SlideShare a Scribd company logo
© 2014 VMware Inc. All rights reserved.
Integrating Physical Infrastructure and
Virtual Workloads
How to connect VLAN & VXLAN ?
Emil Gągała
Network & Security Architect
PLNOG
28.09.2015, Kraków
Site 3
Site 1
Site2
Site 1
Site2
A1
B1
A3
A2
B2
Ethernet over …
• ATM  LAN Emulation
• MPLS  VPLS, EVPN
• IP  VXLAN, EVPN, OVSDB
Ethernet characteristics
• Multipoint to Multipoint connectivity
• No control plane – only data plane MAC learning
• BUM traffic - some form of multicast support required
• Segmentation - VLAN
• No built-in loop prevention mechanism
• No native multi-homing capabilities
• Scalability – scope of broadcast domain and number of MACs
• Lack of Virtual Machines awareness
Physical DC Fabric Trends
• From 2- or 3-tier to IP spine/leaf fabrics
• Density & bandwidth jump
• ECMP for layer 3 (and layer 2)
• Reduce network oversubscription
• Wire & configure once
• Uniform configurations
4
WAN/Internet
L3
L2
L3
L2
POD A POD B
WAN/Internet
L3
L2
L2 Ethernet
L3 IP
VM5
Virtual Overlay Networking
VM1
Overlay Network
VM2
Logical Switch 5001
VM3
Physical Underlay IP Network
VM4
Logical Switch 5002
Controller
Management Cluster
Control Plane Programming
Data Plane Tunneling
Subnet Red 172.16.10.0/24
Subnet Green 172.16.20.0/24
192.168.150.51 192.168.150.52 192.168.250.51
5
Transport Subnet A 192.168.150.0/24 Transport Subnet B 192.168.250.0/24
Traditional VLAN network
VM1 VM2
Server 1
VM3
VM4 VM5
Server 2
VM6
VM7 VM8
Server 3
VM9
Physical switch
Virtual networks:
1 2
3
VLANs
OVERLAY Networking
VM1 VM2
Server 1
VM3
VM4 VM5
Server 2
VM6
VM7 VM8
Server 3
VM9
No VM network state
Virtual networks:
S3 VM9 Payload Transport network:
Virtual Extensible LAN (VXLAN) Overlay
• VXLAN is an industry standard IP overlay technology - RFC 7348 :
Used to tunnel Layer 2 traffic over an IP infrastructure
8
L2 frame
• Why an IP encapsulation?
– leverage VXLAN in order to decouple its data plane from the physical network:
basic IP connectivity is enough to run SDDC
• Why an additional VXLAN header?
– VXLAN Network Identifier (VNI)
VTEP: Virtual Tunnel End Point
src IP: VTEP1, dst IP:VTEP2 UDP/VXLAN L2 frame VTEP2VTEP1
L2 frame
What is VXLAN ? (Overview)
Ethernet in IP overlay network
– Entire L2 frame encapsulated in UDP
– 50+ bytes of overhead
24 bit VXLAN Network Identifier
– 16 M logical networks
VXLAN can cross Layer 3 network boundaries
Technology approved by IETF as standard
– RFC 7348 „Virtual eXtensible Local Area
Network (VXLAN): A Framework for
Overlaying Virtualized Layer 2 Networks over
Layer 3 Networks”
– With Arista, Brocade, Cisco, Cumulus, Dell,
HP, Juniper, Vmware
Overlay between hosts and Gateways
– VMs do NOT see VXLAN ID
VTEP (VXLAN Tunnel End Point)
– Interface which serves as the endpoint for
encapsulation/de-encapsulation of VXLAN
traffic
VTEP acts like a learning bridge
– Missing information relies on ARP generated
from the host or Flood
– Floods ports when encountering an unknown
MAC
– Flooding may happen when
communicating with physical workloads
– Flooding limited to a VXLAN segment
Once destination MAC is known,
communication is direct
VXLAN OVERLAY Networking
VM1 VM2
Server 1
VM3
VM4 VM5
Server 2
VM6
VM7 VM8
Server 3
VM9
No VM network state
IP Fabric
Virtual networks:
S3 VM9 Payload Transport network:
Software Defined Data Center
VM1 VM2
Server 1
VM3
VM4 VM5
Server 2
VM6
VM7 VM8
Server 3
VM9
Virtual networks:
S3 VM9 Payload Transport network:
Controller
Software Defined Data Center
VM1 VM2
Server 1
VM3
VM4 VM5
Server 2
VM6
VM7 VM8
Server 3
VM9
Virtual networks:
Transport network:
Controller
BMS
Server 4
Web-Tier
App-Tier
DB-Tier
VMs Connect to
Virtual Networks
Virtual Networks Connect to
non-virtualized Workloads
Physical-Virtual Bridging and Routing
 Requirement: Communication between VMs connected to Logical Networks
(VXLAN) and workloads (virtualized or not) deployed on traditional VLANs
 Different options depending on the connectivity needs:
L2 (Bridging)
SW L2 Bridges
HW VTEP L2 Gateway
L3 (Routing)
 L2/L3 services useful for supporting migration scenarios
Overlay to VLAN Bridging
Overlay to VLAN Gateway Functionality
• The Overlay to VLAN gateway allows communication between virtual and physical world
Physical Network
VLAN backed network
VM
NSX: Virtual Network,
VXLAN tunnels
VLANVXLAN L2 payload
VXLAN  VLAN
gateway
Physical Workload
• L2 as well as L3
• Virtual to virtual, physical to virtual
• Temporary, bandwidth and redundancy not critical
Use Cases: Migration
16
VM
VM
Physical Workload
Virtualized
Workload (VLAN backed)
Physical to Virtual
Virtual to Virtual
VXLAN VLAN
• Typically necessary for integrating a non-virtualized appliance
• A gateway takes care of the on ramp/off ramp
Use Cases: Integration of non-Virtualized Workloads
17
VM
Physical Services / Workload
VXLAN VLAN
Physical Workload Integration
Physical Workloads
VXLAN VLAN
x86-based bridge
Highest density but requires specific hardware
Leverages any x86 server
Physical Workloads
VXLAN VLAN
HW VTEP
Use-case: Integrate non-virtualized workloads seamlessly with virtual networks
x86-based Overlay to VLAN solution
P-V Bridging Scale-out
Multiple Bridge instances (VXLAN/VLAN) Pair
 Single bridging instance
(VXLAN/VLAN pair) per Logical Switch
Bandwidth limited by single bridging instance
Bridged VLAN extends to reach physical
devices in multiple racks
VXLAN
VLAN
VLAN extended (!)
SW VTEP
Physical Servers
(VLAN 10) VXLAN 5001
 Scale-out model with multiple bridging instances
active for separate VXLAN/VLAN pairs
 May allow to reduce the spanning of VLANs to a
single rack if physical servers in a VLAN are
contained in that rack
L3-only (VXLAN)
network
VXLAN 5000 Physical Servers
(VLAN 10)
Physical Servers
(VLAN 20)
Bridging Instance 1
(VXLAN 5000 to VLAN 10)
