SlideShare a Scribd company logo
Physics-driven Spatiotemporal Regularization for
High-dimensional Predictive Modeling
Bing Yao and Hui Yang
杨 徽
Associate Professor
Complex Systems Monitoring, Modeling and Control Lab
The Pennsylvania State University
University Park, PA 16802
November 25, 2017
Outline
1 Introduction
2 Physics-driven Spatiotemporal Regularization
3 Experimental Design and Results
4 References
Introduction Methodology Experiments References
Research Roadmap
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 3 / 42
Introduction Methodology Experiments References
Research Projects
Manufacturing Processes, Precision Machining
Publications: Pattern Recognition, IEEE Transactions, Chaos, IIE/ASME Transactions, J. Mfg
Sys
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 4 / 42
Introduction Methodology Experiments References
Research Projects
Electro-mechanical Processes, Biomanufacturing
Publications: IEEE Transactions, Physical Review, Physiological Measurements, Scientific
Reports
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 5 / 42
Introduction Methodology Experiments References
Predictive Modeling
Shrinkage methods: ridge regression, LASSO, and elastic net ...
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 6 / 42
Introduction Methodology Experiments References
Advanced Sensing
108.5°C
<60.0°C
CInfrared Camera Thermal Image
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 7 / 42
Introduction Methodology Experiments References
Advanced Sensing
(*from Yoram Rudy Lab @ WUSTL)
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 8 / 42
Introduction Methodology Experiments References
High-dimensional Predictive Modeling
BSPM y(s,t) Heart-surface Potential
Mapping x(s,t)
Inverse
Forward
Y (s, t) = RX(s, t) +
Traditional regression is not generally applicable!
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 9 / 42
Introduction Methodology Experiments References
Challenges
Spatially-temporally big data
Dimensionality
Velocity - sampling in milliseconds
Veracity - data uncertainty
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 10 / 42
Introduction Methodology Experiments References
Challenges
Complex structured systems
Complex geometries of AM builds
Complex torso-heart geometry
(*from CIMP-3D @ PSU)
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 11 / 42
Introduction Methodology Experiments References
Challenges
Y (s, t) = RX(s, t) +
Outer surface profiles y(s, t) ⇒ Inner surface profiles x(s, t)
Transfer matrix R ?
Physical principles
Additive manufacturing - Heat transfer model
Heart - Electrical wave propagation
Ill-conditioned system
Linear systems involving high-dimensional data
Condition number: cond(R) = R R−1
A measure of the relative sensitivity of the solution to changes in y
∆x
x
cond(R)
∆y
y
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 12 / 42
Introduction Methodology Experiments References
State of the Art
Tikhonov regularization
min
x(s,t)
{ y(s, t) − Rx(s, t) 2
2 + λ2
Γx(s, t) 2
2}
L1 regularization
min
x(s,t)
{ y(s, t) − Rx(s, t) 2
2 + λ2
Γx(s, t) 1}
Zeroth-order Γ = I
Directly penalize the magnitude of x(s, t)
Sparsity vs. Regularity
Not account for spatial or temporal correlations
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 13 / 42
Introduction Methodology Experiments References
State of the Art
First-order Regularization
The first-order derivative: Γx(s, t) = ∂x(s, t)/∂τ
Align x(s, t) in one column as {x(s1|t), x(s2|t), ..., x(sN |t)}T
Apply the bidiagonal gradient matrix
Normal derivative operator: Γx(s, t) = ∂x(s, t)/∂n
Γ =





−1 1
−1 1
...
...
−1 1




 n
τ
Γx(s,t)
Tangent plane
Need to fill the gaps
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 14 / 42
Introduction Methodology Experiments References
Physics-driven Spatiotemporal Regularization
Objective function
min
x(s,t)
T
t=1
{ y(s, t)−Rx(s, t) 2
+λ2
s ∆sx(s, t) 2
+λ2
t
t+ w
2
τ=t− w
2
x(s, t)−x(s, τ) 2
}
Parameter Matrix R - physics-based interrelationship
Spatial regularity - handle approximation errors by spatial correlation
Temporal regularity - model robustness to measurement noises
Algorithm - generalized dipole multiplicative update method
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 15 / 42
Introduction Methodology Experiments References
Parameter Matrix R
Divergence theorem: if F is a vector
field which is continuously differentiable
and defined on a volume V ⊂ R3 with a
piecewise-smooth boundary S, then
V
( · F )dV =
S
(F · n)dS
Electric Field Body Surface SB
Heart Surface SH
Green’s second identity: If φ and ψ are twice continuously
differentiable on V , and let F = φ ψ − ψ φ, then
S
(φ ψ − ψ φ) · ndS =
V
(φ 2
ψ − ψ 2
φ)dV
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 16 / 42
Introduction Methodology Experiments References
Parameter Matrix R
Heart - a bioelectric source
Torso - a homogeneous and isotropic volume conductor
(*from marvel.com)
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 17 / 42
Introduction Methodology Experiments References
Parameter Matrix R
Heart - a bioelectric source
Torso - a homogeneous and isotropic volume conductor
Green’s second identity:
S
(φ ψ − ψ φ) · ndS =
V
(φ 2
ψ − ψ 2
φ)dV
ψ = 1/r; φ = electric potentials
No electrical source between SH and SB: 2
φ = 0
Electric field outside SB is negligible: φ = 0 on SB
SH
n
SB
n
∇2
φ = 0
∇y(s,t)=0
y(s,t)
x(s,t)
dΩBB
dSB
dΩBH
dSH
Heart Surface
Body
surface
Volume
conductor
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 18 / 42
Introduction Methodology Experiments References
Parameter Matrix R
Boundary element method
Body surface potential on SB
y(s, t) = −
1
4π SH
x(s, t)dΩBH −
1
4π SH
x(s, t) · n
rBH
dSH +
1
4π SB
y(s, t)dΩBB
Heart surface potential on SH
x(s, t) = −
1
4π SH
x(s, t)dΩHH −
1
4π SH
x(s, t) · n
rHH
dSH +
1
4π SB
y(s, t)dΩHB
Numerical integration
ABBy(s, t) + ABHx(s, t) + MBHN(s, t) = 0
AHBy(s, t) + AHHx(s, t) + MHHN(s, t) = 0
Parameter matrix R:
R = (ABB − MBHM−1
HHAHB)−1
(MBHM−1
HHAHH − ABH)
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 19 / 42
Introduction Methodology Experiments References
Physics-driven Spatiotemporal Regularization
Objective function
min
x(s,t)
T
t=1
{ y(s, t)−Rx(s, t) 2
+λ2
s ∆sx(s, t) 2
+λ2
t
t+ w
2
τ=t− w
2
x(s, t)−x(s, τ) 2
}
Parameter Matrix R - physics-based interrelationship
Spatial regularity - handle approximation errors by spatial correlation
Temporal regularity - model robustness to measurement noises
Algorithm - generalized dipole multiplicative update method
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 20 / 42
Introduction Methodology Experiments References
Spatial Regularity
Surface laplacian ∆s for a square lattice
Surface laplacian at the node p0
x1 = x0 + a
∂x
∂v p0
+
1
2
a2 ∂2x
∂v2 p0
x2 = x0 − a
∂x
∂u p0
+
1
2
a2 ∂2x
∂u2 p0
x3 = x0 − a
∂x
∂v p0
+
1
2
a2 ∂2x
∂v2 p0
x4 = x0 + a
∂x
∂u p0
+
1
2
a2 ∂2x
∂u2 p0
⇒ x1 + x2 + x3 + x4 = 4x0 + a2
(
∂2x
∂u2
+
∂2x
∂v2
)
p0
= 4x0 + a2
∆x0
⇒ ∆x0 =
1
a2
(
4
i=1
xi − 4x0) =
4
a2
(¯x − x0)
Laplacian matrix for the square lattice
∆ij =



