SlideShare a Scribd company logo
PFC306 
Brendan Gregg, Performance Engineering, Netflix 
November 12, 2014 | Las Vegas, NV
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
S3 
EC2 
Cassandra 
Applications 
(Services) 
EVCache 
ELB 
Elasticsearch 
SES SQS
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Start 
i2 Select memory to 
cache working set 
Find best 
balance
ASG-v011 
… 
Instance 
Instance 
Instance 
ASG Cluster 
prod1 
ASG-v010 
… 
Instance 
Instance 
Instance 
Canary 
ELB
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Select instance families Select resources 
From any desired 
resource, see 
types & cost
eg, 8 vCPU:
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Acceptable Headroom Unacceptable
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Cost per hour 
Services
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
# schedtool –B PID
vm.swappiness = 0 # from 60
# echo never > /sys/kernel/mm/transparent_hugepage/enabled # from madvise
vm.dirty_ratio = 80 # from 40 
vm.dirty_background_ratio = 5 # from 10 
vm.dirty_expire_centisecs = 12000 # from 3000 
mount -o defaults,noatime,discard,nobarrier …
/sys/block/*/queue/rq_affinity2 
/sys/block/*/queue/scheduler noop 
/sys/block/*/queue/nr_requests256 
/sys/block/*/queue/read_ahead_kb 256 
mdadm –chunk=64 ...
net.core.somaxconn = 1000 
net.core.netdev_max_backlog = 5000 
net.core.rmem_max = 16777216 
net.core.wmem_max = 16777216 
net.ipv4.tcp_wmem = 4096 12582912 16777216 
net.ipv4.tcp_rmem = 4096 12582912 16777216 
net.ipv4.tcp_max_syn_backlog = 8096 
net.ipv4.tcp_slow_start_after_idle = 0 
net.ipv4.tcp_tw_reuse = 1 
net.ipv4.ip_local_port_range = 10240 65535 
net.ipv4.tcp_abort_on_overflow = 1 # maybe
echo tsc > /sys/devices/system/clocksource/clocksource0/current_clocksource
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Resource 
Utilization 
X (%)
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Application 
System Libraries 
System Calls 
Kernel 
Devices
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
$ sar -n TCP,ETCP,DEV 1 
Linux 3.2.55 (test-e4f1a80b) 08/18/2014 _x86_64_ (8 CPU) 
09:10:43 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s 
09:10:44 PM lo 14.00 14.00 1.34 1.34 0.00 0.00 0.00 
09:10:44 PM eth0 4114.00 4186.00 4537.46 28513.24 0.00 0.00 0.00 
09:10:43 PM active/s passive/s iseg/s oseg/s 
09:10:44 PM 21.00 4.00 4107.00 22511.00 
09:10:43 PM atmptf/s estres/s retrans/s isegerr/s orsts/s 
09:10:44 PM 0.00 0.00 36.00 0.00 1.00 
[…]
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Stack frame 
Mouse-over 
frames to 
quantify 
Ancestry
# git clone https://github.com/brendangregg/FlameGraph 
# cd FlameGraph 
# perf record -F 99 -ag -- sleep 60 
# perf script | ./stackcollapse-perf.pl | ./flamegraph.pl > perf.svg
Performance Tuning EC2 Instances
Broken 
Java stacks 
(missing 
frame 
pointer) 
Kernel 
TCP/IP 
GC 
Idle 
thread 
Time 
Locks 
epoll
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
# ./iosnoop –ts 
Tracing block I/O. Ctrl-C to end. 
STARTs ENDs COMM PID TYPE DEV BLOCK BYTES LATms 
5982800.302061 5982800.302679 supervise 1809 W 202,1 17039600 4096 0.62 
5982800.302423 5982800.302842 supervise 1809 W 202,1 17039608 4096 0.42 
5982800.304962 5982800.305446 supervise 1801 W 202,1 17039616 4096 0.48 
5982800.305250 5982800.305676 supervise 1801 W 202,1 17039624 4096 0.43 
[…] 
# ./iosnoop –h 
USAGE: iosnoop [-hQst] [-d device] [-i iotype] [-p PID] [-n name] [duration] 
-d device # device string (eg, "202,1) 
-i iotype # match type (eg, '*R*' for all reads) 
-n name # process name to match on I/O issue 
-p PID # PID to match on I/O issue 
-Q # include queueing time in LATms 
-s # include start time of I/O (s) 
-t # include completion time of I/O (s) 
[…]
Performance Tuning EC2 Instances
# perf record –e skb:consume_skb –ag -- sleep 10 
# perf report 
[...] 
74.42% swapper [kernel.kallsyms] [k] consume_skb 
| 
--- consume_skb 
arp_process 
arp_rcv 
__netif_receive_skb_core 
__netif_receive_skb 
netif_receive_skb 
virtnet_poll 
net_rx_action 
__do_softirq 
irq_exit 
do_IRQ 
ret_from_intr 
[…] 
Summarizing stack traces for a 
tracepoint 
perf_events can do many things, 
it is hard to pick just one example
Performance Tuning EC2 Instances
ec2-guest# ./showboost 
CPU MHz : 2500 
Turbo MHz : 2900 (10 active) 
Turbo Ratio : 116% (10 active) 
CPU 0 summary every 5 seconds... 
Real CPU MHz 
TIME C0_MCYC C0_ACYC UTIL RATIO MHz 
06:11:35 6428553166 7457384521 51% 116% 2900 
06:11:40 6349881107 7365764152 50% 115% 2899 
06:11:45 6240610655 7239046277 49% 115% 2899 
[...]
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Region App Breakdowns 
Metrics 
Options 
Interactive 
Graph 
Summary Statistics
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
Utilization Saturation 
Errors 
Per device 
Breakdowns
Performance Tuning EC2 Instances
Performance Tuning EC2 Instances
http://aws.amazon.com/ec2/instance-types/ 
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html 
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html 
http://www.slideshare.net/cpwatson/cpn302-yourlinuxamioptimizationandperformance 
http://www.brendangregg.com/blog/2014-09-27/from-clouds-to-roots.html 
http://www.brendangregg.com/blog/2014-05-07/what-color-is-your-xen.html 
http://www.brendangregg.com/linuxperf.html 
http://www.slideshare.net/brendangregg/linux-performance-tools-2014 
http://www.brendangregg.com/USEmethod/use-linux.html 
http://www.brendangregg.com/blog/2014-06-12/java-flame-graphs.html 
https://github.com/brendangregg/FlameGraph https://github.com/brendangregg/perf-tools
Performance Tuning EC2 Instances
Talk Time Title 
PFC-305 Wednesday, 1:15pm Embracing Failure: Fault Injection and Service Reliability 
BDT-403 Wednesday, 2:15pm Next Generation Big Data Platform at Netflix 
PFC-306 Wednesday, 3:30pm Performance Tuning EC2 
DEV-309 Wednesday, 3:30pm From Asgard to Zuul, How Netflix’s proven Open Source 
Tools can accelerate and scale your services 
ARC-317 Wednesday, 4:30pm Maintaining a Resilient Front-Door at Massive Scale 
PFC-304 Wednesday, 4:30pm Effective Inter-process Communications in the Cloud: The 
Pros and Cons of Micro Services Architectures 
ENT-209 Wednesday, 4:30pm Cloud Migration, Dev-Ops and Distributed Systems 
APP-310 Friday, 9:00am Scheduling using Apache Mesos in the Cloud
Performance Tuning EC2 Instances
Ad