Bridging Instance 2
(VXLAN 5001 to VLAN 20)
20
Benefits of x86-based On/off-ramp
Scale-up
• x86 performance curve
• x86 optimized processing (DPDK)
• Encapsulation offloads
• Encryption offloads
Scale-out
• Expand on scale-out
• Active-active services
Flexibility & Operations
• Rich set of stateful services
• Multi-tier logical routing
• Advanced monitoring
• Choice of form-factor
• Scale as you grow
21VMware Confidential
VLAN 10
VLAN 20
VLAN 30
HW VTEPs
HW VTEPs Motivation
 Integrate non-virtualized workloads seamlessly with virtual networks
Servers with legacy or hard-to-virtualize applications
Physical servers relying on specific hardware not supported by HVs
Physical network & security appliances such as routers, load balancers, firewalls, IPS,
WAN acceleration, etc.
 The following are potential use cases for HW L2 VTEPs:
Low latency traffic
Very large volumes of physical servers (>10G of bandwidth required for P-to-V
communication)
Support of physical hosts connected in different racks  remove the need to extend
VLAN connectivity across the racks
23
VM
VXLAN
Distributed Bridging Options with Hardware VTEPs
One bridge instance
• Bandwidth limited by single instance
• VLAN connectivity extended to reach the
physical devices.
Hardware VTEPs deployed where physical
workloads or services exist:
• Bandwidth and physical ports scale-out
• VLANs for Physical workloads only local to a rack
24
VXLAN
VLAN
VM
Single Instance x86 L2 Gateway Multiple Instances 3rd party HW Gateway
Non-virtualized
devices (part of
the same L2
segment)
L2 Extension with Hardware VTEPs
Two options:
1. Hardware VTEP with IP multicast in the underlay
2. OVSDB Integration
25
VM
VM
L2 Network
Non-virtualized devices
LS A LS B
VLAN A
VLAN B
VXLAN
VLAN
Hardware VTEP
ToR Switch
VXLAN in Multicast Mode
VXLAN in Multicast Mode
IGMP to Join VXLANs Assigned Multicast Groups
Web
VM
Web
VM
DB
VM
DB
VM
IGMP Report to Multicast Group
239.1.1.1
VTEP VTEP VTEP
L3 Core
with multicast
IGMP Report to Multicast Group
239.1.1.1
IGMP Report to Multicast Group
239.2.2.2
IGMP Report to Multicast Group
239.2.2.2
Mapping is required between a VXLAN ID and a Multicast Group
VXLAN 5000 VXLAN 6000
VTEP 1
1.1.1.1
VTEP 2
2.2.2.2
VTEP 3
3.3.3.3
VXLAN Data Flow Example
VM1 Communicating with VM2 in a VXLAN
VM 1 VM 2 VM 3
MAC1
MAC2
Multicast
Multicast Multicast
ARP Request
ARP Request ARP Request
VM Source MAC Remote VTEP IP
VM1:MAC1 1.1.1.1
MAC Table: VTEP 2 and VTEP 3 (Data Plane Learning)L3 Core
with multicast
VXLAN 5000
VTEP 1
1.1.1.1
VTEP 2
2.2.2.2
VTEP 3
3.3.3.3
VXLAN Data Flow Example (2)
VM1 Communicating with VM2 in a VXLAN
VM 1 VM 2 VM 3
MAC1
MAC2
VM Source MAC Remote VTEP IP
VM1:MAC1 1.1.1.1
MAC Table: VTEP 2L3 Core
with multicast
ARP Response
Unicast
VXLAN 5000
VTEP 1
1.1.1.1
VTEP 2
2.2.2.2
VTEP 3
3.3.3.3
VXLAN Data Flow Example (3)
VM1 Communicating with VM2 in a VXLAN
VM 1 VM 2 VM 3
MAC1
MAC2
VM Source MAC Remote Host VXLAN
IP
VM1:MAC1 1.1.1.1
MAC Table: VTEP 2L3 Core
with multicast
ARP Response
VM Source MAC Remote Host VXLAN
IP
VM2:MAC2 2.2.2.2
MAC Table: VTEP 1 (Data Plane Learning)
VXLAN 5000
VTEP 1
1.1.1.1
VTEP 2
2.2.2.2
VTEP 3
3.3.3.3
VXLAN Data Flow Example (4)
VM1 Communicating with VM2 in a VXLAN
VM 1 VM 2 VM 3
MAC1
MAC2
VM Source MAC Remote Host VXLAN
IP
VM1:MAC1 1.1.1.1
MAC Table: VTEP 2L3 Core
with multicast
VM Source MAC Remote Host VXLAN
IP
VM2:MAC2 2.2.2.2
MAC Table: VTEP 1
Unicast
VXLAN 5000
OVSBD Integration
• Hardware VTEP enabled physical appliance
• Attach any physical services appliance
• Extensible (schema-based)
• Integration not dependent on Multicast
Overview
• High density of physical ports to connect physical workloads
• Broad ecosystem of partners
• Compatible with HA M-LAG solution
Benefits
OVSDB Integration: Hardware VTEPs
33
Provide connectivity to physical workloads and services
VM1 VM2
LS – VNI
5001
VLAN 100
What is OVSDB ?
What is OVSDB ?
Open vSwitch Data Base (OVSDB) is a management protocol
 Helps attaching interfaces, gathering statistics, configuring features
 NOT related with and does NOT require Openflow
 RFC 7047 for „The Open vSwitch Database Management Protocol”
3rd Party GW
OVSDB Server
Operational
State
Forwarding
State
IP Fabric
Service Nodes
VM
VMVM
VM VM
VM
Controller
Cluster
CMP
• The controller exposes a northbound API - physical ports can be attached to logical switches.
• Virtual ports of VMs are attached to build logical networks that span the physical and virtual
worlds
• The information exchanged by the control plane allows setting up the data plane, i.e. VXLAN
tunnels between VTEPs
• Switch terminates VXLAN tunnels
OVSDB Integration: Hardware VTEPs
VNI
VTEP
VM MAC/IP
port
OVS hardware_vtep database schema
Table Purpose Global Top-level configuration.
Manager OVSDB management connection.
Physical_Switch A physical switch.
Physical_Port A port within a physical switch.
Logical_Binding_Stats Statistics for a VLAN on a physical port bound to a logical network.
Logical_Switch A layer−2 domain.
Ucast_Macs_Local Unicast MACs (local)
Ucast_Macs_Remote Unicast MACs (remote)
Mcast_Macs_Local Multicast MACs (local)
Mcast_Macs_Remote Multicast MACs (remote)
Logical_Router A logical L3 router.
Physical_Locator_Set Physical_Locator_Set configuration.
Physical_Locator Physical_Locator configuration.
CONFIDENTIAL 37
Summary
Integrating Physical Infrastructure and Virtual Workloads
Conclusion
x86-based
 Scale-up & scale-out model
 Pay as you grow
 Rich set of stateful services
 Growing set of routing features
 Software development cycle
 Versatile topology options
HW VTEP
 Highest density & performance
 Broad partner choice
• Limited stateful services (cost)
 Broad set of routing features
• Longer innovation cycle
VMware Confidential 39
Thank You