− 4
a2 , if i = j
1
a2 , if i = j, pj ∈ neighborhood of pi
0, otherwise
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 21 / 42
Introduction Methodology Experiments References
Spatial Regularity
Linear interpolation (imaginary nearest neighbor):
xt(j) = xt(i) +
¯di
dij
(xt(j) − xt(i))
dij is the distance between pi and pj
¯di = 1
ni
ni
j=1 dij
ni is the number of neighbors of pi
Surface laplacian at the node pi
∆sxt(i) =
4
¯di
2
(
1
ni
ni
j=1
xt(j) − xt(i))
=
4
¯di
(
1
ni
ni
j=1
xt(j)
dij
− (
1
di
)xt(i))
Laplacian matrix for 3D triangle mesh
∆ij =



− 4
¯di
( 1
di
), if i = j
4
¯di
1
ni
1
dij
, if i = j, pj ∈ neighborhood of pi
0, otherwise
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 22 / 42
Introduction Methodology Experiments References
Physics-driven Spatiotemporal Regularization
Objective function
min
x(s,t)
T
t=1
{ y(s, t)−Rx(s, t) 2
+λ2
s ∆sx(s, t) 2
+λ2
t
t+ w
2
τ=t− w
2
x(s, t)−x(s, τ) 2
}
Parameter Matrix R - physics-based interrelationship
Spatial regularity - handle approximation errors by spatial correlation
Temporal regularity - model robustness to measurement noises
Algorithm - generalized dipole multiplicative update method
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 23 / 42
Introduction Methodology Experiments References
Temporal Regularity
Spatiotemporal data x(s, t) and y(s, t) - dynamically evolving over
time and have temporal correlations
T
t=1
t+w
2
τ=t−w
2
x(s, t) − x(s, τ) 2
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 24 / 42
Introduction Methodology Experiments References
Physics-driven Spatiotemporal Regularization
Objective function
min
x(s,t)
T
t=1
{ y(s, t)−Rx(s, t) 2
+λ2
s ∆sx(s, t) 2
+λ2
t
t+ w
2
τ=t− w
2
x(s, t)−x(s, τ) 2
}
Parameter Matrix R - physics-based interrelationship
Spatial regularity - handle approximation errors by spatial correlation
Temporal regularity - model robustness to measurement noises
Algorithm - generalized dipole multiplicative update method
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 25 / 42
Introduction Methodology Experiments References
DMU Algorithm
Objective function - both spatial and temporal terms, and is difficult
to be solved analytically.
Iterative algorithm - traditional multiplicative update method
requires x(s, t) to be nonnegative
Heart surface - negative and positive electric potentials
A new dipole multiplicative update algorithm for generalized
spatiotemporal regularization
xt = x+
t − x−
t , x+
t = max{0, xt} x−
t = max{0, −xt}
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 26 / 42
Introduction Methodology Experiments References
DMU Algorithm
If we define
A = A+
− A−
= RT
R + λ2
s∆T
s ∆s + 2λ2
t wI
B = yT
t R + 2λ2
t
t−1
τ=t− w
2
xT
τ + 2λ2
t
t+ w
2
τ=t+1
xT
τ
The objective function can be rewritten as:
J =
T
t=1
{xT
t Axt − Bxt − xT
t BT
}
= ((xT
t )+
)A+
x+
t − ((xT
t )+
)Ax−
t − ((xT
t )−
)Ax+
t − ((xT
t )+
)A−
x+
t
+((xT
t )−
)A+
x−
t − ((xT
t )−
)A−
x−
t − B(x+
t − x−
t ) − (x+
t − x−
t )T
BT
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 27 / 42
Introduction Methodology Experiments References
DMU Algorithm
If we define
a+
i = (2A+
x+
t )i a−
i = (2A+
x−
t )i
b+
i = −(2Ax−
t )i − 2BT
i b−
i = −(2Ax+
t )i + 2BT
i
c+
i = (2A−
x+
t )i c−
i = (2A−
x−
t )i
New update rules
(x+
t )i ←
−b+
i + (b+
i )2 + 4a+
i c+
i
2a+
i
(x+
t )i
(x−
t )i ←
−b−
i + (b−
i )2 + 4a−
i c−
i
2a−
i
(x−
t )i
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 28 / 42
Introduction Methodology Experiments References
DMU Algorithm
Table: The Proposed Dipole Multiplicative Update Algorithm for STRE
1: Set constants λs, λt and w. Let
A = A+
− A−
= RT
R + λ2
s∆T
s ∆s + 2λ2
t wI
B = yT
t R + 2λ2
t
t−1
τ=t− w
2
xT
τ + 2λ2
t
t+ w
2
τ=t+1 xT
τ
2: Initialize {x+
t } and {x−
t } as positive random matrices.
3: Repeat
4: for i = 1, . . . , T do
(x+
t )i ←
(Ax−
t )i+Bi+ ((Ax−
t )i+Bi)2+4(A+x+
t )i(A−x+
t )i
(2A+x+
t )i
(x+
t )i
(x−
t )i ←
(Ax+
t )i−Bi+ ((Ax+
t )i−Bi)2+4(A+x−
t )i(A−x−
t )i
(2A+x−
t )i
(x−
t )i
5: end for
6: until convergence
7: Solution: ˆxt = x+
t − x−
t
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 29 / 42
Introduction Methodology Experiments References
Experiments - Simulation in a Two-sphere Geometry
Dynamic distributions of electric potentials on the inner surface
x(s, t) and outer surface y(s, t) are calculated analytically
x(s, t) =
1
4πσ
p(t) · rH (s)
r2
BrH
[
2rH
rB
+ (
rB
rH
)2
]
y(s, t) =
3
4πσ
p(t) · rB(s)
r3
B
Gaussian noise ∼ N(0, σ2) is added to y(s, t)
(a) (b)
Figure: (a) Parameters of the two-sphere geometry; (b) Each sphere is triangulated
with 184 nodes and 364 triangles
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 30 / 42
Introduction Methodology Experiments References
Results
σε
(a) (b)
Tikh-0thTikh-1st L1-1st STRE
RE
0
0.05
0.1
0.15
0.1 0.2 0.3 0.4 0.5
RE
0.08
0.1
0.12
0.14
0.16
0.18
0.2 Tikh-0th
Tikh-1st
L1-1st
STRE
Figure: (a) The comparisons of relative error (RE) between the proposed STRE model
and other regularization methods (i.e., Tikhonov zero-order, Tikhonov first-order and L1
first-order methods) in the two-sphere geometry when there is no noise on the potential
map y(s, t) of the outer sphere; (b) The comparisons of RE for different noise levels
σ = 0.1; 0.2; 0.3; 0.4; 0.5 on the potential map y(s, t) of the outer sphere.
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 31 / 42
Introduction Methodology Experiments References
Results
Dynamic distribution of electric potentials on the inner sphere x(s, t)
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 32 / 42
Introduction Methodology Experiments References
Results
Potential mapping on the inner sphere x(s, t), t = 150ms
Reference
Tikh_0th
RE=0.1475
Tikh_1st
RE=0.1026
L1_1st
RE=0.1025
STRE
RE=0.006
Tikh_0th
RE=0.208
Tikh_1st
RE=0.1528
L1_1st
RE=0.1569
STRE
RE=0.0769
(a)
(b)
(c)
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 33 / 42
Introduction Methodology Experiments References
Experiments - Realistic Torso-heart Geometry
Heart surface - 257 nodes and 510 triangles
Body surface - 771 nodes and 1538 triangles
y(s, t) - body area sensor network
Data uncertainty - gaussian noise ∼ N(0, σ2).
Five different noise levels: σ = 0.005, 0.01, 0.05, 0.1, 0.2
(a) (b)
Front Back
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 34 / 42
Introduction Methodology Experiments References
Results
σε
(a) (b)
Tikh-0th Tikh-1st L1-1st STRE
RE
0
0.05
0.1
0.15
0.2
0.25
0.3
0 0.05 0.1 0.15 0.2
RE
0.5
1
1.5
2
2.5
3
Tikh-0th
Tikh-1st
L1-1st
STRE
Figure: (a) The comparisons of relative error (RE) between the proposed STRE model
and other regularization methods (i.e., Tikhonov zero-order, Tikhonov first-order and L1
first-order methods) in the realistic torso-heart geometry when there is no extra noise on
the potential map y(s, t) of the body surface; (b) The comparisons of RE for different
noise levels σ = 0.005; 0.01; 0.05; 0.1; 0.2 on the potential map y(s, t).
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 35 / 42
Introduction Methodology Experiments References
Results
Dynamic distribution of electric potentials on the heart surface x(s, t)
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 36 / 42
Introduction Methodology Experiments References
Results
Potential mapping on the heart surface x(s, t), t = 50ms
Reference
Tikh_0th
RE=0.2488
Tikh_1st
RE=0.2839
L1_1st
RE=0.2735
STRE
RE=0.0997
STRE
RE=0.2386
Tikh_0th
RE=0.557
Tikh_1st
RE=0.972
L1_1st
RE=1.248
(a)
(b)
(c)
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 37 / 42
Introduction Methodology Experiments References
Summary
Challenges
Spatiotemporal data (predictor and response variables)
Complex-structured system
Ill-conditioned system
Methodology: Physics-driven spatiotemporal regularization
Parameter Matrix R - physics-based interrelationship
Spatial regularity - handle approximation errors by spatial correlation
Temporal regularity - model robustness to measurement noises
Algorithm - generalized dipole multiplicative update method
Significance
A novel approach to solve ECG inverse problem
A new dipole multiplicative update algorithm for generalized
spatiotemporal regularization
Broad applications: thermal effects in additive manufacturing
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 38 / 42
Introduction Methodology Experiments References
References
B. Yao, R. Zhu, and H. Yang*, “Characterizing the Location and Extent of Myocardial
Infarctions with Inverse ECG Modeling and Spatiotemporal Regularization,”IEEE Journal
of Biomedical and Health Informatics, page 1-11, 2017, DOI:
10.1109/JBHI.2017.2768534
B. Yao and H. Yang*, “Physics-driven spatiotemporal regularization for high-dimensional
predictive modeling,”Scientific Reports 6, 39012, 2016. DOI:
www.nature.com/articles/srep39012
B, Yao and H. Yang*, “Mesh Resolution Impacts the Accuracy of Inverse and Forward
ECG problems,”Proceedings of 2016 IEEE Engineering in Medicine and Biology Society
Conference (EMBC), August 16-20, 2016, Orlando, FL, United States. DOI:
10.1109/EMBC.2016.7591615
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 39 / 42
Introduction Methodology Experiments References
Acknowledgements
NSF CAREER Award
NSF CMMI-1617148
NSF CMMI-1646660
NSF CMMI-1619648
NSF IIP-1447289
NSF IOS-1146882
James A. Haley Veterans’ Hospital
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 40 / 42
Introduction Methodology Experiments References
Contact Information
Hui Yang, PhD
Associate Professor
Complex Systems Monitoring Modeling and Control Laboratory
Harold and Inge Marcus Department of Industrial and Manufacturing
Engineering
The Pennsylvania State University
Tel: (814) 865-7397
Fax: (814) 863-4745
Email: huy25@psu.edu
Web: http://www.personal.psu.edu/huy25/
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 41 / 42
Introduction Methodology Experiments References
Questions?
Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 42 / 42