More Related Content

What's hot (20)

UM2019 Extended BPF: A New Type of Software
UM2019 Extended BPF: A New Type of SoftwareUM2019 Extended BPF: A New Type of Software
UM2019 Extended BPF: A New Type of Software
Brendan Gregg
 
Performance Wins with BPF: Getting Started
Performance Wins with BPF: Getting StartedPerformance Wins with BPF: Getting Started
Performance Wins with BPF: Getting Started
Brendan Gregg
 
LISA2019 Linux Systems Performance
LISA2019 Linux Systems PerformanceLISA2019 Linux Systems Performance
LISA2019 Linux Systems Performance
Brendan Gregg
 
Boosting I/O Performance with KVM io_uring
Boosting I/O Performance with KVM io_uringBoosting I/O Performance with KVM io_uring
Boosting I/O Performance with KVM io_uring
ShapeBlue
 
Linux Performance Analysis and Tools
Linux Performance Analysis and ToolsLinux Performance Analysis and Tools
Linux Performance Analysis and Tools
Brendan Gregg
 
Performance Wins with eBPF: Getting Started (2021)
Performance Wins with eBPF: Getting Started (2021)Performance Wins with eBPF: Getting Started (2021)
Performance Wins with eBPF: Getting Started (2021)
Brendan Gregg
 
Linux Performance Analysis: New Tools and Old Secrets
Linux Performance Analysis: New Tools and Old SecretsLinux Performance Analysis: New Tools and Old Secrets
Linux Performance Analysis: New Tools and Old Secrets
Brendan Gregg
 
The linux networking architecture
The linux networking architectureThe linux networking architecture
The linux networking architecture
hugo lu
 
Linux Networking Explained
Linux Networking ExplainedLinux Networking Explained
Linux Networking Explained
Thomas Graf
 
LinuxCon 2015 Linux Kernel Networking Walkthrough
LinuxCon 2015 Linux Kernel Networking WalkthroughLinuxCon 2015 Linux Kernel Networking Walkthrough
LinuxCon 2015 Linux Kernel Networking Walkthrough
Thomas Graf
 
BPF - in-kernel virtual machine
BPF - in-kernel virtual machineBPF - in-kernel virtual machine
BPF - in-kernel virtual machine
Alexei Starovoitov
 
BPF Internals (eBPF)
BPF Internals (eBPF)BPF Internals (eBPF)
BPF Internals (eBPF)
Brendan Gregg
 
[OpenInfra Days Korea 2018] (Track 4) - Grafana를 이용한 OpenStack 클라우드 성능 모니터링
[OpenInfra Days Korea 2018] (Track 4) - Grafana를 이용한 OpenStack 클라우드 성능 모니터링[OpenInfra Days Korea 2018] (Track 4) - Grafana를 이용한 OpenStack 클라우드 성능 모니터링
[OpenInfra Days Korea 2018] (Track 4) - Grafana를 이용한 OpenStack 클라우드 성능 모니터링
OpenStack Korea Community
 
Linux Profiling at Netflix
Linux Profiling at NetflixLinux Profiling at Netflix
Linux Profiling at Netflix
Brendan Gregg
 
Linux Instrumentation
Linux InstrumentationLinux Instrumentation
Linux Instrumentation
DarkStarSword
 
[KubeCon NA 2020] containerd: Rootless Containers 2020
[KubeCon NA 2020] containerd: Rootless Containers 2020[KubeCon NA 2020] containerd: Rootless Containers 2020
[KubeCon NA 2020] containerd: Rootless Containers 2020
Akihiro Suda
 
Container Performance Analysis
Container Performance AnalysisContainer Performance Analysis
Container Performance Analysis
Brendan Gregg
 
Replacing iptables with eBPF in Kubernetes with Cilium
Replacing iptables with eBPF in Kubernetes with CiliumReplacing iptables with eBPF in Kubernetes with Cilium
Replacing iptables with eBPF in Kubernetes with Cilium
Michal Rostecki
 
ネットワークの自動化・監視の取り組みについて #netopscoding #npstudy
ネットワークの自動化・監視の取り組みについて #netopscoding #npstudyネットワークの自動化・監視の取り組みについて #netopscoding #npstudy
ネットワークの自動化・監視の取り組みについて #netopscoding #npstudy
Yahoo!デベロッパーネットワーク
 
