmentationMask-RCNN for Instance Segmentation
Mask-RCNN for Instance Segmentation
Dat Nguyen
 
DeconvNet, DecoupledNet, TransferNet in Image Segmentation
DeconvNet, DecoupledNet, TransferNet in Image SegmentationDeconvNet, DecoupledNet, TransferNet in Image Segmentation
DeconvNet, DecoupledNet, TransferNet in Image Segmentation
NamHyuk Ahn
 
Learning deep features for discriminative localization
Learning deep features for discriminative localizationLearning deep features for discriminative localization
Learning deep features for discriminative localization
太一郎 遠藤
 
[Paper] Multiscale Vision Transformers(MVit)
[Paper] Multiscale Vision Transformers(MVit)[Paper] Multiscale Vision Transformers(MVit)
[Paper] Multiscale Vision Transformers(MVit)
Susang Kim
 
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Deep Learning Approach in Characterizing Salt Body on Seismic Images - by Zhe...
Yan Xu
 

Similar to (Paper Review) Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (20)

(Paper Review)3D shape reconstruction from sketches via multi view convolutio...
(Paper Review)3D shape reconstruction from sketches via multi view convolutio...(Paper Review)3D shape reconstruction from sketches via multi view convolutio...
(Paper Review)3D shape reconstruction from sketches via multi view convolutio...
MYEONGGYU LEE
 
Temporal Segment Network
Temporal Segment NetworkTemporal Segment Network
Temporal Segment Network
Dongang (Sean) Wang
 
Multimedia basic video compression techniques
Multimedia basic video compression techniquesMultimedia basic video compression techniques
Multimedia basic video compression techniques
Mazin Alwaaly
 
Multi-stage Progressive Image Restoration
Multi-stage Progressive Image RestorationMulti-stage Progressive Image Restoration
Multi-stage Progressive Image Restoration
SonalShrin
 
TransNeRF
TransNeRFTransNeRF
TransNeRF
NavneetPaul2
 
2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘
2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘
2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘
CHENHuiMei
 
Moving object detection on FPGA
Moving object detection on FPGAMoving object detection on FPGA
Moving object detection on FPGA
Sundance Multiprocessor Technology Ltd.
 
Deep learning for image video processing
Deep learning for image video processingDeep learning for image video processing
Deep learning for image video processing
Yu Huang
 
B.tech_project_ppt.pptx
B.tech_project_ppt.pptxB.tech_project_ppt.pptx
B.tech_project_ppt.pptx
supratikmondal6
 
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
Deep Learning JP
 
Week5-Faster R-CNN.pptx
Week5-Faster R-CNN.pptxWeek5-Faster R-CNN.pptx
Week5-Faster R-CNN.pptx
fahmi324663
 
Online video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident networkOnline video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident network
NAVER Engineering
 
Faster R-CNN - PR012
Faster R-CNN - PR012Faster R-CNN - PR012
Faster R-CNN - PR012
Jinwon Lee
 
Fisheye Omnidirectional View in Autonomous Driving II
Fisheye Omnidirectional View in Autonomous Driving IIFisheye Omnidirectional View in Autonomous Driving II
Fisheye Omnidirectional View in Autonomous Driving II
Yu Huang
 
Neural Radiance Fields & Neural Rendering.pdf
Neural Radiance Fields & Neural Rendering.pdfNeural Radiance Fields & Neural Rendering.pdf
Neural Radiance Fields & Neural Rendering.pdf
NavneetPaul2
 
Final Poster
Final PosterFinal Poster
Final Poster
Elizabeth Koshelev
 
2019-06-14:6 - Reti neurali e compressione immagine
2019-06-14:6 - Reti neurali e compressione immagine2019-06-14:6 - Reti neurali e compressione immagine
2019-06-14:6 - Reti neurali e compressione immagine
uninfoit
 
Neural Discrete Representation Learning - A paper review
Neural Discrete Representation Learning - A paper reviewNeural Discrete Representation Learning - A paper review
Neural Discrete Representation Learning - A paper review
Abhishek Koirala
 