More Related Content

What's hot (20)

Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte Carlo Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte Carlo
JeremyHeng10
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
Jurgen Riedel
 
20070823
2007082320070823
20070823
neostar
 
Ch04n
Ch04nCh04n
Ch04n
kpcs2010
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliers
VjekoslavKovac1
 
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
IJECEIAES
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
VjekoslavKovac1
 
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
The Statistical and Applied Mathematical Sciences Institute
 
Jmestn42351212
Jmestn42351212Jmestn42351212
Jmestn42351212
Nertila Ismailaja
 
A common fixed point theorem for two random operators using random mann itera...
A common fixed point theorem for two random operators using random mann itera...A common fixed point theorem for two random operators using random mann itera...
A common fixed point theorem for two random operators using random mann itera...
Alexander Decker
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
VjekoslavKovac1
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
VjekoslavKovac1
 
Graph 1
Graph 1Graph 1
Graph 1
International Islamic University
 
Graph 2
Graph 2Graph 2
Graph 2
International Islamic University
 
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating HyperplaneESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
Shinichi Tamura
 
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
DrSebastianEngel
 
balakrishnan2004
balakrishnan2004balakrishnan2004
balakrishnan2004
Chandramowliswaran NARAYANASWAMY
 
A method for constructing fuzzy test statistics with application
A method for constructing fuzzy test statistics with applicationA method for constructing fuzzy test statistics with application
A method for constructing fuzzy test statistics with application
Alexander Decker
 
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
jfrchicanog
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
VjekoslavKovac1
 
Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte Carlo Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte Carlo
JeremyHeng10
 
Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013Internal workshop jub talk jan 2013
Internal workshop jub talk jan 2013
Jurgen Riedel
 
20070823
2007082320070823
20070823
neostar
 
Estimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliersEstimates for a class of non-standard bilinear multipliers
Estimates for a class of non-standard bilinear multipliers
VjekoslavKovac1
 
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
Sinc collocation linked with finite differences for Korteweg-de Vries Fraction...
IJECEIAES
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
VjekoslavKovac1
 
A common fixed point theorem for two random operators using random mann itera...
A common fixed point theorem for two random operators using random mann itera...A common fixed point theorem for two random operators using random mann itera...
A common fixed point theorem for two random operators using random mann itera...
Alexander Decker
 
On maximal and variational Fourier restriction
On maximal and variational Fourier restrictionOn maximal and variational Fourier restriction
On maximal and variational Fourier restriction
VjekoslavKovac1
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
VjekoslavKovac1
 
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating HyperplaneESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
ESL 4.4.3-4.5: Logistic Reression (contd.) and Separating Hyperplane
Shinichi Tamura
 
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
Sparse-Bayesian Approach to Inverse Problems with Partial Differential Equati...
DrSebastianEngel
 
A method for constructing fuzzy test statistics with application
A method for constructing fuzzy test statistics with applicationA method for constructing fuzzy test statistics with application
A method for constructing fuzzy test statistics with application
Alexander Decker
 
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
Efficient Identification of Improving Moves in a Ball for Pseudo-Boolean Prob...
jfrchicanog
 