Dpdk performance
Dpdk performanceDpdk performance
Dpdk performance
Stephen Hemminger
 
UM2019 Extended BPF: A New Type of Software
UM2019 Extended BPF: A New Type of SoftwareUM2019 Extended BPF: A New Type of Software
UM2019 Extended BPF: A New Type of Software
Brendan Gregg
 
Performance Wins with BPF: Getting Started
Performance Wins with BPF: Getting StartedPerformance Wins with BPF: Getting Started
Performance Wins with BPF: Getting Started
Brendan Gregg
 
LISA2019 Linux Systems Performance
LISA2019 Linux Systems PerformanceLISA2019 Linux Systems Performance
LISA2019 Linux Systems Performance
Brendan Gregg
 
Boosting I/O Performance with KVM io_uring
Boosting I/O Performance with KVM io_uringBoosting I/O Performance with KVM io_uring
Boosting I/O Performance with KVM io_uring
ShapeBlue
 
Linux Performance Analysis and Tools
Linux Performance Analysis and ToolsLinux Performance Analysis and Tools
Linux Performance Analysis and Tools
Brendan Gregg
 
Performance Wins with eBPF: Getting Started (2021)
Performance Wins with eBPF: Getting Started (2021)Performance Wins with eBPF: Getting Started (2021)
Performance Wins with eBPF: Getting Started (2021)
Brendan Gregg
 
Linux Performance Analysis: New Tools and Old Secrets
Linux Performance Analysis: New Tools and Old SecretsLinux Performance Analysis: New Tools and Old Secrets
Linux Performance Analysis: New Tools and Old Secrets
Brendan Gregg
 
The linux networking architecture
The linux networking architectureThe linux networking architecture
The linux networking architecture
hugo lu
 
Linux Networking Explained
Linux Networking ExplainedLinux Networking Explained
Linux Networking Explained
Thomas Graf
 
LinuxCon 2015 Linux Kernel Networking Walkthrough
LinuxCon 2015 Linux Kernel Networking WalkthroughLinuxCon 2015 Linux Kernel Networking Walkthrough
LinuxCon 2015 Linux Kernel Networking Walkthrough
Thomas Graf
 
BPF - in-kernel virtual machine
BPF - in-kernel virtual machineBPF - in-kernel virtual machine
BPF - in-kernel virtual machine
Alexei Starovoitov
 
BPF Internals (eBPF)
BPF Internals (eBPF)BPF Internals (eBPF)
BPF Internals (eBPF)
Brendan Gregg
 
[OpenInfra Days Korea 2018] (Track 4) - Grafana를 이용한 OpenStack 클라우드 성능 모니터링
[OpenInfra Days Korea 2018] (Track 4) - Grafana를 이용한 OpenStack 클라우드 성능 모니터링[OpenInfra Days Korea 2018] (Track 4) - Grafana를 이용한 OpenStack 클라우드 성능 모니터링
[OpenInfra Days Korea 2018] (Track 4) - Grafana를 이용한 OpenStack 클라우드 성능 모니터링
OpenStack Korea Community
 
Linux Profiling at Netflix
Linux Profiling at NetflixLinux Profiling at Netflix
Linux Profiling at Netflix
Brendan Gregg
 
Linux Instrumentation
Linux InstrumentationLinux Instrumentation
Linux Instrumentation
DarkStarSword
 
[KubeCon NA 2020] containerd: Rootless Containers 2020
[KubeCon NA 2020] containerd: Rootless Containers 2020[KubeCon NA 2020] containerd: Rootless Containers 2020
[KubeCon NA 2020] containerd: Rootless Containers 2020
Akihiro Suda
 
Container Performance Analysis
Container Performance AnalysisContainer Performance Analysis
Container Performance Analysis
Brendan Gregg
 
Replacing iptables with eBPF in Kubernetes with Cilium
Replacing iptables with eBPF in Kubernetes with CiliumReplacing iptables with eBPF in Kubernetes with Cilium
Replacing iptables with eBPF in Kubernetes with Cilium
Michal Rostecki
 
ネットワークの自動化・監視の取り組みについて #netopscoding #npstudy
ネットワークの自動化・監視の取り組みについて #netopscoding #npstudyネットワークの自動化・監視の取り組みについて #netopscoding #npstudy
ネットワークの自動化・監視の取り組みについて #netopscoding #npstudy
Yahoo!デベロッパーネットワーク
 

Viewers also liked (20)

Velocity 2015 linux perf tools
Velocity 2015 linux perf toolsVelocity 2015 linux perf tools
Velocity 2015 linux perf tools
Brendan Gregg
 
Velocity 2017 Performance analysis superpowers with Linux eBPF
Velocity 2017 Performance analysis superpowers with Linux eBPFVelocity 2017 Performance analysis superpowers with Linux eBPF
Velocity 2017 Performance analysis superpowers with Linux eBPF
Brendan Gregg
 
Blazing Performance with Flame Graphs
Blazing Performance with Flame GraphsBlazing Performance with Flame Graphs
Blazing Performance with Flame Graphs
Brendan Gregg
 
SREcon 2016 Performance Checklists for SREs
SREcon 2016 Performance Checklists for SREsSREcon 2016 Performance Checklists for SREs
SREcon 2016 Performance Checklists for SREs
Brendan Gregg
 
ACM Applicative System Methodology 2016
ACM Applicative System Methodology 2016ACM Applicative System Methodology 2016
ACM Applicative System Methodology 2016
Brendan Gregg
 
Stop the Guessing: Performance Methodologies for Production Systems
Stop the Guessing: Performance Methodologies for Production SystemsStop the Guessing: Performance Methodologies for Production Systems
Stop the Guessing: Performance Methodologies for Production Systems
Brendan Gregg
 
