SlideShare a Scribd company logo
TALLER
Pentaho Data Integration:
Extrayendo, Integrando,
Normalizando y Preparando
mis datos
Proyectos Programa Big Data y Business Intelligence
Alex Rayón
alex.rayon@deusto.es
Noviembre, 2015
Before starting….
Who has
used a
relational
database? Source: http://www.agiledata.org/essays/databaseTesting.html
2
Before starting…. (II)
Who has written
scripts or Java
code to move
data from one
source and load
it to another?
Source: http://www.theguardian.com/teacher-network/2012/jan/10/how-to-teach-code
3
Before starting…. (III)
What did you use?
1.Scripts
2.Custom Java Code
3.ETL
4
Table of Contents
Pentaho at a glance
In the academic field
ETL
Kettle
Big Data
Predictive Analytics
5
Table of Contents
Pentaho at a glance
In the academic field
ETL
Kettle
Big Data
Predictive Analytics
6
Pentaho at a glance
Business Intelligence
7
Pentaho at a glance (II)
8
Pentaho at a glance (III)
Business Intelligence & Analytics
Open Core
GPL v2
Apache 2.0
Enterprise and OEM licenses
Java-based
Web front-ends
9
Pentaho at a glance (IV)
The Pentaho Stack
Data Integration / ETL
Big Data / NoSQL
Data Modeling
Reporting
OLAP / Analysis
Data Visualization
Source: http://helicaltech.com/blogs/hire-pentaho-consultants-hire-pentaho-developers/
10
Pentaho at a glance (V)
Modules
Pentaho Data Integration
Kettle
Pentaho Analysis
Mondrian
Pentaho Reporting
Pentaho Dashboards
11
Pentaho at a glance (VI)
Figures
+ 10.000 deployments
+ 185 countries
+ 1.200 customers
Since 2012, in Gartner
Magic Quadrant for BI
Platforms
1 download / 30
12
Pentaho at a glance (VII)
Open Source Leader
13
Pentaho at a glance (VIII)
Single Platform
14
Table of Contents
Pentaho at a glance
In the academic field
ETL
Kettle
Big Data
Predictive Analytics
15
Academic field
16
Academic field (II)
17
Academic field (III)
18
Academic field (IV)
19
Academic field (V)
20
Academic field (VI)
21
Table of Contents
Pentaho at a glance
In the academic field
ETL
Kettle
Big Data
Predictive Analytics
22
ETL
Definition and characteristics
An ETL tool is a tool that
Extracts data from various data sources (usually legacy
data)
Transforms data
from → being optimized for transaction
to → being optimized for reporting and analysis
synchronizes the data coming from different databases
data cleanses to remove errors
Loads data into a data warehouse
23
ETL
Why do I need it?
ETL tools save time and money when
developing a data warehouse by removing
the need for hand-coding
It is very difficult for database administrators
to connect between different brands of
databases without using an external tool
In the event that databases are altered or new
databases need to be integrated, a lot of hand-
coded work needs to be completely redone24
ETL
Business Intelligence
ETL is the heart
and soul of
business
intelligence (BI)
ETL processes
bring together
and combine data
from multiple
source systems
into a data
warehouse
Source: http://datawarehouseujap.blogspot.com.es/2010/08/data-warehouse.html
25
ETL
Business Intelligence (II)
According to most
practitioners, ETL
design and
development work
consumes 60 to 80
percent of an entire BI
project
Source: http://www.dwuser.com/news/tag/optimization/
Source: The Data Warehousing Institute. www.dw-institute.com
26
ETL
Processing framework
Source: The Data Warehousing Institute. www.dw-institute.com
27
ETL
Tools
Source: http://www.slideshare.net/jade_22/kettleetltool-090522005630phpapp01
28
ETL
Open Source tools
CloverETL
KETL
Kettle
Talend
29
ETL
CloverETL
Create a basic archive of functions
for mapping and transformations,
allowing companies to move large
amounts of data as quickly and
efficiently as possible
Uses building blocks called
components to create a
transformation graph, which is a
visual depiction of the intended
30
ETL
CloverETL (II)
The graphic presentation simplifies even
complex data transformations, allowing for
drag-and-drop functionality
Limited to approximately 40 different
components to simplify graph creation
Yet you may configure each component to meet
specific needs
It also features extensive debugging capabilities
to ensure all transformation graphs work31
ETL
KETL
Contains a scalable, platform-independent
engine capable of supporting multiple
computers and 64-bit servers
The program also offers performance
monitoring, extensive data source support,
XML compatibility and a scheduling engine for
time-based and event-driven job execution
32
ETL
Kettle
The Pentaho company produced Kettle as an OS
alternative to commercial ETL software
No relation to Kinetic Networks' KETL
Kettle features a drop-and-drag, graphical environment
with progress feedback for all data transactions,
including automatic documentation of executed jobs
XML Input Stream to handle huge XML files without
suffering a loss in performance or a spike in memory
usage
Users can also upgrade the free Kettle version for
33
ETL
Talend
Provides a graphical environment for data integration,
migration and synchronization
Drag and drop graphic components to create the java code
required to execute the desired task, saving time and
effort
Pre-built connectors to enable compatibility with a wide
range of business systems and databases
Users gain real-time access to corporate data, allowing for