Interactive Control over Temporal Consistency while Stylizing Video Streams
Interactive Control over Temporal Consistency while Stylizing Video StreamsInteractive Control over Temporal Consistency while Stylizing Video Streams
Interactive Control over Temporal Consistency while Stylizing Video Streams
Matthias Trapp
 
CyberSec_JPEGcompressionForensics.pdf
CyberSec_JPEGcompressionForensics.pdfCyberSec_JPEGcompressionForensics.pdf
CyberSec_JPEGcompressionForensics.pdf
MohammadAzreeYahaya
 
(Paper Review)3D shape reconstruction from sketches via multi view convolutio...
(Paper Review)3D shape reconstruction from sketches via multi view convolutio...(Paper Review)3D shape reconstruction from sketches via multi view convolutio...
(Paper Review)3D shape reconstruction from sketches via multi view convolutio...
MYEONGGYU LEE
 
Multimedia basic video compression techniques
Multimedia basic video compression techniquesMultimedia basic video compression techniques
Multimedia basic video compression techniques
Mazin Alwaaly
 
Multi-stage Progressive Image Restoration
Multi-stage Progressive Image RestorationMulti-stage Progressive Image Restoration
Multi-stage Progressive Image Restoration
SonalShrin
 
2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘
2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘
2018AOI論壇_深度學習於表面瑕疪檢測_元智大學蔡篤銘
CHENHuiMei
 
Deep learning for image video processing
Deep learning for image video processingDeep learning for image video processing
Deep learning for image video processing
Yu Huang
 
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video  Processing (NeRF...
[DL輪読会]Neural Radiance Flow for 4D View Synthesis and Video Processing (NeRF...
Deep Learning JP
 
Week5-Faster R-CNN.pptx
Week5-Faster R-CNN.pptxWeek5-Faster R-CNN.pptx
Week5-Faster R-CNN.pptx
fahmi324663
 
Online video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident networkOnline video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident network
NAVER Engineering
 
Faster R-CNN - PR012
Faster R-CNN - PR012Faster R-CNN - PR012
Faster R-CNN - PR012
Jinwon Lee
 
Fisheye Omnidirectional View in Autonomous Driving II
Fisheye Omnidirectional View in Autonomous Driving IIFisheye Omnidirectional View in Autonomous Driving II
Fisheye Omnidirectional View in Autonomous Driving II
Yu Huang
 
Neural Radiance Fields & Neural Rendering.pdf
Neural Radiance Fields & Neural Rendering.pdfNeural Radiance Fields & Neural Rendering.pdf
Neural Radiance Fields & Neural Rendering.pdf
NavneetPaul2
 
2019-06-14:6 - Reti neurali e compressione immagine
2019-06-14:6 - Reti neurali e compressione immagine2019-06-14:6 - Reti neurali e compressione immagine
2019-06-14:6 - Reti neurali e compressione immagine
uninfoit
 
Neural Discrete Representation Learning - A paper review
Neural Discrete Representation Learning - A paper reviewNeural Discrete Representation Learning - A paper review
Neural Discrete Representation Learning - A paper review
Abhishek Koirala
 
Interactive Control over Temporal Consistency while Stylizing Video Streams
Interactive Control over Temporal Consistency while Stylizing Video StreamsInteractive Control over Temporal Consistency while Stylizing Video Streams
Interactive Control over Temporal Consistency while Stylizing Video Streams
Matthias Trapp
 
CyberSec_JPEGcompressionForensics.pdf
CyberSec_JPEGcompressionForensics.pdfCyberSec_JPEGcompressionForensics.pdf
CyberSec_JPEGcompressionForensics.pdf
MohammadAzreeYahaya
 
Ad

More from MYEONGGYU LEE (13)

Survey of HDR & Tone Mapping Task
Survey of HDR & Tone Mapping TaskSurvey of HDR & Tone Mapping Task
Survey of HDR & Tone Mapping Task
MYEONGGYU LEE
 
Simple Review of Single Image Super Resolution Task
Simple Review of Single Image Super Resolution TaskSimple Review of Single Image Super Resolution Task
Simple Review of Single Image Super Resolution Task
MYEONGGYU LEE
 