Netflix: From Clouds to Roots
Netflix: From Clouds to RootsNetflix: From Clouds to Roots
Netflix: From Clouds to Roots
Brendan Gregg
 
Linux BPF Superpowers
Linux BPF SuperpowersLinux BPF Superpowers
Linux BPF Superpowers
Brendan Gregg
 
Kernel Recipes 2017: Using Linux perf at Netflix
Kernel Recipes 2017: Using Linux perf at NetflixKernel Recipes 2017: Using Linux perf at Netflix
Kernel Recipes 2017: Using Linux perf at Netflix
Brendan Gregg
 
Broken Linux Performance Tools 2016
Broken Linux Performance Tools 2016Broken Linux Performance Tools 2016
Broken Linux Performance Tools 2016
Brendan Gregg
 
No data loss pipeline with apache kafka
No data loss pipeline with apache kafkaNo data loss pipeline with apache kafka
No data loss pipeline with apache kafka
Jiangjie Qin
 
RxNetty vs Tomcat Performance Results
RxNetty vs Tomcat Performance ResultsRxNetty vs Tomcat Performance Results
RxNetty vs Tomcat Performance Results
Brendan Gregg
 
G1 Garbage Collector: Details and Tuning
G1 Garbage Collector: Details and TuningG1 Garbage Collector: Details and Tuning
G1 Garbage Collector: Details and Tuning
Simone Bordet
 
Am I reading GC logs Correctly?
Am I reading GC logs Correctly?Am I reading GC logs Correctly?
Am I reading GC logs Correctly?
Tier1 App
 
Troubleshooting PostgreSQL Streaming Replication
Troubleshooting PostgreSQL Streaming ReplicationTroubleshooting PostgreSQL Streaming Replication
Troubleshooting PostgreSQL Streaming Replication
Alexey Lesovsky
 
Row Pattern Matching in SQL:2016
Row Pattern Matching in SQL:2016Row Pattern Matching in SQL:2016
Row Pattern Matching in SQL:2016
Markus Winand
 
Designing Tracing Tools
Designing Tracing ToolsDesigning Tracing Tools
Designing Tracing Tools
Brendan Gregg
 
Java Performance Analysis on Linux with Flame Graphs
Java Performance Analysis on Linux with Flame GraphsJava Performance Analysis on Linux with Flame Graphs
Java Performance Analysis on Linux with Flame Graphs
Brendan Gregg
 
Shell,信号量以及java进程的退出
Shell,信号量以及java进程的退出Shell,信号量以及java进程的退出
Shell,信号量以及java进程的退出
wang hongjiang
 
Linux 4.x Tracing Tools: Using BPF Superpowers
Linux 4.x Tracing Tools: Using BPF SuperpowersLinux 4.x Tracing Tools: Using BPF Superpowers
Linux 4.x Tracing Tools: Using BPF Superpowers
Brendan Gregg
 
Velocity 2015 linux perf tools
Velocity 2015 linux perf toolsVelocity 2015 linux perf tools
Velocity 2015 linux perf tools
Brendan Gregg
 
Velocity 2017 Performance analysis superpowers with Linux eBPF
Velocity 2017 Performance analysis superpowers with Linux eBPFVelocity 2017 Performance analysis superpowers with Linux eBPF
Velocity 2017 Performance analysis superpowers with Linux eBPF
Brendan Gregg
 
Blazing Performance with Flame Graphs
Blazing Performance with Flame GraphsBlazing Performance with Flame Graphs
Blazing Performance with Flame Graphs
Brendan Gregg
 
SREcon 2016 Performance Checklists for SREs
SREcon 2016 Performance Checklists for SREsSREcon 2016 Performance Checklists for SREs
SREcon 2016 Performance Checklists for SREs
Brendan Gregg
 
ACM Applicative System Methodology 2016
ACM Applicative System Methodology 2016ACM Applicative System Methodology 2016
ACM Applicative System Methodology 2016
Brendan Gregg
 
Stop the Guessing: Performance Methodologies for Production Systems
Stop the Guessing: Performance Methodologies for Production SystemsStop the Guessing: Performance Methodologies for Production Systems
Stop the Guessing: Performance Methodologies for Production Systems
Brendan Gregg
 
Netflix: From Clouds to Roots
Netflix: From Clouds to RootsNetflix: From Clouds to Roots
Netflix: From Clouds to Roots
Brendan Gregg
 
Linux BPF Superpowers
Linux BPF SuperpowersLinux BPF Superpowers
Linux BPF Superpowers
Brendan Gregg
 
Kernel Recipes 2017: Using Linux perf at Netflix
Kernel Recipes 2017: Using Linux perf at NetflixKernel Recipes 2017: Using Linux perf at Netflix
Kernel Recipes 2017: Using Linux perf at Netflix
Brendan Gregg
 
Broken Linux Performance Tools 2016
Broken Linux Performance Tools 2016Broken Linux Performance Tools 2016
Broken Linux Performance Tools 2016
Brendan Gregg
 
No data loss pipeline with apache kafka
No data loss pipeline with apache kafkaNo data loss pipeline with apache kafka
No data loss pipeline with apache kafka
Jiangjie Qin
 
RxNetty vs Tomcat Performance Results
RxNetty vs Tomcat Performance ResultsRxNetty vs Tomcat Performance Results
RxNetty vs Tomcat Performance Results
Brendan Gregg
 
G1 Garbage Collector: Details and Tuning
G1 Garbage Collector: Details and TuningG1 Garbage Collector: Details and Tuning
G1 Garbage Collector: Details and Tuning
Simone Bordet
 
Am I reading GC logs Correctly?
Am I reading GC logs Correctly?Am I reading GC logs Correctly?
Am I reading GC logs Correctly?
Tier1 App
 
Troubleshooting PostgreSQL Streaming Replication
Troubleshooting PostgreSQL Streaming ReplicationTroubleshooting PostgreSQL Streaming Replication
Troubleshooting PostgreSQL Streaming Replication
Alexey Lesovsky
 