the monitoring and debugging of transactions to ensure
smooth data integration
34
ETL
Comparison
The set of criteria that were used for the ETL
tools comparison were divided into seven
categories:
TCO
Risk
Ease of use
Support
Deployment
Speed 35
ETL
Comparison (II)
36
ETL
Comparison (III)
Total Cost of Ownership
The overall cost for a certain
product.
This can mean initial ordering,
licensing servicing, support,
training, consulting, and any
other additional payments that
need to be made before the
product is in full use
Commercial Open Source products
are typically free to use, but the
support, training and consulting
are what companies need to pay37
ETL
Comparison (IV)
Risk
There are always risks with projects, especially big projects.
The risks for projects failing are:
Going over budget
Going over schedule
Not completing the requirements or expectations of the customers
Open Source products have much lower risk then
Commercial ones since they do not restrict the use of their
products by pricey licenses
38
ETL
Comparison (V)
Ease of use
All of the ETL tools, apart from Inaport, have GUI to simplify
the development process
Having a good GUI also reduces the time to train and use
the tools
Pentaho Kettle has an easy to use GUI out of all the tools
Training can also be found online or within the community
39
ETL
Comparison (VI)
Support
Nowadays, all software products have support and all of the
ETL tool providers offer support
Pentaho Kettle – Offers support from US, UK and has a
partner consultant in Hong Kong
Deployment
Pentaho Kettle is a stand-alone java engine that can run on
any machine that can run java. Needs an external
scheduler to run automatically.
It can be deployed on many different machines and used as40
ETL
Comparison (VII)
Speed
The speed of ETL tools depends largely on the data that
needs to be transferred over the network and the
processing power involved in transforming the data.
Pentaho Kettle is faster than Talend, but the Java-connector
slows it down somewhat. Also requires manual tweaking
like Talend. Can be clustered by placed on many machines
to reduce network traffic
41
ETL
Comparison (VIII)
Data Quality
Data Quality is fast becoming the most important feature in
any data integration tool.
Pentaho – has DQ features in its GUI, allows for customized
SQL statements, by using JavaScript and Regular
Expressions. It also has some additional modules after
subscribing.
Monitoring
Pentaho Kettle – has practical monitoring tools and logging
42
ETL
Comparison (IX)
Connectivity
In most cases, ETL tools transfer data from legacy systems
Their connectivity is very important to the usefulness of the
ETL tools.
Kettle can connect to a very wide variety of databases, flat
files, xml files, excel files and web services.
43
Table of Contents
Pentaho at a glance
In the academic field
ETL
Kettle
Big Data
Predictive Analytics
44
Kettle
Introduction
Project Kettle
Powerful Extraction, Transformation and
Loading (ETL) capabilities using an
innovative, metadata-driven approach
45
Kettle
Introduction (II)
What is Kettle?
Batch data integration
and processing tool
written in Java
Exists to retrieve,
process and load data
PDI is a synonymous
term
Source: http://www.dreamstime.com/stock-photo-very-old-kettle-isolated-image16622230
46
Kettle
Introduction (III)
It uses an innovative meta-driven approach
It has a very easy-to-use GUI
Strong community of 13,500 registered
users
It uses a stand-alone Java engine that
process the tasks for moving data between
many different databases and files
47
Kettle
Introduction (IV)
48
Kettle
Data Integration Platform
Source: http://download.101com.com/tdwi/research_report/2003ETLReport.pdf
49
Kettle
Architecture
Source: Pentaho Corporation
50
Kettle
Most common uses
Datawarehouse and datamart loads
Data Integration
Data cleansing
Data migration
Data export
etc.
51
Kettle
Data Integration
Changing input to desired output
Jobs
Synchronous workflow of job entries
(tasks)
Transformations
Stepwise parallel & asynchronous
processing of a recordstream52
Kettle
Data Integration challenges
Data is everywhere
Data is inconsistent
Records are different in each system
Performance issues
Running queries to summarize data for
stipulated long period takes operating
system for task
Brings the OS on max load53
Kettle
Transformations
String and Date Manipulation
Data Validation / Business Rules
Lookup / Join
Calculation, Statistics
Cryptography
Decisions, Flow control
54
Kettle
What is good for?
Mirroring data from master to slave
Syncing two data sources
Processing data retrieved from multiple
sources and pushed to multiple
destinations
Loading data to RDBMS
Datamart / Datawarehouse
55
Kettle
Alternatives
56
Code
Custom java
Spring batch
Scripts
perl, python, shell,
etc
Possibly + db
loader tool and
Commercial ETL
tools
Datastage
Informatica
Oracle Warehouse
Builder
SQL Server
Integration services
Kettle
Extraction
57
Kettle
Extraction (II)
Source: http://download.101com.com/tdwi/research_report/2003ETLReport.pdf
58
Kettle
Extraction (III)
RDBMS (SQL Server, DB2, Oracle, MySQL, PostgreSQL,
Sybase IQ, etc.)
NoSQL Data: HBase, Cassandra, MongoDB
OLAP (Mondrian, Palo, XML/A)
Web (REST, SOAP, XML, JSON)
Files (CSV, Fixed, Excel, etc.)
