SlideShare a Scribd company logo
POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEM My-Linh Truong-Loï, ONERA/CNES/IETR Pascale Dubois-Fernandez, ONERA Eric Pottier, IETR – UMR CNRS 6164 Anthony Freeman, JPL Jean-Claude Souyris, CNES
Objectives Missions dedicated to global environmental change monitoring Low frequency radar Ionosphere interaction   Faraday rotation Compact polarimetry Transmitting a circular polarized wave No depolarization anymore Receiving two orthogonal polarized waves Estimate Faraday rotation High power of penetration   Dual-pol system Large swath Dual-pol system
Outline Background – compact polarimetry Faraday rotation estimate Bare soil surfaces selection Faraday rotation estimate PolSAR applications Soil moisture estimate Biomass estimate PolInSAR applications Forest height estimate Calibration
Background - Compact Polarimetry 1/2 π /4 mode: one transmission at  45°  and two orthogonal receptions (linear H & V, circular right & left,…) π /2 mode: one  circular  transmission and two orthogonal receptions (linear H & V, circular right & left,…) Hybrid polarity : particular case of  π /2 : one circular transmission and two linear receptions (H&V)
π /4-mode potentials: reconstruction of the PolSAR information (1) Iterative algorithm based on: Reflection symmetry Coherence between co-polarized channels π /2-mode potentials: avoid Faraday rotation in transmission (2) Transmit a circular polarized wave Adaptation of the reconstruction of the PolSAR information is possible Hybrid polarity potentials: decomposition of natural targets (3) m - δ   method based on Stokes parameters Background - Compact Polarimetry 2/2 (1) J-C. Souyris, P. Imbo, R. FjØrtoft, S. Mingot and J-S. Lee,  Compact Polarimetry Based on Symmetry Properties of Geophysical Media : The π/4 Mode , IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, Mars 2005. (2) P. C. Dubois-Fernandez, J-C.  Souyris, S. Angelliaume et F. Garestier,  The Compact Polarimetry Alternative for Spaceborne SAR at Low Frequency , IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 10, Octobre 2008. (3) R. K. Raney,  Hybrid-Polarity SAR Architecture , IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 11, Novembre 2007.
Conclusion π /2 mode is required for low frequency spaceborne radar How to estimate/correct for Faraday rotation in reception ?  Bare soil surfaces are first required
The conformity coefficient Double-bounce Volume Surface S HV  ~ 0 S HH , S VV  correlated Arg<S HH S VV *>  ≈ 180° -1<  μ < t 2 S HV  is significant S HH , S VV  less correlated t 2 <  μ <t 1 S HV  ~ 0 S HH , S VV  correlated Arg<S HH S VV *>  ≈ 0 t 1 < μ <1 This coefficient Can be shown to be FR independent can be used with CP data as well as FP data discriminates 3 different types of scattering M-L. Truong-Loï, A. Freeman, P. C. Dubois-Fernandez and E. Pottier,  Estimation of Soil Moisture and Faraday Rotation From Bare Surfaces Using Compact Polarimetry , IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 11, Novembre 2009.
Conformity coefficient versus Cloude-Pottier Confusion matrices Conformity coefficient thresholds S V DB -1  -0.2  0.32  1
Conformity coefficient vs Cloude-Pottier and Freeman-Durden classifications, RAMSES P-band data over St Germain d’Esteuil, France S. R. Cloude et E. Pottier,  A Review of Target Decomposition Theorems in Radar Polarimetry , IEEE Transactions on Geoscience and Remote Sensing, vol. 34, no. 2, Mars 1996. A. Freeman et S. L. Durden,  A Three-Component Scattering Model for Polarimetric SAR Data , IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 3, Mai 1998. P v  > 0.6 P d  & P v  > 0.3 P s P s >P d P d Conformity coefficient Cloude-Pottier classification Freeman-Durden classification Volume Double-bounce Surface
Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering We can select bare soil surfaces with compact-pol data    Is it now possible to correct for FR with compact-pol data ?
Flow diagram of the process   e FP calibrated data (Ramses, PALSAR) Select bare surfaces (by using the conformity coefficient) Estimate the Faraday rotation  Synthesized CP data (add Faraday rotation) (2) (3)
Faraday rotation estimate over PALSAR L-band data Full polarimetric data Over bare surfaces  μ >0.2  Compact polarimetric data Thanks to the ASF for providing the data.
Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering Estimation of FR over bare surfaces identified by the conformity coefficient Now FR is corrected    Can we use this type of data ? Let’s see PolSAR applications 1) soil moisture estimate
FP vs CP signatures S HV  ~ 0 over bare soil surfaces Window size : 7x7   σ Hh /  σ Rh σ Vv /  σ Rv Stdv: <2dB σ Hh  (dB) σ Rh  (dB) 10 10 -30 -30 10 10 σ Vv  (dB) σ Rv  (dB)
FP vs CP soil moisture – Dubois et al. algorithm Stdv : 4% CP/FP soil moisture Estimated soil moisture CP & FP vs ground truth Stdv : 2% RAMSES L-band data, Le Moulin du Fâ, France AIRSAR/WASHITA L-band data over Chickasha area P. C. Dubois, J. van Zyl et T. Engman, Measuring Soil Moisture with Imaging Radars, IEEE Transactions on Geoscience and Remote Sensing, vol. 33, no. 4, pp. 915-926, Juillet 1995. FP soil moisture 0 100% 100% CP soil moisture
Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering Estimation of FR over bare surfaces identified by the conformity coefficient Compact PolSAR applications: Estimate of soil moisture is possible over bare surfaces selected by  μ   and using Dubois et al. Algorithm – RMS error of 2% over AIRSAR L-band data    Can we use this type of data ? Let’s see PolSAR applications 1) soil moisture estimate 2) biomass estimate (FP, FP reconstructed from CP and CP)
Backscattering coefficients vs measured biomass – RAMSES P-band data over Nezer forest (HV) (RR) (RH)
Biomass estimate vs  in situ  measurements – Nezer forest RMS error=6.25 tons/ha RMS error=6.63 tons/ha RMS error=12.2 tons/ha RMS error=5.8 tons/ha
Biomass map – Nezer forest Measured biomass 0   120 tons/ha
ROI biomass map – Nezer forest Measured biomass B HV B HV’ B RR
Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering Estimation of FR over bare surfaces identified by the conformity coefficient Compact PolSAR applications: Estimate of soil moisture is possible over bare surfaces selected by  μ   and using Dubois et al. Algorithm – RMS error of 2% over AIRSAR L-band data Quantify biomass with HV’ (RMS error : 6,25 tons/ha) and RR (6,63 tons/ha) instead of HV (5,8 tons/ha) Add interferometry concept   compact-PolInSAR potentials
Compact-PolInSAR vs full-PolInSAR Compact-PolInSAR (C-PolInSAR) information is represented by a  4x4  matrix Full-PolInSAR (F-PolInSAR) information is represented by a  6x6  matrix
PolInSAR applications – vegetation height estimate Flynn et al. algorithm T. Flynn, M. Tabb et R. Carande,  Estimation of Coherence Region Shapes in Polarimetric SAR Interferometry , AIRSAR Workshop, Mars 2002.
Phase centers height (FP & CP) Phase centers height FP Phase centers height CP Nezer forest, P-band
Vegetation height – Nezer forest P-band S.R. Cloude and K.P. Papathanassiou,  A 3-Stage Inversion Process for Polarimetric SAR Interferometry , IEE Proceedings Radar, Sonar & Navigation, vol. 150, no. 3, June 2003. RMS : 1m, Bias : 0,4m (FP) RMS : 1,1m, Bias : 0,4m (CP) RMS : 2,45m, Bias : -1,8m (FP) RMS : 2,5m, Bias : -1,78m (CP)
Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering Estimation of FR over bare surfaces identified by the conformity coefficient Compact PolSAR applications: Estimate of soil moisture is possible over bare surfaces selected by  μ   and using Dubois et al. Algorithm – RMS error of 2% over AIRSAR L-band data Quantify biomass with HV’ (RMS error : 6,25 tons/ha) and RR (6,63 tons/ha) instead of HV (5,8 tons/ha) Compact PolInSAR applications: C-PolInSAR coherence region < F-PolInSAR coherence region C-PolInSAR coherence region  F-PolInSAR coherence region System implications   Calibration
Calibration of a CP system CP system: System  has to be perfect before transmission  because it is not possible to correct afterwards  With a perfect transmission    4 unknowns  δ 1 ,  δ 2 ,  Ω ,  f 1 α ~ 1 β ~ -jδ f   2 ~1
Calibration of a CP system Dihedral at 0° Dihedral at 45° Expansion of Trihedral at 0°
Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering Estimation of FR over bare surfaces identified by the conformity coefficient Compact PolSAR applications: Estimate of soil moisture is possible over bare surfaces selected by  μ   and using Dubois et al. Algorithm – RMS error of 2% over AIRSAR L-band data Quantify biomass with HV’ (RMS error : 6,25 tons/ha) and RR (6,63 tons/ha) instead of HV (5,8 tons/ha) Compact PolInSAR applications: C-PolInSAR coherence region < F-PolInSAR coherence region C-PolInSAR coherence region  F-PolInSAR coherence region Calibration Require a perfect transmission Suggest 3 external targets to calibrate a CP system