Row Pattern Matching in SQL:2016
Row Pattern Matching in SQL:2016Row Pattern Matching in SQL:2016
Row Pattern Matching in SQL:2016
Markus Winand
 
Designing Tracing Tools
Designing Tracing ToolsDesigning Tracing Tools
Designing Tracing Tools
Brendan Gregg
 
Java Performance Analysis on Linux with Flame Graphs
Java Performance Analysis on Linux with Flame GraphsJava Performance Analysis on Linux with Flame Graphs
Java Performance Analysis on Linux with Flame Graphs
Brendan Gregg
 
Shell,信号量以及java进程的退出
Shell,信号量以及java进程的退出Shell,信号量以及java进程的退出
Shell,信号量以及java进程的退出
wang hongjiang
 
Linux 4.x Tracing Tools: Using BPF Superpowers
Linux 4.x Tracing Tools: Using BPF SuperpowersLinux 4.x Tracing Tools: Using BPF Superpowers
Linux 4.x Tracing Tools: Using BPF Superpowers
Brendan Gregg
 
Ad

Similar to Performance Tuning EC2 Instances (20)

Performance tweaks and tools for Linux (Joe Damato)
Performance tweaks and tools for Linux (Joe Damato)Performance tweaks and tools for Linux (Joe Damato)
Performance tweaks and tools for Linux (Joe Damato)
Ontico
 
Debugging Ruby Systems
Debugging Ruby SystemsDebugging Ruby Systems
Debugging Ruby Systems
Engine Yard
 
Debugging Ruby
Debugging RubyDebugging Ruby
Debugging Ruby
Aman Gupta
 
YOW2020 Linux Systems Performance
YOW2020 Linux Systems PerformanceYOW2020 Linux Systems Performance
YOW2020 Linux Systems Performance
Brendan Gregg
 
ATO Linux Performance 2018
ATO Linux Performance 2018ATO Linux Performance 2018
ATO Linux Performance 2018
Brendan Gregg
 
Performance tuning jvm
Performance tuning jvmPerformance tuning jvm
Performance tuning jvm
Prem Kuppumani
 
PerfUG 3 - perfs système
PerfUG 3 - perfs systèmePerfUG 3 - perfs système
PerfUG 3 - perfs système
Ludovic Piot
 
May2010 hex-core-opt
May2010 hex-core-optMay2010 hex-core-opt
May2010 hex-core-opt
Jeff Larkin
 
Debugging linux issues with eBPF
Debugging linux issues with eBPFDebugging linux issues with eBPF
Debugging linux issues with eBPF
Ivan Babrou
 
Osol Pgsql
Osol PgsqlOsol Pgsql
Osol Pgsql
Emanuel Calvo
 
Java/Spring과 Node.js의공존
Java/Spring과 Node.js의공존Java/Spring과 Node.js의공존
Java/Spring과 Node.js의공존
동수 장
 
SiteGround Tech TeamBuilding
SiteGround Tech TeamBuildingSiteGround Tech TeamBuilding
SiteGround Tech TeamBuilding
Marian Marinov
 
test
testtest
test
WentingLiu4
 
CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...
CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...
CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...
PROIDEA
 
Reverse engineering Swisscom's Centro Grande Modem
Reverse engineering Swisscom's Centro Grande ModemReverse engineering Swisscom's Centro Grande Modem
Reverse engineering Swisscom's Centro Grande Modem
Cyber Security Alliance
 
Deep Dive on Amazon EC2 Instances (March 2017)
Deep Dive on Amazon EC2 Instances (March 2017)Deep Dive on Amazon EC2 Instances (March 2017)
Deep Dive on Amazon EC2 Instances (March 2017)
Julien SIMON
 
SOFA Tutorial
SOFA TutorialSOFA Tutorial
SOFA Tutorial
NTU CSIE, Taiwan
 
Direct Code Execution - LinuxCon Japan 2014
Direct Code Execution - LinuxCon Japan 2014Direct Code Execution - LinuxCon Japan 2014
Direct Code Execution - LinuxCon Japan 2014
Hajime Tazaki
 
Практический опыт профайлинга и оптимизации производительности Ruby-приложений
Практический опыт профайлинга и оптимизации производительности Ruby-приложенийПрактический опыт профайлинга и оптимизации производительности Ruby-приложений
Практический опыт профайлинга и оптимизации производительности Ruby-приложений
Olga Lavrentieva
 
Accelerating EDA workloads on Azure – Best Practice and benchmark on Intel EM...
Accelerating EDA workloads on Azure – Best Practice and benchmark on Intel EM...Accelerating EDA workloads on Azure – Best Practice and benchmark on Intel EM...
Accelerating EDA workloads on Azure – Best Practice and benchmark on Intel EM...
Meng-Ru (Raymond) Tsai
 
Performance tweaks and tools for Linux (Joe Damato)
Performance tweaks and tools for Linux (Joe Damato)Performance tweaks and tools for Linux (Joe Damato)
Performance tweaks and tools for Linux (Joe Damato)
Ontico
 
Debugging Ruby Systems
Debugging Ruby SystemsDebugging Ruby Systems
Debugging Ruby Systems
Engine Yard
 
Debugging Ruby
Debugging RubyDebugging Ruby
Debugging Ruby
Aman Gupta
 
YOW2020 Linux Systems Performance
YOW2020 Linux Systems PerformanceYOW2020 Linux Systems Performance
YOW2020 Linux Systems Performance
Brendan Gregg
 
ATO Linux Performance 2018
ATO Linux Performance 2018ATO Linux Performance 2018
ATO Linux Performance 2018
Brendan Gregg
 
Performance tuning jvm
Performance tuning jvmPerformance tuning jvm
Performance tuning jvm
Prem Kuppumani
 