ERP (SAP, Salesforce, OpenERP)
Hadoop Data: HDFS, Hive
59
Kettle
Transportation
60
Kettle
Transformation
61
Kettle
Loading
62
Kettle
Environment
63
Kettle
Comparison of Data Integration tools
64
Table of Contents
Pentaho at a glance
In the academic field
ETL
Kettle
Big Data
Predictive Analytics
65
Big Data
Business Intelligente
Source: http://es.wikipedia.org/wiki/Weka_(aprendizaje_autom%C3%A1tico)
A brief (BI) history….
66
Big Data
WEKA
Project Weka
A comprehensive set of tools for Machine
Learning and Data Mining
Source: http://es.wikipedia.org/wiki/Weka_(aprendizaje_autom%C3%A1tico)
67
Big Data
Among Pentaho’s products
Mondrian
OLAP server written in Java
Kettle
ETL tool
Weka
Machine learning and Data Mining tool
68
Big Data
WEKA platform
WEKA (Waikato Environment for Knowledge Analysis)
Funded by the New Zealand’s Government (for more
than 10 years)
Develop an open-source state-of-the-art workbench
of data mining tools
Explore fielded applications
Develop new fundamental methods
Became part of Pentaho platform in 2006 (PDM -
Pentaho Data Mining)
69
Big Data
Data Mining with WEKA
(One-of-the-many) Definition: Extraction of implicit,
previously unknown, and potentially useful
information from data
Goal: improve marketing, sales, and customer support
operations, risk assessment etc.
Who is likely to remain a loyal customer?
What products should be marketed to which
prospects?
What determines whether a person will respond to
a certain offer? 70
Big Data
Data Mining with WEKA (II)
Central idea: historical data contains
information that will be useful in the
future (patterns → generalizations)
Data Mining employs a set of
algorithms that automatically detect
patterns and regularities in data
71
Big Data
Data Mining with WEKA (III)
A bank’s case as an example
Problem: Prediction (Probability Score) of a Corporate
Customer Delinquency (or default) in the next year
Customer historical data used include:
Customer footings behavior (assets & liabilities)
Customer delinquencies (rates and time data)
Business Sector behavioral data
72
Big Data
Data Mining with WEKA (IV)
Variable selection using the Information Value (IV) criterion
Automatic Binning of continuous data variables was used
(Chi-merge). Manual corrections were made to address
particularities in the data distribution of some variables
(using again IV)
73
Big Data
Data Mining with WEKA (V)
74
Big Data
Data Mining with WEKA (VI)
75
Big Data
Data Mining with WEKA (VII)
Limitations
Traditional algorithms need to have all data
in (main) memory
big datasets are an issue
Solution
Incremental schemes
Stream algorithms
MOA (Massive Online Analysis)
76
Big Data
Be careful with Data Mining
77
Table of Contents
Pentaho at a glance
In the academic field
ETL
Kettle
Big Data
Predictive Analytics
78
Predictive analytics
Unified solution for Big Data Analytics
79
Predictive analytics
Unified solution for Big Data Analytics (II)
Curren release: Pentaho Business Analytics Suite 4.8
Instant and interactive
data discovery for iPad
● Full analytical power
on the go – unique to
Pentaho
● Mobile-optimized user
interface
80
Predictive analytics
Unified solution for Big Data Analytics (III)
Curren release: Pentaho Business Analytics Suite 4.8
Instant and interactive data
discovery and development for
big data
● Broadens big data access to
data analysts
● Removes the need for
separate big data
visualization tools
● Further improves
productivity for big data
developers
81
Predictive analytics
Unified solution for Big Data Analytics (IV)
Pentaho Instaview
● Instaview is simple
○ Created for data analysts
○ Dramatically simplifies ways to
access Hadoop and NoSQL data
stores
● Instaview is instant & interactive
○ Time accelerator – 3 quick steps
from data to analytics
○ Interact with big data sources –
group, sort, aggregate & visualize
● Instaview is big data analytics
○ Marketing analysis for weblog data in
Hadoop
○ Application log analysis for data in
MongoDB
82
Predictive analytics
Comparison
Source: http://cdn.oreillystatic.com/en/assets/1/event/100/Using%20R%20and%20Hadoop%20for%20Statistical%20Computation%20at%20Scale%20Presentation.htm#/2
83
References
http://cdn.oreillystatic.com/en/assets/1/event/100/Big%20Data%20Architectural%20Patterns%20Presentation.pdf
http://blog.pentaho.com/tag/strata/
http://www.slideshare.net/mattcasters/pentaho-data-integration-introduction?from_search=2
http://www.slideshare.net/infoaxon/open-source-bi-7640848
http://download.101com.com/tdwi/research_report/2003ETLReport.pdf
http://www.slideshare.net/jade_22/kettleetltool-090522005630phpapp01
http://www.pentaho.com/Blend-of-the-
Week?mkt_tok=3RkMMJWWfF9wsRonuKvNce%2FhmjTEU5z17%2BQoXaO2hokz2EFye%2BLIHETpodcMTcdgPbjYDBceEJhqyQJxPr3
DJNAN1dt%2BRhDhCA%3D%3D#Analytics
84
Copyright (c) 2015 University of Deusto
This work (but the quoted images, whose rights are reserved to their owners*) is licensed under the Creative
Commons “Attribution-ShareAlike” License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/3.0/
Alex Rayón
Noviembre 2015
TALLER
Pentaho Data Integration:
Extrayendo, Integrando,
Normalizando y Preparando
mis datos
Proyectos Programa Big Data y Business Intelligence
Alex Rayón
alex.rayon@deusto.es
Noviembre, 2015
Ad