More Related Content

PPTX
VXLAN Distributed Service Node
David Lapsley
 
PPTX
Introduction to vxlan
Mohammed Umair
 
PPTX
VXLAN Practice Guide
Prasenjit Sarkar
 
PDF
Xpress path vxlan_bgp_evpn_appricot2019-v2_
Jide Akintola JNCIE-M&T/SP #496 CCIE-SP#28552
 
PPTX
Vxlan deep dive session rev0.5 final
KwonSun Bae
 
PPTX
VXLAN
SAliyev1
 
PPTX
Linux Native VXLAN Integration - CloudStack Collaboration Conference 2013, Sa...
Toshiaki Hatano
 
PDF
VMworld 2013: Troubleshooting VXLAN and Network Services in a Virtualized Env...
VMworld
 
VXLAN Distributed Service Node
David Lapsley
 
Introduction to vxlan
Mohammed Umair
 
VXLAN Practice Guide
Prasenjit Sarkar
 
Xpress path vxlan_bgp_evpn_appricot2019-v2_
Jide Akintola JNCIE-M&T/SP #496 CCIE-SP#28552
 
Vxlan deep dive session rev0.5 final
KwonSun Bae
 
VXLAN
SAliyev1
 
Linux Native VXLAN Integration - CloudStack Collaboration Conference 2013, Sa...
Toshiaki Hatano
 
VMworld 2013: Troubleshooting VXLAN and Network Services in a Virtualized Env...
VMworld
 

What's hot (20)

PPTX
Vxlan control plane and routing
Wilfredzeng
 
PPTX
VXLAN Integration with CloudStack Advanced Zone
Yoshikazu Nojima
 
PPTX
Vxlan frame format and forwarding
Mohammed Umair
 
PDF
20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN
Indonesia Network Operators Group
 
PDF
VXLAN with Cumulus
Francesco Gandolfo
 
PDF
Virtual Extensible LAN (VXLAN)
KHNOG
 
PDF
Demystifying EVPN in the data center: Part 1 in 2 episode series
Cumulus Networks
 