PerfUG 3 - perfs système
PerfUG 3 - perfs systèmePerfUG 3 - perfs système
PerfUG 3 - perfs système
Ludovic Piot
 
May2010 hex-core-opt
May2010 hex-core-optMay2010 hex-core-opt
May2010 hex-core-opt
Jeff Larkin
 
Debugging linux issues with eBPF
Debugging linux issues with eBPFDebugging linux issues with eBPF
Debugging linux issues with eBPF
Ivan Babrou
 
Java/Spring과 Node.js의공존
Java/Spring과 Node.js의공존Java/Spring과 Node.js의공존
Java/Spring과 Node.js의공존
동수 장
 
SiteGround Tech TeamBuilding
SiteGround Tech TeamBuildingSiteGround Tech TeamBuilding
SiteGround Tech TeamBuilding
Marian Marinov
 
CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...
CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...
CONFidence 2017: Escaping the (sand)box: The promises and pitfalls of modern ...
PROIDEA
 
Reverse engineering Swisscom's Centro Grande Modem
Reverse engineering Swisscom's Centro Grande ModemReverse engineering Swisscom's Centro Grande Modem
Reverse engineering Swisscom's Centro Grande Modem
Cyber Security Alliance
 
Deep Dive on Amazon EC2 Instances (March 2017)
Deep Dive on Amazon EC2 Instances (March 2017)Deep Dive on Amazon EC2 Instances (March 2017)
Deep Dive on Amazon EC2 Instances (March 2017)
Julien SIMON
 
Direct Code Execution - LinuxCon Japan 2014
Direct Code Execution - LinuxCon Japan 2014Direct Code Execution - LinuxCon Japan 2014
Direct Code Execution - LinuxCon Japan 2014
Hajime Tazaki
 
Практический опыт профайлинга и оптимизации производительности Ruby-приложений
Практический опыт профайлинга и оптимизации производительности Ruby-приложенийПрактический опыт профайлинга и оптимизации производительности Ruby-приложений
Практический опыт профайлинга и оптимизации производительности Ruby-приложений
Olga Lavrentieva
 
Accelerating EDA workloads on Azure – Best Practice and benchmark on Intel EM...
Accelerating EDA workloads on Azure – Best Practice and benchmark on Intel EM...Accelerating EDA workloads on Azure – Best Practice and benchmark on Intel EM...
Accelerating EDA workloads on Azure – Best Practice and benchmark on Intel EM...
Meng-Ru (Raymond) Tsai
 
Ad

More from Brendan Gregg (19)

YOW2021 Computing Performance
YOW2021 Computing PerformanceYOW2021 Computing Performance
YOW2021 Computing Performance
Brendan Gregg
 
IntelON 2021 Processor Benchmarking
IntelON 2021 Processor BenchmarkingIntelON 2021 Processor Benchmarking
IntelON 2021 Processor Benchmarking
Brendan Gregg
 
Computing Performance: On the Horizon (2021)
Computing Performance: On the Horizon (2021)Computing Performance: On the Horizon (2021)
Computing Performance: On the Horizon (2021)
Brendan Gregg
 
LPC2019 BPF Tracing Tools
LPC2019 BPF Tracing ToolsLPC2019 BPF Tracing Tools
LPC2019 BPF Tracing Tools
Brendan Gregg
 
LSFMM 2019 BPF Observability
LSFMM 2019 BPF ObservabilityLSFMM 2019 BPF Observability
LSFMM 2019 BPF Observability
Brendan Gregg
 
YOW2018 CTO Summit: Working at netflix
YOW2018 CTO Summit: Working at netflixYOW2018 CTO Summit: Working at netflix
YOW2018 CTO Summit: Working at netflix
Brendan Gregg
 
eBPF Perf Tools 2019
eBPF Perf Tools 2019eBPF Perf Tools 2019
eBPF Perf Tools 2019
Brendan Gregg
 
YOW2018 Cloud Performance Root Cause Analysis at Netflix
YOW2018 Cloud Performance Root Cause Analysis at NetflixYOW2018 Cloud Performance Root Cause Analysis at Netflix
YOW2018 Cloud Performance Root Cause Analysis at Netflix
Brendan Gregg
 
BPF Tools 2017
BPF Tools 2017BPF Tools 2017
BPF Tools 2017
Brendan Gregg
 
NetConf 2018 BPF Observability
NetConf 2018 BPF ObservabilityNetConf 2018 BPF Observability
NetConf 2018 BPF Observability
Brendan Gregg
 
FlameScope 2018
FlameScope 2018FlameScope 2018
FlameScope 2018
Brendan Gregg
 
Linux Performance 2018 (PerconaLive keynote)
Linux Performance 2018 (PerconaLive keynote)Linux Performance 2018 (PerconaLive keynote)
Linux Performance 2018 (PerconaLive keynote)
Brendan Gregg
 
How Netflix Tunes EC2 Instances for Performance
How Netflix Tunes EC2 Instances for PerformanceHow Netflix Tunes EC2 Instances for Performance
How Netflix Tunes EC2 Instances for Performance
Brendan Gregg
 
LISA17 Container Performance Analysis
LISA17 Container Performance AnalysisLISA17 Container Performance Analysis
LISA17 Container Performance Analysis
Brendan Gregg
 
Kernel Recipes 2017: Performance Analysis with BPF
Kernel Recipes 2017: Performance Analysis with BPFKernel Recipes 2017: Performance Analysis with BPF
Kernel Recipes 2017: Performance Analysis with BPF
Brendan Gregg
 
EuroBSDcon 2017 System Performance Analysis Methodologies
EuroBSDcon 2017 System Performance Analysis MethodologiesEuroBSDcon 2017 System Performance Analysis Methodologies
EuroBSDcon 2017 System Performance Analysis Methodologies
Brendan Gregg
 