More Related Content

What's hot (20)

Moving and Transforming Data with Pentaho Data Integration 5.0 CE (aka Kettle)
Moving and Transforming Data with Pentaho Data Integration 5.0 CE (aka Kettle)Moving and Transforming Data with Pentaho Data Integration 5.0 CE (aka Kettle)
Moving and Transforming Data with Pentaho Data Integration 5.0 CE (aka Kettle)
Roland Bouman
 
Pentaho-BI
Pentaho-BIPentaho-BI
Pentaho-BI
Edureka!
 
Pentaho
PentahoPentaho
Pentaho
teza123
 
ETL Metadata Injection with Pentaho Data Integration
ETL Metadata Injection with Pentaho Data IntegrationETL Metadata Injection with Pentaho Data Integration
ETL Metadata Injection with Pentaho Data Integration
David Fombella Pombal
 
Pentaho Suite Analysis
Pentaho Suite Analysis Pentaho Suite Analysis
Pentaho Suite Analysis
Kymberly Grayson-Perry
 
Introduction To Pentaho
Introduction To PentahoIntroduction To Pentaho
Introduction To Pentaho
pentaho Content
 
Introduction To Pentaho Analysis
Introduction To Pentaho AnalysisIntroduction To Pentaho Analysis
Introduction To Pentaho Analysis
pentaho Content
 
Informatica Pentaho Etl Tools Comparison
Informatica Pentaho Etl Tools ComparisonInformatica Pentaho Etl Tools Comparison
Informatica Pentaho Etl Tools Comparison
Roberto Espinosa
 
Informatica session
Informatica sessionInformatica session
Informatica session
vinuthanallam
 
Pentaho bi suite overview presentation
Pentaho bi suite overview   presentationPentaho bi suite overview   presentation
Pentaho bi suite overview presentation
nvvrajesh
 
Informatica overview
Informatica overviewInformatica overview
Informatica overview
Swetha Naveen
 
Talend Open Studio Introduction - OSSCamp 2014
Talend Open Studio Introduction - OSSCamp 2014Talend Open Studio Introduction - OSSCamp 2014
Talend Open Studio Introduction - OSSCamp 2014
OSSCube
 
Etl with talend (data integeration)
Etl with talend (data integeration)Etl with talend (data integeration)
Etl with talend (data integeration)
Pooja Mishra
 
Mondrian and OLAP Overview
Mondrian and OLAP OverviewMondrian and OLAP Overview
Mondrian and OLAP Overview
Alex Meadows
 
Machine Learning Models in Production
Machine Learning Models in ProductionMachine Learning Models in Production
Machine Learning Models in Production
DataWorks Summit
 
Maharshi_Amin_416
Maharshi_Amin_416Maharshi_Amin_416
Maharshi_Amin_416
mamin1411
 
Querona Presentation 2018
Querona Presentation 2018Querona Presentation 2018
Querona Presentation 2018
Synergo!
 
Etl with talend (big data)
Etl with talend (big data)Etl with talend (big data)
Etl with talend (big data)
pomishra
 
ETL Tools Ankita Dubey
ETL Tools Ankita DubeyETL Tools Ankita Dubey
ETL Tools Ankita Dubey
Ankita Dubey
 
GeoKettle: A powerful open source spatial ETL tool
GeoKettle: A powerful open source spatial ETL toolGeoKettle: A powerful open source spatial ETL tool
GeoKettle: A powerful open source spatial ETL tool
Thierry Badard
 
Moving and Transforming Data with Pentaho Data Integration 5.0 CE (aka Kettle)
Moving and Transforming Data with Pentaho Data Integration 5.0 CE (aka Kettle)Moving and Transforming Data with Pentaho Data Integration 5.0 CE (aka Kettle)
Moving and Transforming Data with Pentaho Data Integration 5.0 CE (aka Kettle)
Roland Bouman
 
Pentaho-BI
Pentaho-BIPentaho-BI
Pentaho-BI
Edureka!
 
ETL Metadata Injection with Pentaho Data Integration
ETL Metadata Injection with Pentaho Data IntegrationETL Metadata Injection with Pentaho Data Integration
ETL Metadata Injection with Pentaho Data Integration
David Fombella Pombal
 
Introduction To Pentaho Analysis
Introduction To Pentaho AnalysisIntroduction To Pentaho Analysis
Introduction To Pentaho Analysis
pentaho Content
 
Informatica Pentaho Etl Tools Comparison
Informatica Pentaho Etl Tools ComparisonInformatica Pentaho Etl Tools Comparison
Informatica Pentaho Etl Tools Comparison
Roberto Espinosa
 
Pentaho bi suite overview presentation
Pentaho bi suite overview   presentationPentaho bi suite overview   presentation
Pentaho bi suite overview presentation
nvvrajesh
 
Informatica overview
Informatica overviewInformatica overview
Informatica overview
Swetha Naveen
 
Talend Open Studio Introduction - OSSCamp 2014
Talend Open Studio Introduction - OSSCamp 2014Talend Open Studio Introduction - OSSCamp 2014
Talend Open Studio Introduction - OSSCamp 2014
OSSCube
 
Etl with talend (data integeration)
Etl with talend (data integeration)Etl with talend (data integeration)
Etl with talend (data integeration)
Pooja Mishra
 
Mondrian and OLAP Overview
Mondrian and OLAP OverviewMondrian and OLAP Overview
Mondrian and OLAP Overview
Alex Meadows
 
Machine Learning Models in Production
Machine Learning Models in ProductionMachine Learning Models in Production
Machine Learning Models in Production
DataWorks Summit
 
Maharshi_Amin_416
Maharshi_Amin_416Maharshi_Amin_416
Maharshi_Amin_416
mamin1411
 
Querona Presentation 2018
Querona Presentation 2018Querona Presentation 2018
Querona Presentation 2018
Synergo!
 
Etl with talend (big data)
Etl with talend (big data)Etl with talend (big data)
Etl with talend (big data)
pomishra
 
ETL Tools Ankita Dubey
ETL Tools Ankita DubeyETL Tools Ankita Dubey
ETL Tools Ankita Dubey
Ankita Dubey
 
GeoKettle: A powerful open source spatial ETL tool
GeoKettle: A powerful open source spatial ETL toolGeoKettle: A powerful open source spatial ETL tool
GeoKettle: A powerful open source spatial ETL tool
Thierry Badard
 

Similar to Pentaho Data Integration: Extrayendo, integrando, normalizando y preparando mis datos (20)

A Comparitive Study Of ETL Tools
A Comparitive Study Of ETL ToolsA Comparitive Study Of ETL Tools
A Comparitive Study Of ETL Tools
Rhonda Cetnar
 
Agile Business Intelligence
Agile Business IntelligenceAgile Business Intelligence
Agile Business Intelligence
David Portnoy
 
Big data analytics beyond beer and diapers
Big data analytics   beyond beer and diapersBig data analytics   beyond beer and diapers
Big data analytics beyond beer and diapers
Kai Zhao
 