Density theorems for Euclidean point configurations
Density theorems for Euclidean point configurationsDensity theorems for Euclidean point configurations
Density theorems for Euclidean point configurations
VjekoslavKovac1
 

Similar to Physics-driven Spatiotemporal Regularization for High-dimensional Predictive Modeling (19)

1 d,2d laplace inversion of lr nmr
1 d,2d laplace inversion of lr nmr1 d,2d laplace inversion of lr nmr
1 d,2d laplace inversion of lr nmr
Adam Lee Perelman
 
Stochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersStochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of Multipliers
Taiji Suzuki
 
Not Enough Measurements, Too Many Measurements
Not Enough Measurements, Too Many MeasurementsNot Enough Measurements, Too Many Measurements
Not Enough Measurements, Too Many Measurements
Mike McCann
 
PHD Presentation_web
PHD Presentation_webPHD Presentation_web
PHD Presentation_web
Nuno Brás
 
International Journal of Engineering Inventions (IJEI)
International Journal of Engineering Inventions (IJEI)International Journal of Engineering Inventions (IJEI)
International Journal of Engineering Inventions (IJEI)
International Journal of Engineering Inventions www.ijeijournal.com
 
Final Seminar
Final SeminarFinal Seminar
Final Seminar
YASWANTH KALEPU
 
Final Seminar
Final SeminarFinal Seminar
Final Seminar
YASWANTH KALEPU
 
RS
RSRS
RS
Alexander Litvinenko
 
Seminar_Thoracic EIT_UWO
Seminar_Thoracic EIT_UWOSeminar_Thoracic EIT_UWO
Seminar_Thoracic EIT_UWO
Peyman Rahmati
 
Compatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsCompatible discretizations in our hearts and minds
Compatible discretizations in our hearts and minds
Marie E. Rognes
 
A New Hybrid Inversion Method For 2D Nuclear Magnetic Resonance Combining TSV...
A New Hybrid Inversion Method For 2D Nuclear Magnetic Resonance Combining TSV...A New Hybrid Inversion Method For 2D Nuclear Magnetic Resonance Combining TSV...
A New Hybrid Inversion Method For 2D Nuclear Magnetic Resonance Combining TSV...
Pedro Craggett
 
Using Feature Grouping as a Stochastic Regularizer for High Dimensional Noisy...
Using Feature Grouping as a Stochastic Regularizer for High Dimensional Noisy...Using Feature Grouping as a Stochastic Regularizer for High Dimensional Noisy...
Using Feature Grouping as a Stochastic Regularizer for High Dimensional Noisy...
WiMLDSMontreal
 
IRJET- Image Reconstruction Algorithm for Electrical Impedance Tomographic Sy...
IRJET- Image Reconstruction Algorithm for Electrical Impedance Tomographic Sy...IRJET- Image Reconstruction Algorithm for Electrical Impedance Tomographic Sy...
IRJET- Image Reconstruction Algorithm for Electrical Impedance Tomographic Sy...
IRJET Journal
 
chan.pptx
chan.pptxchan.pptx
chan.pptx
Noor559551
 
Lagrangian Fluid Simulation with Continuous Convolutions
Lagrangian Fluid Simulation with Continuous ConvolutionsLagrangian Fluid Simulation with Continuous Convolutions
Lagrangian Fluid Simulation with Continuous Convolutions
farukcankaya
 
inverse theory and inversion of seismic
inverse theory and inversion of seismic inverse theory and inversion of seismic
inverse theory and inversion of seismic
Abdullah Abderahman
 
Image Restoration Using Joint Statistical Modeling in a Space-Transform Domain
Image Restoration Using Joint Statistical Modeling in a Space-Transform DomainImage Restoration Using Joint Statistical Modeling in a Space-Transform Domain
Image Restoration Using Joint Statistical Modeling in a Space-Transform Domain
john236zaq
 
DiffusionMBIR_presentation_slide.pptx
DiffusionMBIR_presentation_slide.pptxDiffusionMBIR_presentation_slide.pptx
DiffusionMBIR_presentation_slide.pptx
Chung Hyung Jin
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
Elvis DOHMATOB
 
1 d,2d laplace inversion of lr nmr
1 d,2d laplace inversion of lr nmr1 d,2d laplace inversion of lr nmr
1 d,2d laplace inversion of lr nmr
Adam Lee Perelman
 
Stochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of MultipliersStochastic Alternating Direction Method of Multipliers
Stochastic Alternating Direction Method of Multipliers
Taiji Suzuki
 
Not Enough Measurements, Too Many Measurements
Not Enough Measurements, Too Many MeasurementsNot Enough Measurements, Too Many Measurements
Not Enough Measurements, Too Many Measurements
Mike McCann
 
PHD Presentation_web
PHD Presentation_webPHD Presentation_web
PHD Presentation_web
Nuno Brás
 
Seminar_Thoracic EIT_UWO
Seminar_Thoracic EIT_UWOSeminar_Thoracic EIT_UWO
Seminar_Thoracic EIT_UWO
Peyman Rahmati
 
Compatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsCompatible discretizations in our hearts and minds
Compatible discretizations in our hearts and minds
Marie E. Rognes
 
A New Hybrid Inversion Method For 2D Nuclear Magnetic Resonance Combining TSV...
A New Hybrid Inversion Method For 2D Nuclear Magnetic Resonance Combining TSV...A New Hybrid Inversion Method For 2D Nuclear Magnetic Resonance Combining TSV...
A New Hybrid Inversion Method For 2D Nuclear Magnetic Resonance Combining TSV...
Pedro Craggett
 
Using Feature Grouping as a Stochastic Regularizer for High Dimensional Noisy...
Using Feature Grouping as a Stochastic Regularizer for High Dimensional Noisy...Using Feature Grouping as a Stochastic Regularizer for High Dimensional Noisy...
Using Feature Grouping as a Stochastic Regularizer for High Dimensional Noisy...
WiMLDSMontreal
 
IRJET- Image Reconstruction Algorithm for Electrical Impedance Tomographic Sy...
IRJET- Image Reconstruction Algorithm for Electrical Impedance Tomographic Sy...IRJET- Image Reconstruction Algorithm for Electrical Impedance Tomographic Sy...
IRJET- Image Reconstruction Algorithm for Electrical Impedance Tomographic Sy...
IRJET Journal
 
Lagrangian Fluid Simulation with Continuous Convolutions
Lagrangian Fluid Simulation with Continuous ConvolutionsLagrangian Fluid Simulation with Continuous Convolutions
Lagrangian Fluid Simulation with Continuous Convolutions
farukcankaya
 
inverse theory and inversion of seismic
inverse theory and inversion of seismic inverse theory and inversion of seismic
inverse theory and inversion of seismic
Abdullah Abderahman
 
Image Restoration Using Joint Statistical Modeling in a Space-Transform Domain
Image Restoration Using Joint Statistical Modeling in a Space-Transform DomainImage Restoration Using Joint Statistical Modeling in a Space-Transform Domain
Image Restoration Using Joint Statistical Modeling in a Space-Transform Domain
john236zaq
 
DiffusionMBIR_presentation_slide.pptx
DiffusionMBIR_presentation_slide.pptxDiffusionMBIR_presentation_slide.pptx
DiffusionMBIR_presentation_slide.pptx
Chung Hyung Jin
 
MVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priorsMVPA with SpaceNet: sparse structured priors
MVPA with SpaceNet: sparse structured priors
Elvis DOHMATOB
 