ICCV 2019 Review
ICCV 2019 ReviewICCV 2019 Review
ICCV 2019 Review
MYEONGGYU LEE
 
(Paper Review)Few-Shot Adversarial Learning of Realistic Neural Talking Head ...
(Paper Review)Few-Shot Adversarial Learning of Realistic Neural Talking Head ...(Paper Review)Few-Shot Adversarial Learning of Realistic Neural Talking Head ...
(Paper Review)Few-Shot Adversarial Learning of Realistic Neural Talking Head ...
MYEONGGYU LEE
 
(Book Summary) Classification and ensemble(book review)
(Book Summary) Classification and ensemble(book review)(Book Summary) Classification and ensemble(book review)
(Book Summary) Classification and ensemble(book review)
MYEONGGYU LEE
 
(Paper Review)A versatile learning based 3D temporal tracker - scalable, robu...
(Paper Review)A versatile learning based 3D temporal tracker - scalable, robu...(Paper Review)A versatile learning based 3D temporal tracker - scalable, robu...
(Paper Review)A versatile learning based 3D temporal tracker - scalable, robu...
MYEONGGYU LEE
 
(Paper Review)Neural 3D mesh renderer
(Paper Review)Neural 3D mesh renderer(Paper Review)Neural 3D mesh renderer
(Paper Review)Neural 3D mesh renderer
MYEONGGYU LEE
 
(Paper Review)Image to image translation with conditional adversarial network...
(Paper Review)Image to image translation with conditional adversarial network...(Paper Review)Image to image translation with conditional adversarial network...
(Paper Review)Image to image translation with conditional adversarial network...
MYEONGGYU LEE
 
(Book summary) Ensemble method 2018summerml_study
(Book summary) Ensemble method 2018summerml_study(Book summary) Ensemble method 2018summerml_study
(Book summary) Ensemble method 2018summerml_study
MYEONGGYU LEE
 
(Paper Review)Towards foveated rendering for gaze tracked virtual reality
(Paper Review)Towards foveated rendering for gaze tracked virtual reality(Paper Review)Towards foveated rendering for gaze tracked virtual reality
(Paper Review)Towards foveated rendering for gaze tracked virtual reality
MYEONGGYU LEE
 
(Paper Review)Geometrically correct projection-based texture mapping onto a d...
(Paper Review)Geometrically correct projection-based texture mapping onto a d...(Paper Review)Geometrically correct projection-based texture mapping onto a d...
(Paper Review)Geometrically correct projection-based texture mapping onto a d...
MYEONGGYU LEE
 
(Papers Review)CNN for sentence classification
(Papers Review)CNN for sentence classification(Papers Review)CNN for sentence classification
(Papers Review)CNN for sentence classification
MYEONGGYU LEE
 
(Paper Review)Kernel predicting-convolutional-networks-for-denoising-monte-ca...
(Paper Review)Kernel predicting-convolutional-networks-for-denoising-monte-ca...(Paper Review)Kernel predicting-convolutional-networks-for-denoising-monte-ca...
(Paper Review)Kernel predicting-convolutional-networks-for-denoising-monte-ca...
MYEONGGYU LEE
 
Survey of HDR & Tone Mapping Task
Survey of HDR & Tone Mapping TaskSurvey of HDR & Tone Mapping Task
Survey of HDR & Tone Mapping Task
MYEONGGYU LEE
 
Simple Review of Single Image Super Resolution Task
Simple Review of Single Image Super Resolution TaskSimple Review of Single Image Super Resolution Task
Simple Review of Single Image Super Resolution Task
MYEONGGYU LEE
 
(Paper Review)Few-Shot Adversarial Learning of Realistic Neural Talking Head ...
(Paper Review)Few-Shot Adversarial Learning of Realistic Neural Talking Head ...(Paper Review)Few-Shot Adversarial Learning of Realistic Neural Talking Head ...
(Paper Review)Few-Shot Adversarial Learning of Realistic Neural Talking Head ...
MYEONGGYU LEE
 