ETL
ETLETL
ETL
Mallikarjuna G D
 
Title_ What are the various tools used in ETL testing.pdf
Title_ What are the various tools used in ETL testing.pdfTitle_ What are the various tools used in ETL testing.pdf
Title_ What are the various tools used in ETL testing.pdf
ishansharma200107
 
Why shift from ETL to ELT?
Why shift from ETL to ELT?Why shift from ETL to ELT?
Why shift from ETL to ELT?
HEXANIKA
 
ETL Technologies.pptx
ETL Technologies.pptxETL Technologies.pptx
ETL Technologies.pptx
Gaurav Bhatnagar
 
Shivaprasada_Kodoth
Shivaprasada_KodothShivaprasada_Kodoth
Shivaprasada_Kodoth
Shivaprasada Kodoth
 
Airbyte @ Airflow Summit - The new modern data stack
Airbyte @ Airflow Summit - The new modern data stackAirbyte @ Airflow Summit - The new modern data stack
Airbyte @ Airflow Summit - The new modern data stack
Michel Tricot
 
Resume
ResumeResume
Resume
rajeswari p
 
What is Oracle Beehive?
What is Oracle Beehive?What is Oracle Beehive?
What is Oracle Beehive?
Revelation Technologies
 
ETL VS ELT.pdf
ETL VS ELT.pdfETL VS ELT.pdf
ETL VS ELT.pdf
BOSupport
 
Gowthami_Resume
Gowthami_ResumeGowthami_Resume
Gowthami_Resume
Gowthami Subramaniam
 
MODERN DATA PIPELINE
MODERN DATA PIPELINEMODERN DATA PIPELINE
MODERN DATA PIPELINE
IRJET Journal
 
[DSC DACH 24] Automatic ETL Migration - on-prem to cloud and more - Miljenko ...
[DSC DACH 24] Automatic ETL Migration - on-prem to cloud and more - Miljenko ...[DSC DACH 24] Automatic ETL Migration - on-prem to cloud and more - Miljenko ...
[DSC DACH 24] Automatic ETL Migration - on-prem to cloud and more - Miljenko ...
DataScienceConferenc1
 
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATANEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
csandit
 
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
cscpconf
 
Etl with talend (data integeration)
Etl with talend (data integeration)Etl with talend (data integeration)
Etl with talend (data integeration)
pomishra
 
Data Integration for Big Data (OOW 2016, Co-Presented With Oracle)
Data Integration for Big Data (OOW 2016, Co-Presented With Oracle)Data Integration for Big Data (OOW 2016, Co-Presented With Oracle)
Data Integration for Big Data (OOW 2016, Co-Presented With Oracle)
Rittman Analytics
 
To Study E T L ( Extract, Transform, Load) Tools Specially S Q L Server I...
To Study  E T L ( Extract, Transform, Load) Tools Specially  S Q L  Server  I...To Study  E T L ( Extract, Transform, Load) Tools Specially  S Q L  Server  I...
To Study E T L ( Extract, Transform, Load) Tools Specially S Q L Server I...
Shahzad
 
A Comparitive Study Of ETL Tools
A Comparitive Study Of ETL ToolsA Comparitive Study Of ETL Tools
A Comparitive Study Of ETL Tools
Rhonda Cetnar
 
Agile Business Intelligence
Agile Business IntelligenceAgile Business Intelligence
Agile Business Intelligence
David Portnoy
 
Big data analytics beyond beer and diapers
Big data analytics   beyond beer and diapersBig data analytics   beyond beer and diapers
Big data analytics beyond beer and diapers
Kai Zhao
 
Title_ What are the various tools used in ETL testing.pdf
Title_ What are the various tools used in ETL testing.pdfTitle_ What are the various tools used in ETL testing.pdf
Title_ What are the various tools used in ETL testing.pdf
ishansharma200107
 
Why shift from ETL to ELT?
Why shift from ETL to ELT?Why shift from ETL to ELT?
Why shift from ETL to ELT?
HEXANIKA
 
Airbyte @ Airflow Summit - The new modern data stack
Airbyte @ Airflow Summit - The new modern data stackAirbyte @ Airflow Summit - The new modern data stack
Airbyte @ Airflow Summit - The new modern data stack
Michel Tricot
 
ETL VS ELT.pdf
ETL VS ELT.pdfETL VS ELT.pdf
ETL VS ELT.pdf
BOSupport
 
MODERN DATA PIPELINE
MODERN DATA PIPELINEMODERN DATA PIPELINE
MODERN DATA PIPELINE
IRJET Journal
 
[DSC DACH 24] Automatic ETL Migration - on-prem to cloud and more - Miljenko ...
[DSC DACH 24] Automatic ETL Migration - on-prem to cloud and more - Miljenko ...[DSC DACH 24] Automatic ETL Migration - on-prem to cloud and more - Miljenko ...
[DSC DACH 24] Automatic ETL Migration - on-prem to cloud and more - Miljenko ...
DataScienceConferenc1
 
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATANEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
csandit
 
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
NEAR-REAL-TIME PARALLEL ETL+Q FOR AUTOMATIC SCALABILITY IN BIGDATA
cscpconf
 
Etl with talend (data integeration)
Etl with talend (data integeration)Etl with talend (data integeration)
Etl with talend (data integeration)
pomishra
 
Data Integration for Big Data (OOW 2016, Co-Presented With Oracle)
Data Integration for Big Data (OOW 2016, Co-Presented With Oracle)Data Integration for Big Data (OOW 2016, Co-Presented With Oracle)
Data Integration for Big Data (OOW 2016, Co-Presented With Oracle)
Rittman Analytics
 
To Study E T L ( Extract, Transform, Load) Tools Specially S Q L Server I...
To Study  E T L ( Extract, Transform, Load) Tools Specially  S Q L  Server  I...To Study  E T L ( Extract, Transform, Load) Tools Specially  S Q L  Server  I...
To Study E T L ( Extract, Transform, Load) Tools Specially S Q L Server I...
Shahzad
 