More Related Content

PDF
bettenhausen_igarss11_talk.pdf
grssieee
 
PPTX
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
grssieee
 
PPTX
Synthetic aperture radar
Mahesh pawar
 
PPTX
Gps measurements
Vrince Vimal
 
PDF
Setellite image sensors
Md Asif Hasan
 
PPTX
Sar
Ashok Selsan
 
PPTX
GPS Orbits
Vrince Vimal
 
bettenhausen_igarss11_talk.pdf
grssieee
 
SIXTEEN CHANNEL, NON-SCANNING AIRBORNE LIDAR SURFACE TOPOGRAPHY (LIST) SIMULATOR
grssieee
 
Synthetic aperture radar
Mahesh pawar
 
Gps measurements
Vrince Vimal
 
Setellite image sensors
Md Asif Hasan
 
GPS Orbits
Vrince Vimal
 

What's hot (20)

PPT
Validation_SWOT_ground_airborne_Fjortoft.ppt
grssieee
 
PPTX
1 IGARSS 2011 JPSS Monday Goldberg.pptx
grssieee
 
PPTX
Sat fc j-intro_mw_remotesensing
khondekarLutfulHassa
 
PPTX
IGARSS_DesDyni_ALOS_dft2.pptx
grssieee
 
PPTX
Presentation on the background theory of InSAR
SERC at Carleton College
 
PPTX
Gpr survey of utica bridges 0412
Deb Evans Lmt
 
PPT
Pierdicca-Igarss2011_july2011.ppt
grssieee
 
PPT
ground penetration rader
Amir Khan
 
PDF
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
Sérgio Sacani
 
PPS
Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...
debasishagri
 
PDF
Introduction to sar-marjolaine_rouault
Naivedya Mishra
 
PPTX
GPS processing techniques & some applications
Vrince Vimal
 
PPT
Cai lomver gold2010
grssieee
 
PDF
Propagation Effects for Radar&Comm Systems
Jim Jenkins
 
PPT
Surveying ii ajith sir class5
SHAMJITH KM
 
PPTX
GROUND PENETRATING RADAR(GPR) ppt
Himanshu Yadav
 
PDF
Radar 2009 a 15 parameter estimation and tracking part 1
Forward2025
 
PDF
4.11 radar cross section (rcs)
Javier Gismero
 
PPT
Fukao Plenary.ppt
grssieee
 
PPTX
IGARSS_2011_XB_v007.pptx
grssieee
 
Validation_SWOT_ground_airborne_Fjortoft.ppt
grssieee
 
1 IGARSS 2011 JPSS Monday Goldberg.pptx
grssieee
 
Sat fc j-intro_mw_remotesensing
khondekarLutfulHassa
 
IGARSS_DesDyni_ALOS_dft2.pptx
grssieee
 
Presentation on the background theory of InSAR
SERC at Carleton College
 
Gpr survey of utica bridges 0412
Deb Evans Lmt
 
Pierdicca-Igarss2011_july2011.ppt
grssieee
 
ground penetration rader
Amir Khan
 
An absorption profile centred at 78 megahertz in the sky-averaged spectrum
Sérgio Sacani
 