(Book Summary) Classification and ensemble(book review)
(Book Summary) Classification and ensemble(book review)(Book Summary) Classification and ensemble(book review)
(Book Summary) Classification and ensemble(book review)
MYEONGGYU LEE
 
(Paper Review)A versatile learning based 3D temporal tracker - scalable, robu...
(Paper Review)A versatile learning based 3D temporal tracker - scalable, robu...(Paper Review)A versatile learning based 3D temporal tracker - scalable, robu...
(Paper Review)A versatile learning based 3D temporal tracker - scalable, robu...
MYEONGGYU LEE
 
(Paper Review)Neural 3D mesh renderer
(Paper Review)Neural 3D mesh renderer(Paper Review)Neural 3D mesh renderer
(Paper Review)Neural 3D mesh renderer
MYEONGGYU LEE
 
(Paper Review)Image to image translation with conditional adversarial network...
(Paper Review)Image to image translation with conditional adversarial network...(Paper Review)Image to image translation with conditional adversarial network...
(Paper Review)Image to image translation with conditional adversarial network...
MYEONGGYU LEE
 
(Book summary) Ensemble method 2018summerml_study
(Book summary) Ensemble method 2018summerml_study(Book summary) Ensemble method 2018summerml_study
(Book summary) Ensemble method 2018summerml_study
MYEONGGYU LEE
 
(Paper Review)Towards foveated rendering for gaze tracked virtual reality
(Paper Review)Towards foveated rendering for gaze tracked virtual reality(Paper Review)Towards foveated rendering for gaze tracked virtual reality
(Paper Review)Towards foveated rendering for gaze tracked virtual reality
MYEONGGYU LEE
 
(Paper Review)Geometrically correct projection-based texture mapping onto a d...
(Paper Review)Geometrically correct projection-based texture mapping onto a d...(Paper Review)Geometrically correct projection-based texture mapping onto a d...
(Paper Review)Geometrically correct projection-based texture mapping onto a d...
MYEONGGYU LEE
 
(Papers Review)CNN for sentence classification
(Papers Review)CNN for sentence classification(Papers Review)CNN for sentence classification
(Papers Review)CNN for sentence classification
MYEONGGYU LEE
 
(Paper Review)Kernel predicting-convolutional-networks-for-denoising-monte-ca...
(Paper Review)Kernel predicting-convolutional-networks-for-denoising-monte-ca...(Paper Review)Kernel predicting-convolutional-networks-for-denoising-monte-ca...
(Paper Review)Kernel predicting-convolutional-networks-for-denoising-monte-ca...
MYEONGGYU LEE
 
Ad

Recently uploaded (20)

Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
TrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token ListingTrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token Listing
Trs Labs
 
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdfAre Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Telecoms Supermarket
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
TrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token ListingTrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token Listing
Trs Labs
 
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdfAre Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Are Cloud PBX Providers in India Reliable for Small Businesses (1).pdf
Telecoms Supermarket
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 