Ad

More from Alex Rayón Jerez (20)

El Big Data en la dirección comercial: market(ing) intelligence
El Big Data en la dirección comercial: market(ing) intelligenceEl Big Data en la dirección comercial: market(ing) intelligence
El Big Data en la dirección comercial: market(ing) intelligence
Alex Rayón Jerez
 
Herramientas y metodologías Big Data para acceder a datos no estructurados
Herramientas y metodologías Big Data para acceder a datos no estructuradosHerramientas y metodologías Big Data para acceder a datos no estructurados
Herramientas y metodologías Big Data para acceder a datos no estructurados
Alex Rayón Jerez
 
Las competencias digitales como método de observación de competencias genéricas
Las competencias digitales como método de observación de competencias genéricasLas competencias digitales como método de observación de competencias genéricas
Las competencias digitales como método de observación de competencias genéricas
Alex Rayón Jerez
 
El Big Data en mi empresa ¿de qué me sirve?
El Big Data en mi empresa  ¿de qué me sirve?El Big Data en mi empresa  ¿de qué me sirve?
El Big Data en mi empresa ¿de qué me sirve?
Alex Rayón Jerez
 
Aplicación del Big Data a la mejora de la competitividad de la empresa
Aplicación del Big Data a la mejora de la competitividad de la empresaAplicación del Big Data a la mejora de la competitividad de la empresa
Aplicación del Big Data a la mejora de la competitividad de la empresa
Alex Rayón Jerez
 
Análisis de Redes Sociales (Social Network Analysis) y Text Mining
Análisis de Redes Sociales (Social Network Analysis) y Text MiningAnálisis de Redes Sociales (Social Network Analysis) y Text Mining
Análisis de Redes Sociales (Social Network Analysis) y Text Mining
Alex Rayón Jerez
 
Marketing intelligence con estrategia omnicanal y Customer Journey
Marketing intelligence con estrategia omnicanal y Customer JourneyMarketing intelligence con estrategia omnicanal y Customer Journey
Marketing intelligence con estrategia omnicanal y Customer Journey
Alex Rayón Jerez
 
Modelos de propensión en la era del Big Data
Modelos de propensión en la era del Big DataModelos de propensión en la era del Big Data
Modelos de propensión en la era del Big Data
Alex Rayón Jerez
 
Customer Lifetime Value Management con Big Data
Customer Lifetime Value Management con Big DataCustomer Lifetime Value Management con Big Data
Customer Lifetime Value Management con Big Data
Alex Rayón Jerez
 
Big Data: the Management Revolution
Big Data: the Management RevolutionBig Data: the Management Revolution
Big Data: the Management Revolution
Alex Rayón Jerez
 
Optimización de procesos con el Big Data
Optimización de procesos con el Big DataOptimización de procesos con el Big Data
Optimización de procesos con el Big Data
Alex Rayón Jerez
 
La economía del dato: transformando sectores, generando oportunidades
La economía del dato: transformando sectores, generando oportunidadesLa economía del dato: transformando sectores, generando oportunidades
La economía del dato: transformando sectores, generando oportunidades
Alex Rayón Jerez
 
Cómo crecer, ser más eficiente y competitivo a través del Big Data
Cómo crecer, ser más eficiente y competitivo a través del Big DataCómo crecer, ser más eficiente y competitivo a través del Big Data
Cómo crecer, ser más eficiente y competitivo a través del Big Data
Alex Rayón Jerez
 
El poder de los datos: hacia una sociedad inteligente, pero ética
El poder de los datos: hacia una sociedad inteligente, pero éticaEl poder de los datos: hacia una sociedad inteligente, pero ética
El poder de los datos: hacia una sociedad inteligente, pero ética
Alex Rayón Jerez
 
Búsqueda, organización y presentación de recursos de aprendizaje
Búsqueda, organización y presentación de recursos de aprendizajeBúsqueda, organización y presentación de recursos de aprendizaje
Búsqueda, organización y presentación de recursos de aprendizaje
Alex Rayón Jerez
 
Deusto Knowledge Hub como herramienta de publicación y descubrimiento de cono...
Deusto Knowledge Hub como herramienta de publicación y descubrimiento de cono...Deusto Knowledge Hub como herramienta de publicación y descubrimiento de cono...
Deusto Knowledge Hub como herramienta de publicación y descubrimiento de cono...
Alex Rayón Jerez
 
Fomentando la colaboración en el aula a través de herramientas sociales
Fomentando la colaboración en el aula a través de herramientas socialesFomentando la colaboración en el aula a través de herramientas sociales
Fomentando la colaboración en el aula a través de herramientas sociales
Alex Rayón Jerez
 
Utilizando Google Drive y Google Docs en el aula para trabajar con mis estudi...
Utilizando Google Drive y Google Docs en el aula para trabajar con mis estudi...Utilizando Google Drive y Google Docs en el aula para trabajar con mis estudi...
Utilizando Google Drive y Google Docs en el aula para trabajar con mis estudi...
Alex Rayón Jerez
 
Procesamiento y visualización de datos para generar nuevo conocimiento
Procesamiento y visualización de datos para generar nuevo conocimientoProcesamiento y visualización de datos para generar nuevo conocimiento
Procesamiento y visualización de datos para generar nuevo conocimiento
Alex Rayón Jerez
 
El Big Data y Business Intelligence en mi empresa: ¿de qué me sirve?
El Big Data y Business Intelligence en mi empresa: ¿de qué me sirve?El Big Data y Business Intelligence en mi empresa: ¿de qué me sirve?
El Big Data y Business Intelligence en mi empresa: ¿de qué me sirve?
Alex Rayón Jerez
 