Retrieval & monitoring of atmospheric green house gases (gh gs) through remot...
debasishagri
 
Introduction to sar-marjolaine_rouault
Naivedya Mishra
 
GPS processing techniques & some applications
Vrince Vimal
 
Cai lomver gold2010
grssieee
 
Propagation Effects for Radar&Comm Systems
Jim Jenkins
 
Surveying ii ajith sir class5
SHAMJITH KM
 
GROUND PENETRATING RADAR(GPR) ppt
Himanshu Yadav
 
Radar 2009 a 15 parameter estimation and tracking part 1
Forward2025
 
4.11 radar cross section (rcs)
Javier Gismero
 
Fukao Plenary.ppt
grssieee
 
IGARSS_2011_XB_v007.pptx
grssieee
 
Ad

Similar to TU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEM (20)

PPT
Compact Polarimetry Potentials.ppt
grssieee
 
PPT
3_Igarss2011RFI.ppt
grssieee
 
PPT
radar-ppt
M Singgih Pulukadang
 
PPT
IGARSS11_FFBP_CSAR_v3.ppt
grssieee
 
PPT
IGARSS11_FFBP_CSAR_v3.ppt
grssieee
 
PPT
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
grssieee
 
PPT
FR4.T05.1.ppt
grssieee
 
PPTX
4_bindlish_igarss2011.pptx
grssieee
 
PPT
Pierdicca-Igarss2011_july2011.ppt
grssieee
 
PPT
TH1.L09 - INVESTIGATIONS ON TOPS INTERFEROMETRY WITH TERRASAR-X
grssieee
 
PPT
ChuePoh_IGARSS2011.ppt
grssieee
 
PPT
ChuePoh_IGARSS2011.ppt
grssieee
 
PPT
Lecture for landsat
GeoMedeelel
 
PPTX
Pulse Doppler Effect
Tariq kanher
 
PPT
TH2.L09.2 - AGRICULTURAL LAND COVER FROM SHORT REVISIT SAR DATA – SENTINEL-1...
grssieee
 
PPT
MO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SAR
grssieee
 
PPT
AT_MB_MM_IGARSS2011.ppt
grssieee
 
PPTX
IGARSS_Brown_Aquarius_2011.pptx
grssieee
 
PPTX
talk_igarss11_st.pptx
grssieee
 
PDF
In tech recent-advances_in_synthetic_aperture_radar_enhancement_and_informati...
Naivedya Mishra
 
Compact Polarimetry Potentials.ppt
grssieee
 
3_Igarss2011RFI.ppt
grssieee
 
IGARSS11_FFBP_CSAR_v3.ppt
grssieee
 
IGARSS11_FFBP_CSAR_v3.ppt
grssieee
 
TH4.L10.2: SMAPEX: SOIL MOISTURE ACTIVE PASSIVE REMOTE SENSING EXPERIMENT FOR...
grssieee
 
FR4.T05.1.ppt
grssieee
 
4_bindlish_igarss2011.pptx
grssieee
 
Pierdicca-Igarss2011_july2011.ppt
grssieee
 
TH1.L09 - INVESTIGATIONS ON TOPS INTERFEROMETRY WITH TERRASAR-X
grssieee
 
ChuePoh_IGARSS2011.ppt
grssieee
 
ChuePoh_IGARSS2011.ppt
grssieee
 
Lecture for landsat
GeoMedeelel
 
Pulse Doppler Effect
Tariq kanher
 
TH2.L09.2 - AGRICULTURAL LAND COVER FROM SHORT REVISIT SAR DATA – SENTINEL-1...
grssieee
 
MO4.L09 - POTENTIAL AND LIMITATIONS OF FORWARD-LOOKING BISTATIC SAR
grssieee
 
AT_MB_MM_IGARSS2011.ppt
grssieee
 
IGARSS_Brown_Aquarius_2011.pptx
grssieee
 
talk_igarss11_st.pptx
grssieee
 
In tech recent-advances_in_synthetic_aperture_radar_enhancement_and_informati...
Naivedya Mishra
 