Recently uploaded (20)

Pulmonary tuberculosis: A Radiology Perspective
Pulmonary tuberculosis: A Radiology PerspectivePulmonary tuberculosis: A Radiology Perspective
Pulmonary tuberculosis: A Radiology Perspective
Dr. Aryan (Anish Dhakal)
 
nerve injury , oral and maxillofacial surgery BDS
nerve injury ,  oral and maxillofacial surgery BDSnerve injury ,  oral and maxillofacial surgery BDS
nerve injury , oral and maxillofacial surgery BDS
Syeda Ayesha Zarish
 
THYROID GLAND -Prof.Dr.N.Mugunthan. KMMC,Muttom
THYROID GLAND  -Prof.Dr.N.Mugunthan. KMMC,MuttomTHYROID GLAND  -Prof.Dr.N.Mugunthan. KMMC,Muttom
THYROID GLAND -Prof.Dr.N.Mugunthan. KMMC,Muttom
Kanyakumari Medical Mission Research Center, Muttom
 
Biophysics Chapter 7 Biophysics of Ion Channel.pdf
Biophysics Chapter 7 Biophysics of Ion Channel.pdfBiophysics Chapter 7 Biophysics of Ion Channel.pdf
Biophysics Chapter 7 Biophysics of Ion Channel.pdf
PKLI-Institute of Nursing and Allied Health Sciences Lahore , Pakistan.
 
EXPLORING THE ROLE OF PROBIOTICS AND POSTBIOTICS IN MODERN MEDICNE.pptx
EXPLORING THE ROLE OF PROBIOTICS AND POSTBIOTICS IN MODERN MEDICNE.pptxEXPLORING THE ROLE OF PROBIOTICS AND POSTBIOTICS IN MODERN MEDICNE.pptx
EXPLORING THE ROLE OF PROBIOTICS AND POSTBIOTICS IN MODERN MEDICNE.pptx
KeerthanaJagan
 
Biophysics Chapter 6 Biophysical Process.pdf
Biophysics Chapter 6 Biophysical Process.pdfBiophysics Chapter 6 Biophysical Process.pdf
Biophysics Chapter 6 Biophysical Process.pdf
PKLI-Institute of Nursing and Allied Health Sciences Lahore , Pakistan.
 
Introduction to Ultrasound Transducers and Knobology
Introduction to Ultrasound Transducers and KnobologyIntroduction to Ultrasound Transducers and Knobology
Introduction to Ultrasound Transducers and Knobology
Dr. Aryan (Anish Dhakal)
 
Paranasal Sinuses: Radiological Anatomy and Variants
Paranasal Sinuses: Radiological Anatomy and VariantsParanasal Sinuses: Radiological Anatomy and Variants
Paranasal Sinuses: Radiological Anatomy and Variants
Dr. Aryan (Anish Dhakal)
 
DOPPLER PHYSICS AND ITS CLINICAL APPLICATION IN VARICOSE VEINS
DOPPLER PHYSICS AND ITS CLINICAL APPLICATION IN VARICOSE VEINSDOPPLER PHYSICS AND ITS CLINICAL APPLICATION IN VARICOSE VEINS
DOPPLER PHYSICS AND ITS CLINICAL APPLICATION IN VARICOSE VEINS
juryshira
 
21 Multiple Choice Questions (MCQS) - Ocular pharmacology.docx
21 Multiple Choice Questions (MCQS)  - Ocular pharmacology.docx21 Multiple Choice Questions (MCQS)  - Ocular pharmacology.docx
21 Multiple Choice Questions (MCQS) - Ocular pharmacology.docx
Riyad Banayot
 
Biophysics Chapter 8 Order and Disorder in Biological System.pdf
Biophysics Chapter 8 Order and Disorder in Biological System.pdfBiophysics Chapter 8 Order and Disorder in Biological System.pdf
Biophysics Chapter 8 Order and Disorder in Biological System.pdf
PKLI-Institute of Nursing and Allied Health Sciences Lahore , Pakistan.
 
Dry Eye. A comprehensive overview on keratoconjunctivitis sicca
Dry Eye. A comprehensive overview on keratoconjunctivitis siccaDry Eye. A comprehensive overview on keratoconjunctivitis sicca
Dry Eye. A comprehensive overview on keratoconjunctivitis sicca
Aligarh Muslim University, Aligarh, Uttar Pradesh, India
 
Understanding the Urinary System: From Filtration to Excretion
Understanding the Urinary System: From Filtration to ExcretionUnderstanding the Urinary System: From Filtration to Excretion
Understanding the Urinary System: From Filtration to Excretion
Dr Arathy R Nath
 
Breast practical on FA & CA .pptx
Breast practical on FA & CA          .pptxBreast practical on FA & CA          .pptx
Breast practical on FA & CA .pptx
Manjula N
 
Radiological Anatomy of the Skull Base by Dr. Aryan
Radiological Anatomy of the Skull Base by Dr. AryanRadiological Anatomy of the Skull Base by Dr. Aryan
Radiological Anatomy of the Skull Base by Dr. Aryan
Dr. Aryan (Anish Dhakal)
 
Landmark breast cancer trials used in NCCN ,ESMO,ASCO
Landmark breast cancer trials used in NCCN ,ESMO,ASCOLandmark breast cancer trials used in NCCN ,ESMO,ASCO
Landmark breast cancer trials used in NCCN ,ESMO,ASCO
armin40254
 
Code Of Federal Regulations and Federal Register
Code Of Federal Regulations and Federal RegisterCode Of Federal Regulations and Federal Register
Code Of Federal Regulations and Federal Register
Ms. Harshada Kiran Sonawane
 
2309xx Scrips_IHLAD Board meeting_v1.3_SX (1).pptx
2309xx Scrips_IHLAD Board meeting_v1.3_SX (1).pptx2309xx Scrips_IHLAD Board meeting_v1.3_SX (1).pptx
2309xx Scrips_IHLAD Board meeting_v1.3_SX (1).pptx
Ravi Shah
 
guidelines for the safe use of contrast agents in radiology. PPT
guidelines for the safe use of contrast agents in radiology. PPTguidelines for the safe use of contrast agents in radiology. PPT
guidelines for the safe use of contrast agents in radiology. PPT
khaleelhadi10
 
Collection, Transportation and Processing of Clinical Samples by Dhineshkumar...
Collection, Transportation and Processing of Clinical Samples by Dhineshkumar...Collection, Transportation and Processing of Clinical Samples by Dhineshkumar...
Collection, Transportation and Processing of Clinical Samples by Dhineshkumar...
DhineshkumarNpM
 
Pulmonary tuberculosis: A Radiology Perspective
Pulmonary tuberculosis: A Radiology PerspectivePulmonary tuberculosis: A Radiology Perspective
Pulmonary tuberculosis: A Radiology Perspective
Dr. Aryan (Anish Dhakal)
 
nerve injury , oral and maxillofacial surgery BDS
nerve injury ,  oral and maxillofacial surgery BDSnerve injury ,  oral and maxillofacial surgery BDS
nerve injury , oral and maxillofacial surgery BDS
Syeda Ayesha Zarish
 
EXPLORING THE ROLE OF PROBIOTICS AND POSTBIOTICS IN MODERN MEDICNE.pptx
EXPLORING THE ROLE OF PROBIOTICS AND POSTBIOTICS IN MODERN MEDICNE.pptxEXPLORING THE ROLE OF PROBIOTICS AND POSTBIOTICS IN MODERN MEDICNE.pptx
EXPLORING THE ROLE OF PROBIOTICS AND POSTBIOTICS IN MODERN MEDICNE.pptx
KeerthanaJagan
 