(Paper Review) Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder

  • 1. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (1/46) CGLAB 이명규 2019/07/26 재귀적 Denoising AE를 통한 MC렌더링 이미지 시퀀스의 실시간 복원 기법 Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder
  • 2. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (2/46) I N D E X 01 02 03 04 05 Introduction Recurrent AE Proposed Method Experiments Conclusion
  • 3. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (3/46) Introduction Part 01 1. 논문소개 2. 관련 연구 요약 3. Monte Carlo Rendering
  • 4. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (4/46) ↳ 논문소개1-1 • 발표 : SIGGRAPH 2017 • 저자 : Chakravarty R. Alla Chaitanya et al. (NVIDIA, University of Montreal and McGill University) • 인용횟수 : 63회 • Monte Carlo 렌더링에서 낮은 spp로 인해 발생되는 노이즈를 Recurrent AutoEncoder로 Denoising하는 연구 저널정보 및 논문소개
  • 5. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (5/46) ↳ https://www.youtube.com/watch?v=YjjTPV2pXY0 논문소개1-1
  • 6. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (6/46) 논문소개1-1
  • 7. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (7/46) ↳ 관련 연구 요약1-2 • Offline Denoising for MC Rendering • Non-linear image space filters to indirect diffuse illumination (Jenson et al.) • Looking at the frequency analysis of light transport (Egan et al.) • Train parameters of a non-local means filter using ML Good quality, but slow. • Interactive Denoising for MC Rendering • Separate direct/indirect illumination and filter the latter using edge-avoiding filters • edge-avoiding À-trous wavelets, adaptive manifolds, guided image filters Local detail may be lost Related Works – Image Denoising
  • 8. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (8/46) ↳ 관련 연구 요약1-2 • Image Restoration using Deep Learning • Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections [Mao et al.] • The denoising of images corrupted with Gaussian noise is an active research topic. • But in this paper, some samples have a very high energy while most areas appear black. • Video Super Resolution • Using RNNs(Huang et al. 2015) or LSTM block in bottleneck of the AE(Pătrăucean et al.) Related Works – Reconstruction of Images
  • 9. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (9/46) ↳ Monte Carlo Rendering1-3 Monte Carlo Integral
  • 10. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (10/46) ↳ Monte Carlo Rendering1-3 Monte Carlo Integral https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S08/lectures/17_monte_carlo.pdf
  • 11. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (11/46) ↳ Monte Carlo Rendering1-3 Monte Carlo Rendering https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S08/lectures/17_monte_carlo.pdf Bidirectional Reflectance Distribution Function
  • 12. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (12/46) ↳ Monte Carlo Rendering1-3 Monte Carlo Rendering https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S08/lectures/17_monte_carlo.pdf
  • 13. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (13/46) ↳ Monte Carlo Rendering1-3 Monte Carlo Rendering Our Problem https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S08/lectures/17_monte_carlo.pdf