Ad

More from grssieee (20)

PDF
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
grssieee
 
PDF
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
grssieee
 
PPTX
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
grssieee
 
PPT
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
grssieee
 
PPTX
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
grssieee
 
PPTX
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
grssieee
 
PPT
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
grssieee
 
PPT
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
PPT
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
PPT
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
PDF
Test
grssieee
 
PPT
test 34mb wo animations
grssieee
 
PPT
Test 70MB
grssieee
 
PPT
Test 70MB
grssieee
 
PDF
2011_Fox_Tax_Worksheets.pdf
grssieee
 
PPT
DLR open house
grssieee
 
PPT
DLR open house
grssieee
 
PPT
DLR open house
grssieee
 
PPT
Tana_IGARSS2011.ppt
grssieee
 
PPT
Solaro_IGARSS_2011.ppt
grssieee
 
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
grssieee
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
grssieee
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
grssieee
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
grssieee
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
grssieee
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
grssieee
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
grssieee
 
Test
grssieee
 
test 34mb wo animations
grssieee
 
Test 70MB
grssieee
 
Test 70MB
grssieee
 
2011_Fox_Tax_Worksheets.pdf
grssieee
 
DLR open house
grssieee
 
DLR open house
grssieee
 
DLR open house
grssieee
 
Tana_IGARSS2011.ppt
grssieee
 
Solaro_IGARSS_2011.ppt
grssieee
 

TU2.L09 - POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEM

  • 1. POTENTIALS OF A COMPACT POLARIMETRIC SAR SYSTEM My-Linh Truong-Loï, ONERA/CNES/IETR Pascale Dubois-Fernandez, ONERA Eric Pottier, IETR – UMR CNRS 6164 Anthony Freeman, JPL Jean-Claude Souyris, CNES
  • 2. Objectives Missions dedicated to global environmental change monitoring Low frequency radar Ionosphere interaction  Faraday rotation Compact polarimetry Transmitting a circular polarized wave No depolarization anymore Receiving two orthogonal polarized waves Estimate Faraday rotation High power of penetration Dual-pol system Large swath Dual-pol system
  • 3. Outline Background – compact polarimetry Faraday rotation estimate Bare soil surfaces selection Faraday rotation estimate PolSAR applications Soil moisture estimate Biomass estimate PolInSAR applications Forest height estimate Calibration
  • 4. Background - Compact Polarimetry 1/2 π /4 mode: one transmission at 45° and two orthogonal receptions (linear H & V, circular right & left,…) π /2 mode: one circular transmission and two orthogonal receptions (linear H & V, circular right & left,…) Hybrid polarity : particular case of π /2 : one circular transmission and two linear receptions (H&V)
  • 5. π /4-mode potentials: reconstruction of the PolSAR information (1) Iterative algorithm based on: Reflection symmetry Coherence between co-polarized channels π /2-mode potentials: avoid Faraday rotation in transmission (2) Transmit a circular polarized wave Adaptation of the reconstruction of the PolSAR information is possible Hybrid polarity potentials: decomposition of natural targets (3) m - δ method based on Stokes parameters Background - Compact Polarimetry 2/2 (1) J-C. Souyris, P. Imbo, R. FjØrtoft, S. Mingot and J-S. Lee, Compact Polarimetry Based on Symmetry Properties of Geophysical Media : The π/4 Mode , IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 3, Mars 2005. (2) P. C. Dubois-Fernandez, J-C. Souyris, S. Angelliaume et F. Garestier, The Compact Polarimetry Alternative for Spaceborne SAR at Low Frequency , IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 10, Octobre 2008. (3) R. K. Raney, Hybrid-Polarity SAR Architecture , IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 11, Novembre 2007.