Introduction to Ultrasound Transducers and Knobology
Introduction to Ultrasound Transducers and KnobologyIntroduction to Ultrasound Transducers and Knobology
Introduction to Ultrasound Transducers and Knobology
Dr. Aryan (Anish Dhakal)
 
Paranasal Sinuses: Radiological Anatomy and Variants
Paranasal Sinuses: Radiological Anatomy and VariantsParanasal Sinuses: Radiological Anatomy and Variants
Paranasal Sinuses: Radiological Anatomy and Variants
Dr. Aryan (Anish Dhakal)
 
DOPPLER PHYSICS AND ITS CLINICAL APPLICATION IN VARICOSE VEINS
DOPPLER PHYSICS AND ITS CLINICAL APPLICATION IN VARICOSE VEINSDOPPLER PHYSICS AND ITS CLINICAL APPLICATION IN VARICOSE VEINS
DOPPLER PHYSICS AND ITS CLINICAL APPLICATION IN VARICOSE VEINS
juryshira
 
21 Multiple Choice Questions (MCQS) - Ocular pharmacology.docx
21 Multiple Choice Questions (MCQS)  - Ocular pharmacology.docx21 Multiple Choice Questions (MCQS)  - Ocular pharmacology.docx
21 Multiple Choice Questions (MCQS) - Ocular pharmacology.docx
Riyad Banayot
 
Understanding the Urinary System: From Filtration to Excretion
Understanding the Urinary System: From Filtration to ExcretionUnderstanding the Urinary System: From Filtration to Excretion
Understanding the Urinary System: From Filtration to Excretion
Dr Arathy R Nath
 
Breast practical on FA & CA .pptx
Breast practical on FA & CA          .pptxBreast practical on FA & CA          .pptx
Breast practical on FA & CA .pptx
Manjula N
 
Radiological Anatomy of the Skull Base by Dr. Aryan
Radiological Anatomy of the Skull Base by Dr. AryanRadiological Anatomy of the Skull Base by Dr. Aryan
Radiological Anatomy of the Skull Base by Dr. Aryan
Dr. Aryan (Anish Dhakal)
 
Landmark breast cancer trials used in NCCN ,ESMO,ASCO
Landmark breast cancer trials used in NCCN ,ESMO,ASCOLandmark breast cancer trials used in NCCN ,ESMO,ASCO
Landmark breast cancer trials used in NCCN ,ESMO,ASCO
armin40254
 
Code Of Federal Regulations and Federal Register
Code Of Federal Regulations and Federal RegisterCode Of Federal Regulations and Federal Register
Code Of Federal Regulations and Federal Register
Ms. Harshada Kiran Sonawane
 
2309xx Scrips_IHLAD Board meeting_v1.3_SX (1).pptx
2309xx Scrips_IHLAD Board meeting_v1.3_SX (1).pptx2309xx Scrips_IHLAD Board meeting_v1.3_SX (1).pptx
2309xx Scrips_IHLAD Board meeting_v1.3_SX (1).pptx
Ravi Shah
 
guidelines for the safe use of contrast agents in radiology. PPT
guidelines for the safe use of contrast agents in radiology. PPTguidelines for the safe use of contrast agents in radiology. PPT
guidelines for the safe use of contrast agents in radiology. PPT
khaleelhadi10
 
Collection, Transportation and Processing of Clinical Samples by Dhineshkumar...
Collection, Transportation and Processing of Clinical Samples by Dhineshkumar...Collection, Transportation and Processing of Clinical Samples by Dhineshkumar...
Collection, Transportation and Processing of Clinical Samples by Dhineshkumar...
DhineshkumarNpM
 

Physics-driven Spatiotemporal Regularization for High-dimensional Predictive Modeling