PPTX
Scaleway Approach to VXLAN EVPN Fabric
Scaleway
 
PDF
NFV в сетях операторов связи
TERMILAB. Интернет - лаборатория
 
PPT
Vlan
Mayank Saxena
 
PPTX
DevOops - Lessons Learned from an OpenStack Network Architect
James Denton
 
PDF
10 sdn-vir-6up
Sachin Siddappa
 
PDF
Technical introduction to MidoNet
MidoNet
 
PPTX
Network and Service Virtualization tutorial at ONUG Spring 2015
SDN Hub
 
PPTX
Reference design for v mware nsx
solarisyougood
 
PDF
Flexible NFV WAN interconnections with Neutron BGP VPN
Thomas Morin
 
PDF
OPNFV Service Function Chaining
OPNFV
 
PPTX
2014 OpenStack Summit - Neutron OVS to LinuxBridge Migration
James Denton
 
PPTX
Ucs security part2
Krunal Shah
 
PDF
Linux Tag 2014 OpenStack Networking
yfauser
 
Vxlan control plane and routing
Wilfredzeng
 
VXLAN Integration with CloudStack Advanced Zone
Yoshikazu Nojima
 
Vxlan frame format and forwarding
Mohammed Umair
 
20 - IDNOG03 - Franki Lim (ARISTA) - Overlay Networking with VXLAN
Indonesia Network Operators Group
 
VXLAN with Cumulus
Francesco Gandolfo
 
Virtual Extensible LAN (VXLAN)
KHNOG
 
Demystifying EVPN in the data center: Part 1 in 2 episode series
Cumulus Networks
 
Scaleway Approach to VXLAN EVPN Fabric
Scaleway
 
NFV в сетях операторов связи
TERMILAB. Интернет - лаборатория
 
DevOops - Lessons Learned from an OpenStack Network Architect
James Denton
 
10 sdn-vir-6up
Sachin Siddappa
 
Technical introduction to MidoNet
MidoNet
 
Network and Service Virtualization tutorial at ONUG Spring 2015
SDN Hub
 
Reference design for v mware nsx
solarisyougood
 
Flexible NFV WAN interconnections with Neutron BGP VPN
Thomas Morin
 
OPNFV Service Function Chaining
OPNFV
 
2014 OpenStack Summit - Neutron OVS to LinuxBridge Migration
James Denton
 
Ucs security part2
Krunal Shah
 
Linux Tag 2014 OpenStack Networking
yfauser
 
Ad

Viewers also liked (20)

PPTX
PLNOG16: VXLAN Gateway, efektywny sposób połączenia świata wirtualnego z fizy...
PROIDEA
 
PDF
PLNOG16: Ochrona AntiDDoS, lokalnie oraz w chmurze, Paweł Wachełka
PROIDEA
 
PDF
PLNOG15: Practical case studies of IPTV signal redundancy in Internet network...
PROIDEA
 
PDF
PLNOG16: DDOS SOLUTIONS – CUSTOMER POINT OF VIEW, Piotr Wojciechowski
PROIDEA
 
PDF
PLNOG16: Automatyzacja kreaowania usług operatorskich w separacji od rodzaju ...
PROIDEA
 
PDF
PLNOG15: BGP New Advanced Features - Piotr Wojciechowski
PROIDEA
 
PPTX
PLNOG16: Nowe założenia dla zbieranie logów, statystyk i alertów, Maciej Kałk...
PROIDEA
 
PDF
PLNOG15: BGP Route Reflector from practical point of view
PROIDEA
 
PDF
PLNOG16: Public IX is the tip of the Internet Iceberg. The 9:1 PNI rule, Mart...
PROIDEA
 
PDF
PLNOG16: Administratorzy umarli ? Paweł Stefański
PROIDEA
 
PDF
PLNOG16: IP/MPLS for Fixed and Mobile Convergence, Kevin Wang
PROIDEA
 
PPTX
PLNOG16: Transport ruchu klientów - MPLS L2 i L3, Tomasz Jedynak
PROIDEA
 
PDF
PLNOG14: Nowości w protokole BGP, optymalizacja routingu na brzegu sieci - Łu...
PROIDEA
 
PPTX
PLNOG16: EXTREME(alnie) przeciw DDoS’om, Krzysztof Surgut, Michał Gąszczyk
PROIDEA
 
PDF
PLNOG16: Czy każdy administrator sieci zostanie programistą, Sławomir Januk...
PROIDEA
 
PDF
PLNOG16: Wielopunktowy VPN, Piotr Głaska
PROIDEA
 
PPT
PLNOG16: Milion użytkowników IPv6 na polskim rynku mobilnym, Tomasz Kossut
PROIDEA
 
PPTX
PLNOG15 :DDOS Attacks & Collateral Damage. Can we avoid it? Asraf Ali
Marta Pacyga
 
PDF
PLNOG16: Usługi w sieciach operatorskich, Marcin Aronowski
PROIDEA
 
PPTX
PLNOG16: Mix 2-in-1: IPv6 troubleshooting for helpdesks - and – DANE/DNSSE...
PROIDEA
 
PLNOG16: VXLAN Gateway, efektywny sposób połączenia świata wirtualnego z fizy...
PROIDEA
 
PLNOG16: Ochrona AntiDDoS, lokalnie oraz w chmurze, Paweł Wachełka
PROIDEA
 
PLNOG15: Practical case studies of IPTV signal redundancy in Internet network...
PROIDEA
 
PLNOG16: DDOS SOLUTIONS – CUSTOMER POINT OF VIEW, Piotr Wojciechowski
PROIDEA
 
PLNOG16: Automatyzacja kreaowania usług operatorskich w separacji od rodzaju ...
PROIDEA
 
PLNOG15: BGP New Advanced Features - Piotr Wojciechowski
PROIDEA
 
PLNOG16: Nowe założenia dla zbieranie logów, statystyk i alertów, Maciej Kałk...
PROIDEA
 