  • 14. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (14/46) ↳ Monte Carlo Rendering1-3 Monte Carlo Rendering https://www.cs.rpi.edu/~cutler/classes/advancedgraphics/S08/lectures/17_monte_carlo.pdf
  • 15. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (15/46) Recurrent AE Part 02 1. AutoEncoder 2. RCNN(Recurrent CNN) 3. Recurrent AE 4. Additional Slides
  • 16. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (16/46) ↳ AutoEncoder2-1 Linear vs. Non-Linear Dimension Reduction https://www.jeremyjordan.me/autoencoders/ “Why using AE in this paper?”
  • 17. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (17/46) ↳ AutoEncoder2-1 Concept of AutoEncoder • AE는 입력 데이터를 하위 차원 매니폴드*로 매핑하기 위한 vector field를 학습 • 즉 고차원 공간 속에 분포하는 저차원의 Manifold hypothesis를 알아서 찾는것이 목표 *Manifold : 데이터가 분포하고 있는 공간의 표면을 의미(locally homeomorphic to euclidean space) Self-supervised Learning (Input을 target으로 사용) Bottleneck (Important features) Target→ Predicted→
  • 18. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (18/46) ↳ RCNN(Recurrent CNN)2-2 Concept of RNN • 시퀀스 데이터 모델링을 위해 등장 • Hidden state(≈기억)를 갖고 있는 것이 기존 네트워크와의 차이 • 네트워크의 hidden state는 현재 state까지 요약된 입력 데이터와 같음 • 새로운 입력이 들어올 때마다 hidden state가 수정됨 New Hidden state Input data
  • 19. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (19/46) ↳ RCNN(Recurrent CNN)2-2 Concept of RNN https://pythonkim.tistory.com/57 ℎ𝑡𝑡 = 𝑓𝑓𝑤𝑤(ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡) New State Some function with parameters 𝑾𝑾 Old State Input vector at some time step
  • 20. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (20/46) ↳ RCNN(Recurrent CNN)2-2 Concept of RNN https://dreamgonfly.github.io/rnn/2017/09/04/understanding-rnn.html 𝒐𝒐 𝑾𝑾 𝑾𝑾 𝑾𝑾 𝑺𝑺𝒊𝒊 𝒊𝒊𝒊𝒊𝒊𝒊 𝑺𝑺𝒕𝒕−𝟏𝟏 𝑺𝑺𝒕𝒕 𝑺𝑺𝒕𝒕+𝟏𝟏 𝒙𝒙𝒕𝒕−𝟏𝟏 𝒙𝒙𝒕𝒕−𝟏𝟏 𝒙𝒙𝒕𝒕−𝟏𝟏 𝑼𝑼 𝑼𝑼 𝑼𝑼 𝑽𝑽 • 𝒙𝒙𝒕𝒕 ∈ 𝑹𝑹𝟐𝟐𝟐𝟐 • 𝑼𝑼 ∈ 𝑹𝑹𝟐𝟐𝟐𝟐×𝟏𝟏𝟏𝟏𝟏𝟏 • 𝑺𝑺𝒕𝒕 ∈ 𝑹𝑹𝟏𝟏𝟏𝟏𝟏𝟏 • 𝑾𝑾 ∈ 𝑹𝑹𝟏𝟏𝟏𝟏𝟏𝟏×𝟏𝟏𝟏𝟏𝟏𝟏 • 𝑽𝑽 ∈ 𝑹𝑹𝟏𝟏𝟏𝟏𝟏𝟏×𝟏𝟏𝟏𝟏 • 𝒐𝒐 ∈ 𝑹𝑹𝟏𝟏𝟏𝟏
  • 21. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (21/46) https://www.youtube.com/watch?v=UNmqTiOnRfg
  • 22. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (22/46) https://www.youtube.com/watch?v=UNmqTiOnRfg 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 1 2 1 0 0 0 0 1 0 최댓값=1, 나머지=0 0 0 1
  • 23. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (23/46) ↳ RCNN(Recurrent CNN)2-2 Concept of RNN • 입력과 출력 단계의 거리가 멀수록 Vanishing Gradient 발생 • RNN은 가장 최근의 입력을 제일 강하게 기억하기 때문 • RCNN = RNN + CNN • RNN의 단점을 보완한 LSTM 등이 제안되었으나 본 논문에서는 vanilla RNN 사용 • 이미지 내의 크고 다양한 사이즈의 영역에 부정적인 영향을 미칠 수 있다고 판단
  • 24. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (24/46) ↳ Recurrent AE2-3 Why AE + RCNN? • AE구조에 RCNN을 접목하면 Temporal stability가 증가됨 • 또한 AE를 사용하면 이를 end-to-end learning으로 감독 없이 자동으로 auxiliary pixel features를 잘 활용하도록 학습이 가능 • auxiliary pixel features : depth, normal 등등
  • 25. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (25/46) ↳ Additional slides2-4 What is Auxiliary Pixel Features? • G-buffer에 저장되는 정보로 Scene의 Geometry에 대한 정보들을 포함 • Rasterization path→reconstruction algorithm으로 보내는 정보 • HDR RGB image, Depth, Roughness, View-space shading normal • 3(FP16)+4(1 FP16+3 FP8)=7 scalar values per pixel
  • 26. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (26/46) ↳ 2-4 What is Geometry Buffer? • Per-pixel lighting에 필요한 모든 정보를 저장하는 buffer • Normal, Position, Diffuse/Specular Albedo, … Additional slides