  • 1. Physics-driven Spatiotemporal Regularization for High-dimensional Predictive Modeling Bing Yao and Hui Yang 杨 徽 Associate Professor Complex Systems Monitoring, Modeling and Control Lab The Pennsylvania State University University Park, PA 16802 November 25, 2017
  • 2. Outline 1 Introduction 2 Physics-driven Spatiotemporal Regularization 3 Experimental Design and Results 4 References
  • 3. Introduction Methodology Experiments References Research Roadmap Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 3 / 42
  • 4. Introduction Methodology Experiments References Research Projects Manufacturing Processes, Precision Machining Publications: Pattern Recognition, IEEE Transactions, Chaos, IIE/ASME Transactions, J. Mfg Sys Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 4 / 42
  • 5. Introduction Methodology Experiments References Research Projects Electro-mechanical Processes, Biomanufacturing Publications: IEEE Transactions, Physical Review, Physiological Measurements, Scientific Reports Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 5 / 42
  • 6. Introduction Methodology Experiments References Predictive Modeling Shrinkage methods: ridge regression, LASSO, and elastic net ... Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 6 / 42
  • 7. Introduction Methodology Experiments References Advanced Sensing 108.5°C <60.0°C CInfrared Camera Thermal Image Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 7 / 42
  • 8. Introduction Methodology Experiments References Advanced Sensing (*from Yoram Rudy Lab @ WUSTL) Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 8 / 42
  • 9. Introduction Methodology Experiments References High-dimensional Predictive Modeling BSPM y(s,t) Heart-surface Potential Mapping x(s,t) Inverse Forward Y (s, t) = RX(s, t) + Traditional regression is not generally applicable! Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 9 / 42
  • 10. Introduction Methodology Experiments References Challenges Spatially-temporally big data Dimensionality Velocity - sampling in milliseconds Veracity - data uncertainty Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 10 / 42
  • 11. Introduction Methodology Experiments References Challenges Complex structured systems Complex geometries of AM builds Complex torso-heart geometry (*from CIMP-3D @ PSU) Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 11 / 42
  • 12. Introduction Methodology Experiments References Challenges Y (s, t) = RX(s, t) + Outer surface profiles y(s, t) ⇒ Inner surface profiles x(s, t) Transfer matrix R ? Physical principles Additive manufacturing - Heat transfer model Heart - Electrical wave propagation Ill-conditioned system Linear systems involving high-dimensional data Condition number: cond(R) = R R−1 A measure of the relative sensitivity of the solution to changes in y ∆x x cond(R) ∆y y Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 12 / 42
  • 13. Introduction Methodology Experiments References State of the Art Tikhonov regularization min x(s,t) { y(s, t) − Rx(s, t) 2 2 + λ2 Γx(s, t) 2 2} L1 regularization min x(s,t) { y(s, t) − Rx(s, t) 2 2 + λ2 Γx(s, t) 1} Zeroth-order Γ = I Directly penalize the magnitude of x(s, t) Sparsity vs. Regularity Not account for spatial or temporal correlations Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 13 / 42
  • 14. Introduction Methodology Experiments References State of the Art First-order Regularization The first-order derivative: Γx(s, t) = ∂x(s, t)/∂τ Align x(s, t) in one column as {x(s1|t), x(s2|t), ..., x(sN |t)}T Apply the bidiagonal gradient matrix Normal derivative operator: Γx(s, t) = ∂x(s, t)/∂n Γ =      −1 1 −1 1 ... ... −1 1      n τ Γx(s,t) Tangent plane Need to fill the gaps Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 14 / 42
  • 15. Introduction Methodology Experiments References Physics-driven Spatiotemporal Regularization Objective function min x(s,t) T t=1 { y(s, t)−Rx(s, t) 2 +λ2 s ∆sx(s, t) 2 +λ2 t t+ w 2 τ=t− w 2 x(s, t)−x(s, τ) 2 } Parameter Matrix R - physics-based interrelationship Spatial regularity - handle approximation errors by spatial correlation Temporal regularity - model robustness to measurement noises Algorithm - generalized dipole multiplicative update method Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 15 / 42
  • 16. Introduction Methodology Experiments References Parameter Matrix R Divergence theorem: if F is a vector field which is continuously differentiable and defined on a volume V ⊂ R3 with a piecewise-smooth boundary S, then V ( · F )dV = S (F · n)dS Electric Field Body Surface SB Heart Surface SH Green’s second identity: If φ and ψ are twice continuously differentiable on V , and let F = φ ψ − ψ φ, then S (φ ψ − ψ φ) · ndS = V (φ 2 ψ − ψ 2 φ)dV Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 16 / 42
  • 17. Introduction Methodology Experiments References Parameter Matrix R Heart - a bioelectric source Torso - a homogeneous and isotropic volume conductor (*from marvel.com) Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 17 / 42
  • 18. Introduction Methodology Experiments References Parameter Matrix R Heart - a bioelectric source Torso - a homogeneous and isotropic volume conductor Green’s second identity: S (φ ψ − ψ φ) · ndS = V (φ 2 ψ − ψ 2 φ)dV ψ = 1/r; φ = electric potentials No electrical source between SH and SB: 2 φ = 0 Electric field outside SB is negligible: φ = 0 on SB SH n SB n ∇2 φ = 0 ∇y(s,t)=0 y(s,t) x(s,t) dΩBB dSB dΩBH dSH Heart Surface Body surface Volume conductor Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 18 / 42
  • 19. Introduction Methodology Experiments References Parameter Matrix R Boundary element method Body surface potential on SB y(s, t) = − 1 4π SH x(s, t)dΩBH − 1 4π SH x(s, t) · n rBH dSH + 1 4π SB y(s, t)dΩBB Heart surface potential on SH x(s, t) = − 1 4π SH x(s, t)dΩHH − 1 4π SH x(s, t) · n rHH dSH + 1 4π SB y(s, t)dΩHB Numerical integration ABBy(s, t) + ABHx(s, t) + MBHN(s, t) = 0 AHBy(s, t) + AHHx(s, t) + MHHN(s, t) = 0 Parameter matrix R: R = (ABB − MBHM−1 HHAHB)−1 (MBHM−1 HHAHH − ABH) Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 19 / 42
  • 20. Introduction Methodology Experiments References Physics-driven Spatiotemporal Regularization Objective function min x(s,t) T t=1 { y(s, t)−Rx(s, t) 2 +λ2 s ∆sx(s, t) 2 +λ2 t t+ w 2 τ=t− w 2 x(s, t)−x(s, τ) 2 } Parameter Matrix R - physics-based interrelationship Spatial regularity - handle approximation errors by spatial correlation Temporal regularity - model robustness to measurement noises Algorithm - generalized dipole multiplicative update method Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 20 / 42
  • 21. Introduction Methodology Experiments References Spatial Regularity Surface laplacian ∆s for a square lattice Surface laplacian at the node p0 x1 = x0 + a ∂x ∂v p0 + 1 2 a2 ∂2x ∂v2 p0 x2 = x0 − a ∂x ∂u p0 + 1 2 a2 ∂2x ∂u2 p0 x3 = x0 − a ∂x ∂v p0 + 1 2 a2 ∂2x ∂v2 p0 x4 = x0 + a ∂x ∂u p0 + 1 2 a2 ∂2x ∂u2 p0 ⇒ x1 + x2 + x3 + x4 = 4x0 + a2 ( ∂2x ∂u2 + ∂2x ∂v2 ) p0 = 4x0 + a2 ∆x0 ⇒ ∆x0 = 1 a2 ( 4 i=1 xi − 4x0) = 4 a2 (¯x − x0) Laplacian matrix for the square lattice ∆ij =    − 4 a2 , if i = j 1 a2 , if i = j, pj ∈ neighborhood of pi 0, otherwise Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 21 / 42
  • 22. Introduction Methodology Experiments References Spatial Regularity Linear interpolation (imaginary nearest neighbor): xt(j) = xt(i) + ¯di dij (xt(j) − xt(i)) dij is the distance between pi and pj ¯di = 1 ni ni j=1 dij ni is the number of neighbors of pi Surface laplacian at the node pi ∆sxt(i) = 4 ¯di 2 ( 1 ni ni j=1 xt(j) − xt(i)) = 4 ¯di ( 1 ni ni j=1 xt(j) dij − ( 1 di )xt(i)) Laplacian matrix for 3D triangle mesh ∆ij =    − 4 ¯di ( 1 di ), if i = j 4 ¯di 1 ni 1 dij , if i = j, pj ∈ neighborhood of pi 0, otherwise Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 22 / 42
  • 23. Introduction Methodology Experiments References Physics-driven Spatiotemporal Regularization Objective function min x(s,t) T t=1 { y(s, t)−Rx(s, t) 2 +λ2 s ∆sx(s, t) 2 +λ2 t t+ w 2 τ=t− w 2 x(s, t)−x(s, τ) 2 } Parameter Matrix R - physics-based interrelationship Spatial regularity - handle approximation errors by spatial correlation Temporal regularity - model robustness to measurement noises Algorithm - generalized dipole multiplicative update method Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 23 / 42
  • 24. Introduction Methodology Experiments References Temporal Regularity Spatiotemporal data x(s, t) and y(s, t) - dynamically evolving over time and have temporal correlations T t=1 t+w 2 τ=t−w 2 x(s, t) − x(s, τ) 2 Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 24 / 42