PLNOG15: BGP Route Reflector from practical point of view
PROIDEA
 
PLNOG16: Public IX is the tip of the Internet Iceberg. The 9:1 PNI rule, Mart...
PROIDEA
 
PLNOG16: Administratorzy umarli ? Paweł Stefański
PROIDEA
 
PLNOG16: IP/MPLS for Fixed and Mobile Convergence, Kevin Wang
PROIDEA
 
PLNOG16: Transport ruchu klientów - MPLS L2 i L3, Tomasz Jedynak
PROIDEA
 
PLNOG14: Nowości w protokole BGP, optymalizacja routingu na brzegu sieci - Łu...
PROIDEA
 
PLNOG16: EXTREME(alnie) przeciw DDoS’om, Krzysztof Surgut, Michał Gąszczyk
PROIDEA
 
PLNOG16: Czy każdy administrator sieci zostanie programistą, Sławomir Januk...
PROIDEA
 
PLNOG16: Wielopunktowy VPN, Piotr Głaska
PROIDEA
 
PLNOG16: Milion użytkowników IPv6 na polskim rynku mobilnym, Tomasz Kossut
PROIDEA
 
PLNOG15 :DDOS Attacks & Collateral Damage. Can we avoid it? Asraf Ali
Marta Pacyga
 
PLNOG16: Usługi w sieciach operatorskich, Marcin Aronowski
PROIDEA
 
PLNOG16: Mix 2-in-1: IPv6 troubleshooting for helpdesks - and – DANE/DNSSE...
PROIDEA
 
Ad

Similar to PLNOG15: Is there something less complicated than connecting two LAN networks? VLAN and VXLAN integration - Emil Gągała (20)

PPTX
Automate programmable fabric in seconds with an open standards based solution
Tony Antony
 
PPTX
VXLAN_Presentation_overlay-technology.pptx
siya89308
 
PPTX
VXLAN in the contemporary data center
Anthony Chow
 
PDF
VXLAN BGP EVPN: Technology Building Blocks
APNIC
 
PDF
VMworld 2013: Advanced VMware NSX Architecture
VMworld
 
PDF
CloudKC: Evolution of Network Virtualization
Cynthia Thomas
 
PPTX
Network virtualization
Damian Parniewicz
 
PDF
Atf 3 q15-4 - scaling the the software driven cloud network
Mason Mei
 
PPSX
From virtual to high end HW routing for the adult
MarketingArrowECS_CZ
 
PDF
VMworld 2013: vSphere Networking and vCloud Networking Suite Best Practices a...
VMworld
 
PPTX
Midokura OpenStack Meetup Taipei
Dan Mihai Dumitriu
 
PDF
[OpenStack Day in Korea 2015] Track 3-6 - Archiectural Overview of the Open S...
OpenStack Korea Community
 
PDF
Opencontrail network virtualization
Nicolai van der Smagt
 
PDF
PLNOG 13: Nicolai van der Smagt: SDN
PROIDEA
 
PPTX
Network Virtualization for Cloud Services Infrastructure
Shahryar Ali
 
PDF
Kubernetes networking in AWS
Zvika Gazit
 
PPTX
Midokura OpenStack Day Korea Talk: MidoNet Open Source Network Virtualization...
Dan Mihai Dumitriu
 
PPTX
Openstack Neutron Insights
Atul Pandey
 
Automate programmable fabric in seconds with an open standards based solution
Tony Antony
 
VXLAN_Presentation_overlay-technology.pptx
siya89308
 
VXLAN in the contemporary data center
Anthony Chow
 
VXLAN BGP EVPN: Technology Building Blocks
APNIC
 
VMworld 2013: Advanced VMware NSX Architecture
VMworld
 
CloudKC: Evolution of Network Virtualization
Cynthia Thomas
 
Network virtualization
Damian Parniewicz
 
Atf 3 q15-4 - scaling the the software driven cloud network
Mason Mei
 
From virtual to high end HW routing for the adult
MarketingArrowECS_CZ
 
VMworld 2013: vSphere Networking and vCloud Networking Suite Best Practices a...
VMworld
 
Midokura OpenStack Meetup Taipei
Dan Mihai Dumitriu
 
[OpenStack Day in Korea 2015] Track 3-6 - Archiectural Overview of the Open S...
OpenStack Korea Community
 
Opencontrail network virtualization
Nicolai van der Smagt
 
PLNOG 13: Nicolai van der Smagt: SDN
PROIDEA
 
Network Virtualization for Cloud Services Infrastructure
Shahryar Ali
 
Kubernetes networking in AWS
Zvika Gazit
 
Midokura OpenStack Day Korea Talk: MidoNet Open Source Network Virtualization...
Dan Mihai Dumitriu
 
Openstack Neutron Insights
Atul Pandey
 

Recently uploaded (20)

PDF
Slides: PDF Eco Economic Epochs for World Game (s) pdf
Steven McGee
 
PPT
Introduction to dns domain name syst.ppt
MUHAMMADKAVISHSHABAN
 
PDF
5g is Reshaping the Competitive Landscape
Stellarix
 
PDF
Cybersecurity Awareness Presentation ppt.
banodhaharshita
 
PPTX
ppt lighfrsefsefesfesfsefsefsefsefserrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrt.pptx
atharvawafgaonkar
 
PDF
Generative AI Foundations: AI Skills for the Future of Work
hemal sharma
 
PPTX
nagasai stick diagrams in very large scale integratiom.pptx
manunagapaul
 
PPTX
办理方法西班牙假毕业证蒙德拉贡大学成绩单MULetter文凭样本
xxxihn4u
 
PPTX
Google SGE SEO: 5 Critical Changes That Could Wreck Your Rankings in 2025
Reversed Out Creative
 