  • 6. Conclusion π /2 mode is required for low frequency spaceborne radar How to estimate/correct for Faraday rotation in reception ?  Bare soil surfaces are first required
  • 7. The conformity coefficient Double-bounce Volume Surface S HV ~ 0 S HH , S VV correlated Arg<S HH S VV *> ≈ 180° -1< μ < t 2 S HV is significant S HH , S VV less correlated t 2 < μ <t 1 S HV ~ 0 S HH , S VV correlated Arg<S HH S VV *> ≈ 0 t 1 < μ <1 This coefficient Can be shown to be FR independent can be used with CP data as well as FP data discriminates 3 different types of scattering M-L. Truong-Loï, A. Freeman, P. C. Dubois-Fernandez and E. Pottier, Estimation of Soil Moisture and Faraday Rotation From Bare Surfaces Using Compact Polarimetry , IEEE Transactions on Geoscience and Remote Sensing, vol. 47, no. 11, Novembre 2009.
  • 8. Conformity coefficient versus Cloude-Pottier Confusion matrices Conformity coefficient thresholds S V DB -1 -0.2 0.32 1
  • 9. Conformity coefficient vs Cloude-Pottier and Freeman-Durden classifications, RAMSES P-band data over St Germain d’Esteuil, France S. R. Cloude et E. Pottier, A Review of Target Decomposition Theorems in Radar Polarimetry , IEEE Transactions on Geoscience and Remote Sensing, vol. 34, no. 2, Mars 1996. A. Freeman et S. L. Durden, A Three-Component Scattering Model for Polarimetric SAR Data , IEEE Transactions on Geoscience and Remote Sensing, vol. 36, no. 3, Mai 1998. P v > 0.6 P d & P v > 0.3 P s P s >P d P d Conformity coefficient Cloude-Pottier classification Freeman-Durden classification Volume Double-bounce Surface
  • 10. Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering We can select bare soil surfaces with compact-pol data  Is it now possible to correct for FR with compact-pol data ?
  • 11. Flow diagram of the process   e FP calibrated data (Ramses, PALSAR) Select bare surfaces (by using the conformity coefficient) Estimate the Faraday rotation Synthesized CP data (add Faraday rotation) (2) (3)
  • 12. Faraday rotation estimate over PALSAR L-band data Full polarimetric data Over bare surfaces μ >0.2  Compact polarimetric data Thanks to the ASF for providing the data.
  • 13. Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering Estimation of FR over bare surfaces identified by the conformity coefficient Now FR is corrected  Can we use this type of data ? Let’s see PolSAR applications 1) soil moisture estimate
  • 14. FP vs CP signatures S HV ~ 0 over bare soil surfaces Window size : 7x7 σ Hh / σ Rh σ Vv / σ Rv Stdv: <2dB σ Hh (dB) σ Rh (dB) 10 10 -30 -30 10 10 σ Vv (dB) σ Rv (dB)
  • 15. FP vs CP soil moisture – Dubois et al. algorithm Stdv : 4% CP/FP soil moisture Estimated soil moisture CP & FP vs ground truth Stdv : 2% RAMSES L-band data, Le Moulin du Fâ, France AIRSAR/WASHITA L-band data over Chickasha area P. C. Dubois, J. van Zyl et T. Engman, Measuring Soil Moisture with Imaging Radars, IEEE Transactions on Geoscience and Remote Sensing, vol. 33, no. 4, pp. 915-926, Juillet 1995. FP soil moisture 0 100% 100% CP soil moisture
  • 16. Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering Estimation of FR over bare surfaces identified by the conformity coefficient Compact PolSAR applications: Estimate of soil moisture is possible over bare surfaces selected by μ and using Dubois et al. Algorithm – RMS error of 2% over AIRSAR L-band data  Can we use this type of data ? Let’s see PolSAR applications 1) soil moisture estimate 2) biomass estimate (FP, FP reconstructed from CP and CP)