  • 27. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (27/46) Proposed Method Part 03 1. Interactive Path Tracer 2. Network Architecture 3. Training Data 4. Loss Functions 5. Analysis
  • 28. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (28/46) ↳ 3-1 Overview I n t e r a c t i v e Pa t h T r a c e r Visible Surface Rasterization Tracing path using NVIDIA OptiX GPU Ray Tracer • 1-sample unidirectionally path tracer 사용 (Indirect bounce = 1) • 1-Direct lighting path(Cam→surface→light), 1-Indirect path(Cam→surface→ surface→ light)로 구성 • DoF, Motion blur는 G-buffer에서 노이즈를 유발하므로 Post process에서 처리 • Sampling light source • Sampling scattering directions (low-discrepancy Halton sequences) • Apply path space regularization to glossy & specular materials
  • 29. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (29/46) ↳ 3-2 기존 Image Restoration 방식의 문제 Network Architecture • CNN with hierarchical skip connection[Mao et al.]의 문제점 • Full resolution(1080p)에서 매우 느림 • MC Rendering에서는 흔한 Spatially very sparse samples에는 취약함 • Frame들이 독립되어 있어 temporally unstable한 결과물이 나옴 Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections - https://arxiv.org/pdf/1606.08921.pdf
  • 30. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (30/46) ↳ 3-2 Network Overview – AE+RCNN Network Architecture • Denoising AE와 함께 시간 개념을 더하기 위해 RNN구조를 적용 • Recurrent connections를 통해 시간 경과에 따른 조명 정보를 누적 • 입력이 encoder에서 더 sparse하므로 Encoder에만 recurrent 구조를 적용 Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections - https://arxiv.org/pdf/1606.08921.pdf
  • 31. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (31/46) ↳ 3-2 Network Overview – AE+RCNN Network Architecture Image Restoration Using Convolutional Auto-encoders with Symmetric Skip Connections - https://arxiv.org/pdf/1606.08921.pdf 7View space shading Normals (FP8, 2ch) Depth map (FP16, 1ch) Material’s Roughness map (FP8, 1ch) Noisy HDR RGB (FP16, 3ch) 1024*1024
  • 32. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (32/46) ↳ 3-3 Trian Data Overview Training Data • 7개의 fly-through 동영상 시퀀스 사용 • 시퀀스 내에서 무작위 시간 범위를 골라 sub-sequence 학습에 사용 • 무작위로 앞/뒤 재생 및 다양한 카메라 움직임 • Data Augmentation • 무작위로 선택된 시퀀스에 대해 90/180/270도 무작위 회전 적용 • 각 색상 채널별로 0~2 범위에서 무작위 색상 변조를 한 후 모든 시퀀스에 적용 (채널 독립성과 input-target 간의 linear한 관계를 더 잘 학습하게 함)
  • 33. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (33/46) ↳ 3-4 Overview of Loss Functions Loss Functions ℒ = 𝑤𝑤𝑠𝑠ℒ𝑠𝑠 + 𝑤𝑤𝑔𝑔ℒ𝑔𝑔 + 𝑤𝑤𝑡𝑡ℒ𝑡𝑡 𝒘𝒘𝒔𝒔, 𝒘𝒘𝒈𝒈, 𝒘𝒘𝒕𝒕: Weights Spatial 𝑳𝑳𝟏𝟏 Loss Gradient domain 𝑳𝑳𝟏𝟏 Loss Temporal 𝑳𝑳𝟏𝟏 Loss
  • 34. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (34/46) ↳ 3-4 Loss with Isolated Images Loss Functions 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ℒ𝑠𝑠 = 𝟏𝟏 𝑵𝑵 � 𝒊𝒊 𝑵𝑵 𝑷𝑷𝒊𝒊 − 𝑻𝑻𝒊𝒊 • L2대신 L1 loss를 사용하면 reconstructed image에서 splotchy artifacts를 감소시킬 수 있음. ℒ = 𝑤𝑤𝑠𝑠ℒ𝑠𝑠 + 𝑤𝑤𝑔𝑔ℒ𝑔𝑔 + 𝑤𝑤𝑡𝑡ℒ𝑡𝑡 𝑷𝑷𝒊𝒊: Predicted, 𝑻𝑻𝒊𝒊: Target
  • 35. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (35/46) ↳ 3-4 Loss with Isolated Images Loss Functions 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ℒ𝑔𝑔 = 𝟏𝟏 𝑵𝑵 � 𝒊𝒊 𝑵𝑵 𝜵𝜵𝑷𝑷𝒊𝒊 − 𝜵𝜵𝑻𝑻𝒊𝒊 • ∇는 HFEN(High Frequency Error Norm)으로 계산 • Edge detection에 Laplacian 방식을 사용 • 노이즈에 취약하기 때문에 Gaussian filter(𝝈𝝈 = 𝟏𝟏. 𝟓𝟓)로 pre-smoothing ℒ = 𝑤𝑤𝑠𝑠ℒ𝑠𝑠 + 𝑤𝑤𝑔𝑔ℒ𝑔𝑔 + 𝑤𝑤𝑡𝑡ℒ𝑡𝑡 𝑷𝑷𝒊𝒊: Predicted, 𝑻𝑻𝒊𝒊: Target