PPTX
Black Yellow Modern Minimalist Elegant Presentation.pptx
nothisispatrickduhh
 
PDF
PDF document: World Game (s) Great Redesign.pdf
Steven McGee
 
PPTX
Parallel & Concurrent ...
yashpavasiya892
 
PPTX
Artificial-Intelligence-in-Daily-Life (2).pptx
nidhigoswami335
 
PDF
Latest Scam Shocking the USA in 2025.pdf
onlinescamreport4
 
PDF
KIPER4D situs Exclusive Game dari server Star Gaming Asia
hokimamad0
 
PDF
UI/UX Developer Guide: Tools, Trends, and Tips for 2025
Penguin peak
 
PPTX
B2B_Ecommerce_Internship_Simranpreet.pptx
LipakshiJindal
 
PPTX
原版北不列颠哥伦比亚大学毕业证文凭UNBC成绩单2025年新版在线制作学位证书
e7nw4o4
 
PDF
BGP Security Best Practices that Matter, presented at PHNOG 2025
APNIC
 
PPT
Transformaciones de las funciones elementales.ppt
rirosel211
 
Slides: PDF Eco Economic Epochs for World Game (s) pdf
Steven McGee
 
Introduction to dns domain name syst.ppt
MUHAMMADKAVISHSHABAN
 
5g is Reshaping the Competitive Landscape
Stellarix
 
Cybersecurity Awareness Presentation ppt.
banodhaharshita
 
ppt lighfrsefsefesfesfsefsefsefsefserrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrt.pptx
atharvawafgaonkar
 
Generative AI Foundations: AI Skills for the Future of Work
hemal sharma
 
nagasai stick diagrams in very large scale integratiom.pptx
manunagapaul
 
办理方法西班牙假毕业证蒙德拉贡大学成绩单MULetter文凭样本
xxxihn4u
 
Google SGE SEO: 5 Critical Changes That Could Wreck Your Rankings in 2025
Reversed Out Creative
 
Black Yellow Modern Minimalist Elegant Presentation.pptx
nothisispatrickduhh
 
PDF document: World Game (s) Great Redesign.pdf
Steven McGee
 
Parallel & Concurrent ...
yashpavasiya892
 
Artificial-Intelligence-in-Daily-Life (2).pptx
nidhigoswami335
 
Latest Scam Shocking the USA in 2025.pdf
onlinescamreport4
 
KIPER4D situs Exclusive Game dari server Star Gaming Asia
hokimamad0
 
UI/UX Developer Guide: Tools, Trends, and Tips for 2025
Penguin peak
 
B2B_Ecommerce_Internship_Simranpreet.pptx
LipakshiJindal
 
原版北不列颠哥伦比亚大学毕业证文凭UNBC成绩单2025年新版在线制作学位证书
e7nw4o4
 
BGP Security Best Practices that Matter, presented at PHNOG 2025
APNIC
 
Transformaciones de las funciones elementales.ppt
rirosel211
 

PLNOG15: Is there something less complicated than connecting two LAN networks? VLAN and VXLAN integration - Emil Gągała