El Big Data en la dirección comercial: market(ing) intelligence
El Big Data en la dirección comercial: market(ing) intelligenceEl Big Data en la dirección comercial: market(ing) intelligence
El Big Data en la dirección comercial: market(ing) intelligence
Alex Rayón Jerez
 
Herramientas y metodologías Big Data para acceder a datos no estructurados
Herramientas y metodologías Big Data para acceder a datos no estructuradosHerramientas y metodologías Big Data para acceder a datos no estructurados
Herramientas y metodologías Big Data para acceder a datos no estructurados
Alex Rayón Jerez
 
Las competencias digitales como método de observación de competencias genéricas
Las competencias digitales como método de observación de competencias genéricasLas competencias digitales como método de observación de competencias genéricas
Las competencias digitales como método de observación de competencias genéricas
Alex Rayón Jerez
 
El Big Data en mi empresa ¿de qué me sirve?
El Big Data en mi empresa  ¿de qué me sirve?El Big Data en mi empresa  ¿de qué me sirve?
El Big Data en mi empresa ¿de qué me sirve?
Alex Rayón Jerez
 
Aplicación del Big Data a la mejora de la competitividad de la empresa
Aplicación del Big Data a la mejora de la competitividad de la empresaAplicación del Big Data a la mejora de la competitividad de la empresa
Aplicación del Big Data a la mejora de la competitividad de la empresa
Alex Rayón Jerez
 
Análisis de Redes Sociales (Social Network Analysis) y Text Mining
Análisis de Redes Sociales (Social Network Analysis) y Text MiningAnálisis de Redes Sociales (Social Network Analysis) y Text Mining
Análisis de Redes Sociales (Social Network Analysis) y Text Mining
Alex Rayón Jerez
 
Marketing intelligence con estrategia omnicanal y Customer Journey
Marketing intelligence con estrategia omnicanal y Customer JourneyMarketing intelligence con estrategia omnicanal y Customer Journey
Marketing intelligence con estrategia omnicanal y Customer Journey
Alex Rayón Jerez
 
Modelos de propensión en la era del Big Data
Modelos de propensión en la era del Big DataModelos de propensión en la era del Big Data
Modelos de propensión en la era del Big Data
Alex Rayón Jerez
 
Customer Lifetime Value Management con Big Data
Customer Lifetime Value Management con Big DataCustomer Lifetime Value Management con Big Data
Customer Lifetime Value Management con Big Data
Alex Rayón Jerez
 
Big Data: the Management Revolution
Big Data: the Management RevolutionBig Data: the Management Revolution
Big Data: the Management Revolution
Alex Rayón Jerez
 
Optimización de procesos con el Big Data
Optimización de procesos con el Big DataOptimización de procesos con el Big Data
Optimización de procesos con el Big Data
Alex Rayón Jerez
 
La economía del dato: transformando sectores, generando oportunidades
La economía del dato: transformando sectores, generando oportunidadesLa economía del dato: transformando sectores, generando oportunidades
La economía del dato: transformando sectores, generando oportunidades
Alex Rayón Jerez
 
Cómo crecer, ser más eficiente y competitivo a través del Big Data
Cómo crecer, ser más eficiente y competitivo a través del Big DataCómo crecer, ser más eficiente y competitivo a través del Big Data
Cómo crecer, ser más eficiente y competitivo a través del Big Data
Alex Rayón Jerez
 
El poder de los datos: hacia una sociedad inteligente, pero ética
El poder de los datos: hacia una sociedad inteligente, pero éticaEl poder de los datos: hacia una sociedad inteligente, pero ética
El poder de los datos: hacia una sociedad inteligente, pero ética
Alex Rayón Jerez
 
Búsqueda, organización y presentación de recursos de aprendizaje
Búsqueda, organización y presentación de recursos de aprendizajeBúsqueda, organización y presentación de recursos de aprendizaje
Búsqueda, organización y presentación de recursos de aprendizaje
Alex Rayón Jerez
 
Deusto Knowledge Hub como herramienta de publicación y descubrimiento de cono...
Deusto Knowledge Hub como herramienta de publicación y descubrimiento de cono...Deusto Knowledge Hub como herramienta de publicación y descubrimiento de cono...
Deusto Knowledge Hub como herramienta de publicación y descubrimiento de cono...
Alex Rayón Jerez
 
Fomentando la colaboración en el aula a través de herramientas sociales
Fomentando la colaboración en el aula a través de herramientas socialesFomentando la colaboración en el aula a través de herramientas sociales
Fomentando la colaboración en el aula a través de herramientas sociales
Alex Rayón Jerez
 
Utilizando Google Drive y Google Docs en el aula para trabajar con mis estudi...
Utilizando Google Drive y Google Docs en el aula para trabajar con mis estudi...Utilizando Google Drive y Google Docs en el aula para trabajar con mis estudi...
Utilizando Google Drive y Google Docs en el aula para trabajar con mis estudi...
Alex Rayón Jerez
 
Procesamiento y visualización de datos para generar nuevo conocimiento
Procesamiento y visualización de datos para generar nuevo conocimientoProcesamiento y visualización de datos para generar nuevo conocimiento
Procesamiento y visualización de datos para generar nuevo conocimiento
Alex Rayón Jerez
 
El Big Data y Business Intelligence en mi empresa: ¿de qué me sirve?
El Big Data y Business Intelligence en mi empresa: ¿de qué me sirve?El Big Data y Business Intelligence en mi empresa: ¿de qué me sirve?
El Big Data y Business Intelligence en mi empresa: ¿de qué me sirve?
Alex Rayón Jerez
 
Ad

Recently uploaded (20)

One Hot encoding a revolution in Machine learning
One Hot encoding a revolution in Machine learningOne Hot encoding a revolution in Machine learning
One Hot encoding a revolution in Machine learning
momer9505
 