  • 36. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (36/46) ↳ ℒ = 𝑤𝑤𝑠𝑠ℒ𝑠𝑠 + 𝑤𝑤𝑔𝑔ℒ𝑔𝑔 + 𝑤𝑤𝑡𝑡ℒ𝑡𝑡 𝑷𝑷𝒊𝒊: Predicted, 𝑻𝑻𝒊𝒊: Target 3-4 Loss that Penalize Temporal Incoherence Loss Functions 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ℒ𝑔𝑔 = 𝟏𝟏 𝑵𝑵 � 𝒊𝒊 𝑵𝑵 ∂𝑷𝑷𝒊𝒊 ∂𝒕𝒕 − ∂𝑻𝑻𝒊𝒊 ∂𝒕𝒕
  • 37. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (37/46) ↳ 3-4 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝓛𝓛𝒔𝒔 vs. 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳 Loss Functions • 𝒘𝒘𝒔𝒔, 𝒘𝒘𝒈𝒈, 𝒘𝒘𝒕𝒕의 scale은 0.8, 0.1, 0.1로 대강 맞춤 • 영상 시퀀스가 끝나갈 때 loss weight를 높게 줄수록 temporal gradient를 증폭 가능 • Gaussian Curve를 이용해 수치 변경 (0.011, 0.044, 0.135, 0.325, 0.607, 0.882, 1) • 𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺𝑺 𝓛𝓛𝒔𝒔: 0.9335, 𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 𝑳𝑳𝑳𝑳𝑳𝑳𝑳𝑳: 0.9417
  • 38. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (38/46) ↳ 3-5 Analysis of Auxiliary Features Analysis • Using untextured lighting improves the convergence speed • Normals help network to detect silhouettes of objects • Add depth, roughness to get more improvements.
  • 39. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (39/46) ↳ 3-5 Network Properties Analysis best best Analysis
  • 40. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (40/46) Experiments Part 04 1. Reconstruction Quality with low samples 2. Performance
  • 41. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (41/46) ↳ 4-1 Overview of Network Reconstruction Quality with low samples
  • 42. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (42/46) ↳ 4-1 Reconstruction Quality with low samples
  • 43. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (43/46) ↳ 4-2 Environment Performance • Train • Training network using NVIDIA DGX-1 16H for training 500epoch(1H for preprocessing data) • Optimizer: ADAM(lr 0.001, decay rates 𝜷𝜷𝟏𝟏 = 𝟎𝟎. 𝟗𝟗, 𝜷𝜷𝟐𝟐 = 𝟎𝟎. 𝟗𝟗𝟗𝟗) • Initialize parameters using He et al.’s method • Apply LeakyReLU( 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝜶𝜶 = 𝟎𝟎. 𝟏𝟏, except last layer)+MaxPooling • Reconstruction Performance • CUDA kernel + cuDNN 5.1 • 720p reconstruction에 54.9ms 소요(TitanX) https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-print-infographic-738238-nvidia-web.pdf “149,000$”
  • 44. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (44/46) Conclusion Part 05 1. Conclusion 2. Limitations
  • 45. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (45/46) ↳ Conclusion5-1 • Conclusion • First application of recurrent denoising AE • Producing noise-free and temporally coherent animation sequence with GI(Global illumination) • Future work • 네트워크에 렌즈와 시간 좌표를 제공해 motion blur, DoF와 같은 효과도 처리 요약
  • 46. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (46/46) ↳ Limitations5-2 • 머리카락과 같이 정교한 geometry에서는 spp가 낮을 때 파괴된 이미지 구조를 복구하지 못함 • 학습 데이터가 적을 경우 Flickering 현상 발생 본 논문의 한계 • Right: Noisy 1 spp input RGB sequence • Middle: Reconstructed sequence • Left: Reference 4096 spp sequence https://github.com/yuyingyeh/rdae
  • 47. CGLAB 이명규Interactive Reconstruction of Monte Carlo Image Sequences using a Recurrent Denoising Autoencoder (47/46) Thank you for Listening. Email : [email protected] (or [email protected]) Mobile : +82-10-8234-3179