  • 17. Backscattering coefficients vs measured biomass – RAMSES P-band data over Nezer forest (HV) (RR) (RH)
  • 18. Biomass estimate vs in situ measurements – Nezer forest RMS error=6.25 tons/ha RMS error=6.63 tons/ha RMS error=12.2 tons/ha RMS error=5.8 tons/ha
  • 19. Biomass map – Nezer forest Measured biomass 0 120 tons/ha
  • 20. ROI biomass map – Nezer forest Measured biomass B HV B HV’ B RR
  • 21. Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering Estimation of FR over bare surfaces identified by the conformity coefficient Compact PolSAR applications: Estimate of soil moisture is possible over bare surfaces selected by μ and using Dubois et al. Algorithm – RMS error of 2% over AIRSAR L-band data Quantify biomass with HV’ (RMS error : 6,25 tons/ha) and RR (6,63 tons/ha) instead of HV (5,8 tons/ha) Add interferometry concept  compact-PolInSAR potentials
  • 22. Compact-PolInSAR vs full-PolInSAR Compact-PolInSAR (C-PolInSAR) information is represented by a 4x4 matrix Full-PolInSAR (F-PolInSAR) information is represented by a 6x6 matrix
  • 23. PolInSAR applications – vegetation height estimate Flynn et al. algorithm T. Flynn, M. Tabb et R. Carande, Estimation of Coherence Region Shapes in Polarimetric SAR Interferometry , AIRSAR Workshop, Mars 2002.
  • 24. Phase centers height (FP & CP) Phase centers height FP Phase centers height CP Nezer forest, P-band
  • 25. Vegetation height – Nezer forest P-band S.R. Cloude and K.P. Papathanassiou, A 3-Stage Inversion Process for Polarimetric SAR Interferometry , IEE Proceedings Radar, Sonar & Navigation, vol. 150, no. 3, June 2003. RMS : 1m, Bias : 0,4m (FP) RMS : 1,1m, Bias : 0,4m (CP) RMS : 2,45m, Bias : -1,8m (FP) RMS : 2,5m, Bias : -1,78m (CP)
  • 26. Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering Estimation of FR over bare surfaces identified by the conformity coefficient Compact PolSAR applications: Estimate of soil moisture is possible over bare surfaces selected by μ and using Dubois et al. Algorithm – RMS error of 2% over AIRSAR L-band data Quantify biomass with HV’ (RMS error : 6,25 tons/ha) and RR (6,63 tons/ha) instead of HV (5,8 tons/ha) Compact PolInSAR applications: C-PolInSAR coherence region < F-PolInSAR coherence region C-PolInSAR coherence region F-PolInSAR coherence region System implications  Calibration
  • 27. Calibration of a CP system CP system: System has to be perfect before transmission because it is not possible to correct afterwards With a perfect transmission  4 unknowns δ 1 , δ 2 , Ω , f 1 α ~ 1 β ~ -jδ f 2 ~1
  • 28. Calibration of a CP system Dihedral at 0° Dihedral at 45° Expansion of Trihedral at 0°
  • 29. Conclusion π /2 mode is required for low frequency spaceborne radar Introduction of a parameter : the conformity coefficient Is FR-independent Allows to distinguish 3 types of scattering Estimation of FR over bare surfaces identified by the conformity coefficient Compact PolSAR applications: Estimate of soil moisture is possible over bare surfaces selected by μ and using Dubois et al. Algorithm – RMS error of 2% over AIRSAR L-band data Quantify biomass with HV’ (RMS error : 6,25 tons/ha) and RR (6,63 tons/ha) instead of HV (5,8 tons/ha) Compact PolInSAR applications: C-PolInSAR coherence region < F-PolInSAR coherence region C-PolInSAR coherence region F-PolInSAR coherence region Calibration Require a perfect transmission Suggest 3 external targets to calibrate a CP system

Editor's Notes

  • #9: These thresholds have been chosen and validated over several scenes.