  • 25. Introduction Methodology Experiments References Physics-driven Spatiotemporal Regularization Objective function min x(s,t) T t=1 { y(s, t)−Rx(s, t) 2 +λ2 s ∆sx(s, t) 2 +λ2 t t+ w 2 τ=t− w 2 x(s, t)−x(s, τ) 2 } Parameter Matrix R - physics-based interrelationship Spatial regularity - handle approximation errors by spatial correlation Temporal regularity - model robustness to measurement noises Algorithm - generalized dipole multiplicative update method Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 25 / 42
  • 26. Introduction Methodology Experiments References DMU Algorithm Objective function - both spatial and temporal terms, and is difficult to be solved analytically. Iterative algorithm - traditional multiplicative update method requires x(s, t) to be nonnegative Heart surface - negative and positive electric potentials A new dipole multiplicative update algorithm for generalized spatiotemporal regularization xt = x+ t − x− t , x+ t = max{0, xt} x− t = max{0, −xt} Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 26 / 42
  • 27. Introduction Methodology Experiments References DMU Algorithm If we define A = A+ − A− = RT R + λ2 s∆T s ∆s + 2λ2 t wI B = yT t R + 2λ2 t t−1 τ=t− w 2 xT τ + 2λ2 t t+ w 2 τ=t+1 xT τ The objective function can be rewritten as: J = T t=1 {xT t Axt − Bxt − xT t BT } = ((xT t )+ )A+ x+ t − ((xT t )+ )Ax− t − ((xT t )− )Ax+ t − ((xT t )+ )A− x+ t +((xT t )− )A+ x− t − ((xT t )− )A− x− t − B(x+ t − x− t ) − (x+ t − x− t )T BT Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 27 / 42
  • 28. Introduction Methodology Experiments References DMU Algorithm If we define a+ i = (2A+ x+ t )i a− i = (2A+ x− t )i b+ i = −(2Ax− t )i − 2BT i b− i = −(2Ax+ t )i + 2BT i c+ i = (2A− x+ t )i c− i = (2A− x− t )i New update rules (x+ t )i ← −b+ i + (b+ i )2 + 4a+ i c+ i 2a+ i (x+ t )i (x− t )i ← −b− i + (b− i )2 + 4a− i c− i 2a− i (x− t )i Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 28 / 42
  • 29. Introduction Methodology Experiments References DMU Algorithm Table: The Proposed Dipole Multiplicative Update Algorithm for STRE 1: Set constants λs, λt and w. Let A = A+ − A− = RT R + λ2 s∆T s ∆s + 2λ2 t wI B = yT t R + 2λ2 t t−1 τ=t− w 2 xT τ + 2λ2 t t+ w 2 τ=t+1 xT τ 2: Initialize {x+ t } and {x− t } as positive random matrices. 3: Repeat 4: for i = 1, . . . , T do (x+ t )i ← (Ax− t )i+Bi+ ((Ax− t )i+Bi)2+4(A+x+ t )i(A−x+ t )i (2A+x+ t )i (x+ t )i (x− t )i ← (Ax+ t )i−Bi+ ((Ax+ t )i−Bi)2+4(A+x− t )i(A−x− t )i (2A+x− t )i (x− t )i 5: end for 6: until convergence 7: Solution: ˆxt = x+ t − x− t Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 29 / 42
  • 30. Introduction Methodology Experiments References Experiments - Simulation in a Two-sphere Geometry Dynamic distributions of electric potentials on the inner surface x(s, t) and outer surface y(s, t) are calculated analytically x(s, t) = 1 4πσ p(t) · rH (s) r2 BrH [ 2rH rB + ( rB rH )2 ] y(s, t) = 3 4πσ p(t) · rB(s) r3 B Gaussian noise ∼ N(0, σ2) is added to y(s, t) (a) (b) Figure: (a) Parameters of the two-sphere geometry; (b) Each sphere is triangulated with 184 nodes and 364 triangles Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 30 / 42
  • 31. Introduction Methodology Experiments References Results σε (a) (b) Tikh-0thTikh-1st L1-1st STRE RE 0 0.05 0.1 0.15 0.1 0.2 0.3 0.4 0.5 RE 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Tikh-0th Tikh-1st L1-1st STRE Figure: (a) The comparisons of relative error (RE) between the proposed STRE model and other regularization methods (i.e., Tikhonov zero-order, Tikhonov first-order and L1 first-order methods) in the two-sphere geometry when there is no noise on the potential map y(s, t) of the outer sphere; (b) The comparisons of RE for different noise levels σ = 0.1; 0.2; 0.3; 0.4; 0.5 on the potential map y(s, t) of the outer sphere. Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 31 / 42
  • 32. Introduction Methodology Experiments References Results Dynamic distribution of electric potentials on the inner sphere x(s, t) Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 32 / 42
  • 33. Introduction Methodology Experiments References Results Potential mapping on the inner sphere x(s, t), t = 150ms Reference Tikh_0th RE=0.1475 Tikh_1st RE=0.1026 L1_1st RE=0.1025 STRE RE=0.006 Tikh_0th RE=0.208 Tikh_1st RE=0.1528 L1_1st RE=0.1569 STRE RE=0.0769 (a) (b) (c) Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 33 / 42
  • 34. Introduction Methodology Experiments References Experiments - Realistic Torso-heart Geometry Heart surface - 257 nodes and 510 triangles Body surface - 771 nodes and 1538 triangles y(s, t) - body area sensor network Data uncertainty - gaussian noise ∼ N(0, σ2). Five different noise levels: σ = 0.005, 0.01, 0.05, 0.1, 0.2 (a) (b) Front Back Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 34 / 42
  • 35. Introduction Methodology Experiments References Results σε (a) (b) Tikh-0th Tikh-1st L1-1st STRE RE 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 RE 0.5 1 1.5 2 2.5 3 Tikh-0th Tikh-1st L1-1st STRE Figure: (a) The comparisons of relative error (RE) between the proposed STRE model and other regularization methods (i.e., Tikhonov zero-order, Tikhonov first-order and L1 first-order methods) in the realistic torso-heart geometry when there is no extra noise on the potential map y(s, t) of the body surface; (b) The comparisons of RE for different noise levels σ = 0.005; 0.01; 0.05; 0.1; 0.2 on the potential map y(s, t). Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 35 / 42
  • 36. Introduction Methodology Experiments References Results Dynamic distribution of electric potentials on the heart surface x(s, t) Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 36 / 42
  • 37. Introduction Methodology Experiments References Results Potential mapping on the heart surface x(s, t), t = 50ms Reference Tikh_0th RE=0.2488 Tikh_1st RE=0.2839 L1_1st RE=0.2735 STRE RE=0.0997 STRE RE=0.2386 Tikh_0th RE=0.557 Tikh_1st RE=0.972 L1_1st RE=1.248 (a) (b) (c) Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 37 / 42
  • 38. Introduction Methodology Experiments References Summary Challenges Spatiotemporal data (predictor and response variables) Complex-structured system Ill-conditioned system Methodology: Physics-driven spatiotemporal regularization Parameter Matrix R - physics-based interrelationship Spatial regularity - handle approximation errors by spatial correlation Temporal regularity - model robustness to measurement noises Algorithm - generalized dipole multiplicative update method Significance A novel approach to solve ECG inverse problem A new dipole multiplicative update algorithm for generalized spatiotemporal regularization Broad applications: thermal effects in additive manufacturing Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 38 / 42
  • 39. Introduction Methodology Experiments References References B. Yao, R. Zhu, and H. Yang*, “Characterizing the Location and Extent of Myocardial Infarctions with Inverse ECG Modeling and Spatiotemporal Regularization,”IEEE Journal of Biomedical and Health Informatics, page 1-11, 2017, DOI: 10.1109/JBHI.2017.2768534 B. Yao and H. Yang*, “Physics-driven spatiotemporal regularization for high-dimensional predictive modeling,”Scientific Reports 6, 39012, 2016. DOI: www.nature.com/articles/srep39012 B, Yao and H. Yang*, “Mesh Resolution Impacts the Accuracy of Inverse and Forward ECG problems,”Proceedings of 2016 IEEE Engineering in Medicine and Biology Society Conference (EMBC), August 16-20, 2016, Orlando, FL, United States. DOI: 10.1109/EMBC.2016.7591615 Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 39 / 42
  • 40. Introduction Methodology Experiments References Acknowledgements NSF CAREER Award NSF CMMI-1617148 NSF CMMI-1646660 NSF CMMI-1619648 NSF IIP-1447289 NSF IOS-1146882 James A. Haley Veterans’ Hospital Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 40 / 42
  • 41. Introduction Methodology Experiments References Contact Information Hui Yang, PhD Associate Professor Complex Systems Monitoring Modeling and Control Laboratory Harold and Inge Marcus Department of Industrial and Manufacturing Engineering The Pennsylvania State University Tel: (814) 865-7397 Fax: (814) 863-4745 Email: [email protected] Web: http://www.personal.psu.edu/huy25/ Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 41 / 42
  • 42. Introduction Methodology Experiments References Questions? Hui Yang (PSU) Spatiotemporal Regularization November 25, 2017 42 / 42