To study the nervous system of insect.pptx
To study the nervous system of insect.pptxTo study the nervous system of insect.pptx
To study the nervous system of insect.pptx
Arshad Shaikh
 
Social Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy StudentsSocial Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy Students
DrNidhiAgarwal
 
Unit 6_Introduction_Phishing_Password Cracking.pdf
Unit 6_Introduction_Phishing_Password Cracking.pdfUnit 6_Introduction_Phishing_Password Cracking.pdf
Unit 6_Introduction_Phishing_Password Cracking.pdf
KanchanPatil34
 
How to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odooHow to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odoo
Celine George
 
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Celine George
 
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptxSCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
Ronisha Das
 
apa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdfapa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdf
Ishika Ghosh
 
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 AccountingHow to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
Celine George
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
How to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of saleHow to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of sale
Celine George
 
Presentation of the MIPLM subject matter expert Erdem Kaya
Presentation of the MIPLM subject matter expert Erdem KayaPresentation of the MIPLM subject matter expert Erdem Kaya
Presentation of the MIPLM subject matter expert Erdem Kaya
MIPLM
 
GDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptxGDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptx
azeenhodekar
 
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Library Association of Ireland
 
Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdfBiophysics Chapter 3 Methods of Studying Macromolecules.pdf
Biophysics Chapter 3 Methods of Studying Macromolecules.pdf
PKLI-Institute of Nursing and Allied Health Sciences Lahore , Pakistan.
 
Geography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjectsGeography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjects
ProfDrShaikhImran
 
Political History of Pala dynasty Pala Rulers NEP.pptx
Political History of Pala dynasty Pala Rulers NEP.pptxPolitical History of Pala dynasty Pala Rulers NEP.pptx
Political History of Pala dynasty Pala Rulers NEP.pptx
Arya Mahila P. G. College, Banaras Hindu University, Varanasi, India.
 
Exploring-Substances-Acidic-Basic-and-Neutral.pdf
Exploring-Substances-Acidic-Basic-and-Neutral.pdfExploring-Substances-Acidic-Basic-and-Neutral.pdf
Exploring-Substances-Acidic-Basic-and-Neutral.pdf
Sandeep Swamy
 
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulsepulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
sushreesangita003
 
Introduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe EngineeringIntroduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe Engineering
Damian T. Gordon
 
One Hot encoding a revolution in Machine learning
One Hot encoding a revolution in Machine learningOne Hot encoding a revolution in Machine learning
One Hot encoding a revolution in Machine learning
momer9505
 
To study the nervous system of insect.pptx
To study the nervous system of insect.pptxTo study the nervous system of insect.pptx
To study the nervous system of insect.pptx
Arshad Shaikh
 
Social Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy StudentsSocial Problem-Unemployment .pptx notes for Physiotherapy Students
Social Problem-Unemployment .pptx notes for Physiotherapy Students
DrNidhiAgarwal
 
Unit 6_Introduction_Phishing_Password Cracking.pdf
Unit 6_Introduction_Phishing_Password Cracking.pdfUnit 6_Introduction_Phishing_Password Cracking.pdf
Unit 6_Introduction_Phishing_Password Cracking.pdf
KanchanPatil34
 
How to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odooHow to Set warnings for invoicing specific customers in odoo
How to Set warnings for invoicing specific customers in odoo
Celine George
 
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...Multi-currency in odoo accounting and Update exchange rates automatically in ...
Multi-currency in odoo accounting and Update exchange rates automatically in ...
Celine George
 
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptxSCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
SCI BIZ TECH QUIZ (OPEN) PRELIMS XTASY 2025.pptx
Ronisha Das
 
apa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdfapa-style-referencing-visual-guide-2025.pdf
apa-style-referencing-visual-guide-2025.pdf
Ishika Ghosh
 
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 AccountingHow to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
How to Customize Your Financial Reports & Tax Reports With Odoo 17 Accounting
Celine George
 
Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025Stein, Hunt, Green letter to Congress April 2025
Stein, Hunt, Green letter to Congress April 2025
Mebane Rash
 
How to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of saleHow to manage Multiple Warehouses for multiple floors in odoo point of sale
How to manage Multiple Warehouses for multiple floors in odoo point of sale
Celine George
 
Presentation of the MIPLM subject matter expert Erdem Kaya
Presentation of the MIPLM subject matter expert Erdem KayaPresentation of the MIPLM subject matter expert Erdem Kaya
Presentation of the MIPLM subject matter expert Erdem Kaya
MIPLM
 
GDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptxGDGLSPGCOER - Git and GitHub Workshop.pptx
GDGLSPGCOER - Git and GitHub Workshop.pptx
azeenhodekar
 
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Michelle Rumley & Mairéad Mooney, Boole Library, University College Cork. Tra...
Library Association of Ireland
 
Geography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjectsGeography Sem II Unit 1C Correlation of Geography with other school subjects
Geography Sem II Unit 1C Correlation of Geography with other school subjects
ProfDrShaikhImran
 
Exploring-Substances-Acidic-Basic-and-Neutral.pdf
Exploring-Substances-Acidic-Basic-and-Neutral.pdfExploring-Substances-Acidic-Basic-and-Neutral.pdf
Exploring-Substances-Acidic-Basic-and-Neutral.pdf
Sandeep Swamy
 
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulsepulse  ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
pulse ppt.pptx Types of pulse , characteristics of pulse , Alteration of pulse
sushreesangita003
 
Introduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe EngineeringIntroduction to Vibe Coding and Vibe Engineering
Introduction to Vibe Coding and Vibe Engineering
Damian T. Gordon
 

Pentaho Data Integration: Extrayendo, integrando, normalizando y preparando mis datos