  • 1. © 2014 VMware Inc. All rights reserved. Integrating Physical Infrastructure and Virtual Workloads How to connect VLAN & VXLAN ? Emil Gągała Network & Security Architect PLNOG 28.09.2015, Kraków
  • 2. Site 3 Site 1 Site2 Site 1 Site2 A1 B1 A3 A2 B2 Ethernet over … • ATM  LAN Emulation • MPLS  VPLS, EVPN • IP  VXLAN, EVPN, OVSDB
  • 3. Ethernet characteristics • Multipoint to Multipoint connectivity • No control plane – only data plane MAC learning • BUM traffic - some form of multicast support required • Segmentation - VLAN • No built-in loop prevention mechanism • No native multi-homing capabilities • Scalability – scope of broadcast domain and number of MACs • Lack of Virtual Machines awareness
  • 4. Physical DC Fabric Trends • From 2- or 3-tier to IP spine/leaf fabrics • Density & bandwidth jump • ECMP for layer 3 (and layer 2) • Reduce network oversubscription • Wire & configure once • Uniform configurations 4 WAN/Internet L3 L2 L3 L2 POD A POD B WAN/Internet L3 L2 L2 Ethernet L3 IP
  • 5. VM5 Virtual Overlay Networking VM1 Overlay Network VM2 Logical Switch 5001 VM3 Physical Underlay IP Network VM4 Logical Switch 5002 Controller Management Cluster Control Plane Programming Data Plane Tunneling Subnet Red 172.16.10.0/24 Subnet Green 172.16.20.0/24 192.168.150.51 192.168.150.52 192.168.250.51 5 Transport Subnet A 192.168.150.0/24 Transport Subnet B 192.168.250.0/24
  • 6. Traditional VLAN network VM1 VM2 Server 1 VM3 VM4 VM5 Server 2 VM6 VM7 VM8 Server 3 VM9 Physical switch Virtual networks: 1 2 3 VLANs
  • 7. OVERLAY Networking VM1 VM2 Server 1 VM3 VM4 VM5 Server 2 VM6 VM7 VM8 Server 3 VM9 No VM network state Virtual networks: S3 VM9 Payload Transport network:
  • 8. Virtual Extensible LAN (VXLAN) Overlay • VXLAN is an industry standard IP overlay technology - RFC 7348 : Used to tunnel Layer 2 traffic over an IP infrastructure 8 L2 frame • Why an IP encapsulation? – leverage VXLAN in order to decouple its data plane from the physical network: basic IP connectivity is enough to run SDDC • Why an additional VXLAN header? – VXLAN Network Identifier (VNI) VTEP: Virtual Tunnel End Point src IP: VTEP1, dst IP:VTEP2 UDP/VXLAN L2 frame VTEP2VTEP1 L2 frame
  • 9. What is VXLAN ? (Overview) Ethernet in IP overlay network – Entire L2 frame encapsulated in UDP – 50+ bytes of overhead 24 bit VXLAN Network Identifier – 16 M logical networks VXLAN can cross Layer 3 network boundaries Technology approved by IETF as standard – RFC 7348 „Virtual eXtensible Local Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3 Networks” – With Arista, Brocade, Cisco, Cumulus, Dell, HP, Juniper, Vmware Overlay between hosts and Gateways – VMs do NOT see VXLAN ID VTEP (VXLAN Tunnel End Point) – Interface which serves as the endpoint for encapsulation/de-encapsulation of VXLAN traffic VTEP acts like a learning bridge – Missing information relies on ARP generated from the host or Flood – Floods ports when encountering an unknown MAC – Flooding may happen when communicating with physical workloads – Flooding limited to a VXLAN segment Once destination MAC is known, communication is direct
  • 10. VXLAN OVERLAY Networking VM1 VM2 Server 1 VM3 VM4 VM5 Server 2 VM6 VM7 VM8 Server 3 VM9 No VM network state IP Fabric Virtual networks: S3 VM9 Payload Transport network:
  • 11. Software Defined Data Center VM1 VM2 Server 1 VM3 VM4 VM5 Server 2 VM6 VM7 VM8 Server 3 VM9 Virtual networks: S3 VM9 Payload Transport network: Controller
  • 12. Software Defined Data Center VM1 VM2 Server 1 VM3 VM4 VM5 Server 2 VM6 VM7 VM8 Server 3 VM9 Virtual networks: Transport network: Controller BMS Server 4
  • 13. Web-Tier App-Tier DB-Tier VMs Connect to Virtual Networks Virtual Networks Connect to non-virtualized Workloads Physical-Virtual Bridging and Routing  Requirement: Communication between VMs connected to Logical Networks (VXLAN) and workloads (virtualized or not) deployed on traditional VLANs  Different options depending on the connectivity needs: L2 (Bridging) SW L2 Bridges HW VTEP L2 Gateway L3 (Routing)  L2/L3 services useful for supporting migration scenarios
  • 14. Overlay to VLAN Bridging
  • 15. Overlay to VLAN Gateway Functionality • The Overlay to VLAN gateway allows communication between virtual and physical world Physical Network VLAN backed network VM NSX: Virtual Network, VXLAN tunnels VLANVXLAN L2 payload VXLAN  VLAN gateway Physical Workload
  • 16. • L2 as well as L3 • Virtual to virtual, physical to virtual • Temporary, bandwidth and redundancy not critical Use Cases: Migration 16 VM VM Physical Workload Virtualized Workload (VLAN backed) Physical to Virtual Virtual to Virtual VXLAN VLAN
  • 17. • Typically necessary for integrating a non-virtualized appliance • A gateway takes care of the on ramp/off ramp Use Cases: Integration of non-Virtualized Workloads 17 VM Physical Services / Workload VXLAN VLAN
  • 18. Physical Workload Integration Physical Workloads VXLAN VLAN x86-based bridge Highest density but requires specific hardware Leverages any x86 server Physical Workloads VXLAN VLAN HW VTEP Use-case: Integrate non-virtualized workloads seamlessly with virtual networks
  • 19. x86-based Overlay to VLAN solution
  • 20. P-V Bridging Scale-out Multiple Bridge instances (VXLAN/VLAN) Pair  Single bridging instance (VXLAN/VLAN pair) per Logical Switch Bandwidth limited by single bridging instance Bridged VLAN extends to reach physical devices in multiple racks VXLAN VLAN VLAN extended (!) SW VTEP Physical Servers (VLAN 10) VXLAN 5001  Scale-out model with multiple bridging instances active for separate VXLAN/VLAN pairs  May allow to reduce the spanning of VLANs to a single rack if physical servers in a VLAN are contained in that rack L3-only (VXLAN) network VXLAN 5000 Physical Servers (VLAN 10) Physical Servers (VLAN 20) Bridging Instance 1 (VXLAN 5000 to VLAN 10) Bridging Instance 2 (VXLAN 5001 to VLAN 20) 20