OSSNA 2017 Performance Analysis Superpowers with Linux BPF
OSSNA 2017 Performance Analysis Superpowers with Linux BPFOSSNA 2017 Performance Analysis Superpowers with Linux BPF
OSSNA 2017 Performance Analysis Superpowers with Linux BPF
Brendan Gregg
 
USENIX ATC 2017 Performance Superpowers with Enhanced BPF
USENIX ATC 2017 Performance Superpowers with Enhanced BPFUSENIX ATC 2017 Performance Superpowers with Enhanced BPF
USENIX ATC 2017 Performance Superpowers with Enhanced BPF
Brendan Gregg
 
USENIX ATC 2017: Visualizing Performance with Flame Graphs
USENIX ATC 2017: Visualizing Performance with Flame GraphsUSENIX ATC 2017: Visualizing Performance with Flame Graphs
USENIX ATC 2017: Visualizing Performance with Flame Graphs
Brendan Gregg
 
YOW2021 Computing Performance
YOW2021 Computing PerformanceYOW2021 Computing Performance
YOW2021 Computing Performance
Brendan Gregg
 
IntelON 2021 Processor Benchmarking
IntelON 2021 Processor BenchmarkingIntelON 2021 Processor Benchmarking
IntelON 2021 Processor Benchmarking
Brendan Gregg
 
Computing Performance: On the Horizon (2021)
Computing Performance: On the Horizon (2021)Computing Performance: On the Horizon (2021)
Computing Performance: On the Horizon (2021)
Brendan Gregg
 
LPC2019 BPF Tracing Tools
LPC2019 BPF Tracing ToolsLPC2019 BPF Tracing Tools
LPC2019 BPF Tracing Tools
Brendan Gregg
 
LSFMM 2019 BPF Observability
LSFMM 2019 BPF ObservabilityLSFMM 2019 BPF Observability
LSFMM 2019 BPF Observability
Brendan Gregg
 
YOW2018 CTO Summit: Working at netflix
YOW2018 CTO Summit: Working at netflixYOW2018 CTO Summit: Working at netflix
YOW2018 CTO Summit: Working at netflix
Brendan Gregg
 
eBPF Perf Tools 2019
eBPF Perf Tools 2019eBPF Perf Tools 2019
eBPF Perf Tools 2019
Brendan Gregg
 
YOW2018 Cloud Performance Root Cause Analysis at Netflix
YOW2018 Cloud Performance Root Cause Analysis at NetflixYOW2018 Cloud Performance Root Cause Analysis at Netflix
YOW2018 Cloud Performance Root Cause Analysis at Netflix
Brendan Gregg
 
NetConf 2018 BPF Observability
NetConf 2018 BPF ObservabilityNetConf 2018 BPF Observability
NetConf 2018 BPF Observability
Brendan Gregg
 
Linux Performance 2018 (PerconaLive keynote)
Linux Performance 2018 (PerconaLive keynote)Linux Performance 2018 (PerconaLive keynote)
Linux Performance 2018 (PerconaLive keynote)
Brendan Gregg
 
How Netflix Tunes EC2 Instances for Performance
How Netflix Tunes EC2 Instances for PerformanceHow Netflix Tunes EC2 Instances for Performance
How Netflix Tunes EC2 Instances for Performance
Brendan Gregg
 
LISA17 Container Performance Analysis
LISA17 Container Performance AnalysisLISA17 Container Performance Analysis
LISA17 Container Performance Analysis
Brendan Gregg
 
Kernel Recipes 2017: Performance Analysis with BPF
Kernel Recipes 2017: Performance Analysis with BPFKernel Recipes 2017: Performance Analysis with BPF
Kernel Recipes 2017: Performance Analysis with BPF
Brendan Gregg
 
EuroBSDcon 2017 System Performance Analysis Methodologies
EuroBSDcon 2017 System Performance Analysis MethodologiesEuroBSDcon 2017 System Performance Analysis Methodologies
EuroBSDcon 2017 System Performance Analysis Methodologies
Brendan Gregg
 
OSSNA 2017 Performance Analysis Superpowers with Linux BPF
OSSNA 2017 Performance Analysis Superpowers with Linux BPFOSSNA 2017 Performance Analysis Superpowers with Linux BPF
OSSNA 2017 Performance Analysis Superpowers with Linux BPF
Brendan Gregg
 
USENIX ATC 2017 Performance Superpowers with Enhanced BPF
USENIX ATC 2017 Performance Superpowers with Enhanced BPFUSENIX ATC 2017 Performance Superpowers with Enhanced BPF
USENIX ATC 2017 Performance Superpowers with Enhanced BPF
Brendan Gregg
 
USENIX ATC 2017: Visualizing Performance with Flame Graphs
USENIX ATC 2017: Visualizing Performance with Flame GraphsUSENIX ATC 2017: Visualizing Performance with Flame Graphs
USENIX ATC 2017: Visualizing Performance with Flame Graphs
Brendan Gregg
 

Recently uploaded (20)

Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 

Performance Tuning EC2 Instances

  • 1. PFC306 Brendan Gregg, Performance Engineering, Netflix November 12, 2014 | Las Vegas, NV
  • 9. S3 EC2 Cassandra Applications (Services) EVCache ELB Elasticsearch SES SQS
  • 13. Start i2 Select memory to cache working set Find best balance
  • 14. ASG-v011 … Instance Instance Instance ASG Cluster prod1 ASG-v010 … Instance Instance Instance Canary ELB
  • 17. Select instance families Select resources From any desired resource, see types & cost
  • 26. Cost per hour Services
  • 37. vm.swappiness = 0 # from 60
  • 38. # echo never > /sys/kernel/mm/transparent_hugepage/enabled # from madvise
  • 39. vm.dirty_ratio = 80 # from 40 vm.dirty_background_ratio = 5 # from 10 vm.dirty_expire_centisecs = 12000 # from 3000 mount -o defaults,noatime,discard,nobarrier …
  • 40. /sys/block/*/queue/rq_affinity2 /sys/block/*/queue/scheduler noop /sys/block/*/queue/nr_requests256 /sys/block/*/queue/read_ahead_kb 256 mdadm –chunk=64 ...
  • 41. net.core.somaxconn = 1000 net.core.netdev_max_backlog = 5000 net.core.rmem_max = 16777216 net.core.wmem_max = 16777216 net.ipv4.tcp_wmem = 4096 12582912 16777216 net.ipv4.tcp_rmem = 4096 12582912 16777216 net.ipv4.tcp_max_syn_backlog = 8096 net.ipv4.tcp_slow_start_after_idle = 0 net.ipv4.tcp_tw_reuse = 1 net.ipv4.ip_local_port_range = 10240 65535 net.ipv4.tcp_abort_on_overflow = 1 # maybe
  • 42. echo tsc > /sys/devices/system/clocksource/clocksource0/current_clocksource
  • 51. Application System Libraries System Calls Kernel Devices
  • 54. $ sar -n TCP,ETCP,DEV 1 Linux 3.2.55 (test-e4f1a80b) 08/18/2014 _x86_64_ (8 CPU) 09:10:43 PM IFACE rxpck/s txpck/s rxkB/s txkB/s rxcmp/s txcmp/s rxmcst/s 09:10:44 PM lo 14.00 14.00 1.34 1.34 0.00 0.00 0.00 09:10:44 PM eth0 4114.00 4186.00 4537.46 28513.24 0.00 0.00 0.00 09:10:43 PM active/s passive/s iseg/s oseg/s 09:10:44 PM 21.00 4.00 4107.00 22511.00 09:10:43 PM atmptf/s estres/s retrans/s isegerr/s orsts/s 09:10:44 PM 0.00 0.00 36.00 0.00 1.00 […]
  • 59. Stack frame Mouse-over frames to quantify Ancestry
  • 60. # git clone https://github.com/brendangregg/FlameGraph # cd FlameGraph # perf record -F 99 -ag -- sleep 60 # perf script | ./stackcollapse-perf.pl | ./flamegraph.pl > perf.svg
  • 62. Broken Java stacks (missing frame pointer) Kernel TCP/IP GC Idle thread Time Locks epoll
  • 65. # ./iosnoop –ts Tracing block I/O. Ctrl-C to end. STARTs ENDs COMM PID TYPE DEV BLOCK BYTES LATms 5982800.302061 5982800.302679 supervise 1809 W 202,1 17039600 4096 0.62 5982800.302423 5982800.302842 supervise 1809 W 202,1 17039608 4096 0.42 5982800.304962 5982800.305446 supervise 1801 W 202,1 17039616 4096 0.48 5982800.305250 5982800.305676 supervise 1801 W 202,1 17039624 4096 0.43 […] # ./iosnoop –h USAGE: iosnoop [-hQst] [-d device] [-i iotype] [-p PID] [-n name] [duration] -d device # device string (eg, "202,1) -i iotype # match type (eg, '*R*' for all reads) -n name # process name to match on I/O issue -p PID # PID to match on I/O issue -Q # include queueing time in LATms -s # include start time of I/O (s) -t # include completion time of I/O (s) […]
  • 67. # perf record –e skb:consume_skb –ag -- sleep 10 # perf report [...] 74.42% swapper [kernel.kallsyms] [k] consume_skb | --- consume_skb arp_process arp_rcv __netif_receive_skb_core __netif_receive_skb netif_receive_skb virtnet_poll net_rx_action __do_softirq irq_exit do_IRQ ret_from_intr […] Summarizing stack traces for a tracepoint perf_events can do many things, it is hard to pick just one example
  • 69. ec2-guest# ./showboost CPU MHz : 2500 Turbo MHz : 2900 (10 active) Turbo Ratio : 116% (10 active) CPU 0 summary every 5 seconds... Real CPU MHz TIME C0_MCYC C0_ACYC UTIL RATIO MHz 06:11:35 6428553166 7457384521 51% 116% 2900 06:11:40 6349881107 7365764152 50% 115% 2899 06:11:45 6240610655 7239046277 49% 115% 2899 [...]
  • 72. Region App Breakdowns Metrics Options Interactive Graph Summary Statistics
  • 75. Utilization Saturation Errors Per device Breakdowns
  • 78. http://aws.amazon.com/ec2/instance-types/ http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html http://www.slideshare.net/cpwatson/cpn302-yourlinuxamioptimizationandperformance http://www.brendangregg.com/blog/2014-09-27/from-clouds-to-roots.html http://www.brendangregg.com/blog/2014-05-07/what-color-is-your-xen.html http://www.brendangregg.com/linuxperf.html http://www.slideshare.net/brendangregg/linux-performance-tools-2014 http://www.brendangregg.com/USEmethod/use-linux.html http://www.brendangregg.com/blog/2014-06-12/java-flame-graphs.html https://github.com/brendangregg/FlameGraph https://github.com/brendangregg/perf-tools
  • 80. Talk Time Title PFC-305 Wednesday, 1:15pm Embracing Failure: Fault Injection and Service Reliability BDT-403 Wednesday, 2:15pm Next Generation Big Data Platform at Netflix PFC-306 Wednesday, 3:30pm Performance Tuning EC2 DEV-309 Wednesday, 3:30pm From Asgard to Zuul, How Netflix’s proven Open Source Tools can accelerate and scale your services ARC-317 Wednesday, 4:30pm Maintaining a Resilient Front-Door at Massive Scale PFC-304 Wednesday, 4:30pm Effective Inter-process Communications in the Cloud: The Pros and Cons of Micro Services Architectures ENT-209 Wednesday, 4:30pm Cloud Migration, Dev-Ops and Distributed Systems APP-310 Friday, 9:00am Scheduling using Apache Mesos in the Cloud