  • 21. Benefits of x86-based On/off-ramp Scale-up • x86 performance curve • x86 optimized processing (DPDK) • Encapsulation offloads • Encryption offloads Scale-out • Expand on scale-out • Active-active services Flexibility & Operations • Rich set of stateful services • Multi-tier logical routing • Advanced monitoring • Choice of form-factor • Scale as you grow 21VMware Confidential VLAN 10 VLAN 20 VLAN 30
  • 23. HW VTEPs Motivation  Integrate non-virtualized workloads seamlessly with virtual networks Servers with legacy or hard-to-virtualize applications Physical servers relying on specific hardware not supported by HVs Physical network & security appliances such as routers, load balancers, firewalls, IPS, WAN acceleration, etc.  The following are potential use cases for HW L2 VTEPs: Low latency traffic Very large volumes of physical servers (>10G of bandwidth required for P-to-V communication) Support of physical hosts connected in different racks  remove the need to extend VLAN connectivity across the racks 23
  • 24. VM VXLAN Distributed Bridging Options with Hardware VTEPs One bridge instance • Bandwidth limited by single instance • VLAN connectivity extended to reach the physical devices. Hardware VTEPs deployed where physical workloads or services exist: • Bandwidth and physical ports scale-out • VLANs for Physical workloads only local to a rack 24 VXLAN VLAN VM Single Instance x86 L2 Gateway Multiple Instances 3rd party HW Gateway Non-virtualized devices (part of the same L2 segment)
  • 25. L2 Extension with Hardware VTEPs Two options: 1. Hardware VTEP with IP multicast in the underlay 2. OVSDB Integration 25 VM VM L2 Network Non-virtualized devices LS A LS B VLAN A VLAN B VXLAN VLAN Hardware VTEP ToR Switch
  • 27. VXLAN in Multicast Mode IGMP to Join VXLANs Assigned Multicast Groups Web VM Web VM DB VM DB VM IGMP Report to Multicast Group 239.1.1.1 VTEP VTEP VTEP L3 Core with multicast IGMP Report to Multicast Group 239.1.1.1 IGMP Report to Multicast Group 239.2.2.2 IGMP Report to Multicast Group 239.2.2.2 Mapping is required between a VXLAN ID and a Multicast Group VXLAN 5000 VXLAN 6000
  • 28. VTEP 1 1.1.1.1 VTEP 2 2.2.2.2 VTEP 3 3.3.3.3 VXLAN Data Flow Example VM1 Communicating with VM2 in a VXLAN VM 1 VM 2 VM 3 MAC1 MAC2 Multicast Multicast Multicast ARP Request ARP Request ARP Request VM Source MAC Remote VTEP IP VM1:MAC1 1.1.1.1 MAC Table: VTEP 2 and VTEP 3 (Data Plane Learning)L3 Core with multicast VXLAN 5000
  • 29. VTEP 1 1.1.1.1 VTEP 2 2.2.2.2 VTEP 3 3.3.3.3 VXLAN Data Flow Example (2) VM1 Communicating with VM2 in a VXLAN VM 1 VM 2 VM 3 MAC1 MAC2 VM Source MAC Remote VTEP IP VM1:MAC1 1.1.1.1 MAC Table: VTEP 2L3 Core with multicast ARP Response Unicast VXLAN 5000
  • 30. VTEP 1 1.1.1.1 VTEP 2 2.2.2.2 VTEP 3 3.3.3.3 VXLAN Data Flow Example (3) VM1 Communicating with VM2 in a VXLAN VM 1 VM 2 VM 3 MAC1 MAC2 VM Source MAC Remote Host VXLAN IP VM1:MAC1 1.1.1.1 MAC Table: VTEP 2L3 Core with multicast ARP Response VM Source MAC Remote Host VXLAN IP VM2:MAC2 2.2.2.2 MAC Table: VTEP 1 (Data Plane Learning) VXLAN 5000
  • 31. VTEP 1 1.1.1.1 VTEP 2 2.2.2.2 VTEP 3 3.3.3.3 VXLAN Data Flow Example (4) VM1 Communicating with VM2 in a VXLAN VM 1 VM 2 VM 3 MAC1 MAC2 VM Source MAC Remote Host VXLAN IP VM1:MAC1 1.1.1.1 MAC Table: VTEP 2L3 Core with multicast VM Source MAC Remote Host VXLAN IP VM2:MAC2 2.2.2.2 MAC Table: VTEP 1 Unicast VXLAN 5000
  • 33. • Hardware VTEP enabled physical appliance • Attach any physical services appliance • Extensible (schema-based) • Integration not dependent on Multicast Overview • High density of physical ports to connect physical workloads • Broad ecosystem of partners • Compatible with HA M-LAG solution Benefits OVSDB Integration: Hardware VTEPs 33 Provide connectivity to physical workloads and services VM1 VM2 LS – VNI 5001 VLAN 100
  • 35. What is OVSDB ? Open vSwitch Data Base (OVSDB) is a management protocol  Helps attaching interfaces, gathering statistics, configuring features  NOT related with and does NOT require Openflow  RFC 7047 for „The Open vSwitch Database Management Protocol” 3rd Party GW OVSDB Server Operational State Forwarding State IP Fabric Service Nodes VM VMVM VM VM VM Controller Cluster CMP
  • 36. • The controller exposes a northbound API - physical ports can be attached to logical switches. • Virtual ports of VMs are attached to build logical networks that span the physical and virtual worlds • The information exchanged by the control plane allows setting up the data plane, i.e. VXLAN tunnels between VTEPs • Switch terminates VXLAN tunnels OVSDB Integration: Hardware VTEPs VNI VTEP VM MAC/IP port
  • 37. OVS hardware_vtep database schema Table Purpose Global Top-level configuration. Manager OVSDB management connection. Physical_Switch A physical switch. Physical_Port A port within a physical switch. Logical_Binding_Stats Statistics for a VLAN on a physical port bound to a logical network. Logical_Switch A layer−2 domain. Ucast_Macs_Local Unicast MACs (local) Ucast_Macs_Remote Unicast MACs (remote) Mcast_Macs_Local Multicast MACs (local) Mcast_Macs_Remote Multicast MACs (remote) Logical_Router A logical L3 router. Physical_Locator_Set Physical_Locator_Set configuration. Physical_Locator Physical_Locator configuration. CONFIDENTIAL 37
  • 39. Integrating Physical Infrastructure and Virtual Workloads Conclusion x86-based  Scale-up & scale-out model  Pay as you grow  Rich set of stateful services  Growing set of routing features  Software development cycle  Versatile topology options HW VTEP  Highest density & performance  Broad partner choice • Limited stateful services (cost)  Broad set of routing features • Longer innovation cycle VMware Confidential 39