SlideShare a Scribd company logo
Practical Guide to Run an IEEE
802.15.4 Network with 6LoWPAN
under Linux
Netdev 2016, Tokyo, Japan
Stefan Schmidt
stefan@osg.samsung.com
Samsung Open Source Group
Agenda
● Motivation
● Linux-wpan Project
● Wpan-tools
● Hardware and Basic Setup
● Communication with RIOT and Contiki
● Link Layer Security
● Routing: Route-over and Mesh-under
Motivation
IEEE 802.15.4
● IEEE specifications for Low-Rate Wireless
Personal Area Networks (LR-WPANs)
● Not only low-rate, but also low-power
● Designed for small sensors to run years
on battery with the right duty cycle
● 127 bytes MTU and 250 kbit/s
● PHY and MAC layers used in ZigBee
6LoWPAN
● Physical and MAC layer defined by IEEE 802.15.4
from 2003 onwards
● Series of IETF specifications from 2007 onwards
(RFCs 4944, 6282, etc)
L3 Network Layer
L4 Transport Layer
L1 Physical Layer
L5 Application Layer
L2 Data Link Layer
IP
TCP | UDP | ICMP
Ethernet PHY
Application
Ethernet MAC
IPv6
UDP | ICMPv6
6LoWPAN
IEEE 802.15.4 PHY
Application
IEEE 802.15.4 MAC
The Header Size Problem
● Worst-case scenario calculations
● Maximum frame size in IEEE 802.15.4: 127 bytes
● Reduced by the max. frame header (25 bytes): 102 bytes
● Reduced by highest link-layer security (21 bytes): 81 bytes
● Reduced by standard IPv6 header (40 bytes): 41 bytes
● Reduced by standard UDP header (8 bytes): 33 bytes
● This leaves only 33 bytes for actual payload
● The rest of the space is used by headers (~ 3:1 ratio)
Frame Header (25) LLSEC (21) IPv6 Header (40) UDP Payload (33)
Header Size Compressed
● IPv6 with link-local and UDP on top
● IPHC with NHC for UDP
● The 48 bytes IPv6 + UDP header could in
the best cases be reduced to 6 bytes
Frame Header (25) LLSEC (21) 6 Payload (75)
Dispatch (1) LOWPAN_IPHC (1) LOWPAN_NHC (1) UDP Ports (1) UDP Checksum (2)
Linux-wpan
● Platforms already running Linux would benefit from
native 802.15.4 and 6LoWPAN subsystems
● 802.15.4 transceivers can easily be added to
existing hardware designs
● Battery powered sensors on the other hand are
more likely to run an OS like RIOT or Contiki
● Example 1: Google OnHub AP which already comes
with, de-activated, 802.15.4 hardware
● Example 2: Ci40 Creator board as home IoT hub
Linux-wpan Project
Linux-wpan Project
● IEEE 802.15.4 and 6LoWPAN support in mainline Linux
● Started in 2008 as linux-zigbee project on SourceForge
● First steps of mainlining in 2012
● New project name to avoid confusion: linux-wpan
● New maintainer: Alexander Aring, Pengutronix
● Normal kernel development model
● Patches are posted and reviewed on the mailing list
● Accepted patches find their way through bluetooth-next,
wireless and netdev towards Linus tree
Linux-wpan Community
● Small community: 2 core devs and ~4
additional people for specific drivers
● Linux-wpan mailing list (~94 people)
● #linux-wpan on Freenode (~25 people)
● https://github.com/linux-wpan (no PR model)
● http://wpan.cakelab.org used for wpan-tools
releases
Current Status
● ieee802154 layer with softMAC driver for various
transceivers
●
6LoWPAN with fragmentation and reassembly
(RFC 4944)
● Header compression with IPHC and NHC for UDP
(RFC 6282), shared with BT subsystem
●
Link Layer Security
●
Testing between Linux, RIOT and Contiki
●
Mainline 4.1 onwards recommended
Development Boards
● Ci40 Creator (CA-8210)
● Raspberry Pi with Openlabs shield (AT86RF233)
● ARTIK 5/10 (802.15.4 network soc)
● Various transceivers can be hooked up via SPI
(all drivers have devicetree bindings)
● ATUSB USB dongle
6LoWPAN Fragmentation
● IPv6 requires the link to allow for a MTU of at least 1280
bytes
● This is impossible to handle in the 127 bytes MTU of IEEE
802.15.4
● 6LoWPAN 11 bit fragmentation header allows for 2048
bytes packet size with fragmentation
● But fragmentation can still lead to bad performance in
lossy networks, best to avoid it in the first place
IPv6 Header Compression (IPHC)
●
Defining some default values in IPv6 header
– Version == 6, traffic class & flow-label == 0, hop-limit only well-known values (1, 64, 255)
– Remove the payload length (available in 6LoWPAN fragment header or data-link header)
●
IPv6 stateless address auto configuration based on L2 address
– Omit the IPv6 prefix (global known by network, link-local defined by compression
(FE80::/64)
– Extended: EUI-64 L2 address use as is
– Short: pseudo 48 bit address based short address: PAN_ID:16 bit zero:SHORT_ADDRESS
Version
Source Address
(128 bit)
Destination Address
(128 bit)
Traffic Class Flow Label (20 bit)
Payload Length (16 bit) Next Header Hop Limit (8 bit)
Source Address
Dispatch
6LoWPAN Header IPHC multi-hop (7 bytes)
Hop LimitLoWPAN_IPHC
Destination Address
Dispatch
6LoWPAN Header IPHC link-local (2 bytes)
LoWPAN_IPHC
Next Header Compression
● NHC IPv6 Extension Header compression (RFC6282)
– Hop-by-Hop, Routing Header, Fragment Header, Destination
Options Header, Mobility Header
● NHC UDP Header compression (RFC6282)
– Compressing ports range to 4 bits
– Allows to omit the UDP checksum for cases where upper layers
handle message integrity checks
● GHC: LZ-77 style compression with byte codes (RFC7400)
– Appending zeroes, back referencing to a static dictionary and copy
– Useful for DTLS or RPL (addresses elided from dictionary)
Wpan-tools
● Netlink interface ideas as well as code borrowed from the
iw utility
● Used to configure PHY and MAC layer parameters
● Including channel, PAN ID, power setting, short address,
frame retries, etc
● Version 0.7 with network namespace support released two
weeks ago
● Packaged by some distributions (Fedora and Debian up to
date, Ubuntu on 0.5, OpenSUSE, Gentoo, Arch, etc missing)
Hardware and Basic Setup
Hardware Support
● Mainline drivers for at86rf2xx, mrf24j40, cc2520,
atusb and adf7242
● Pending driver for ca-8210
● Old out of tree driver for Xbee
● Most transceiver easy to hook up to SPI and some GPIOs
● ATUSB available as USB dongle to be used on your
normal workstation (sold out but a new batch is
being produced)
Virtual Driver
● Fake loopback driver (similar to hwsim of wireless)
● Great for testing
● Support for RIOT and OpenThread to use this when
running as native Linux process
● Will help interop testing between the different
network stacks in an virtual environment
$ modprobe fakelb numlbs=4
$ Configure for Linux, RIOT, OpenThread and monitor
Interface Bringup
● The wpan0 interface shows up automatically
● Setting up the basic parameters:
$ ip link set lowpan0 down
$ ip link set wpan0 down
$ iwpan dev wpan0 set pan_id 0xabcd
$ iwpan phy phy0 set channel 0 26
$ ip link add link wpan0 name lowpan0 type lowpan
$ ip link set wpan0 up
$ ip link set lowpan0 up
Monitoring
● Setting up the interface in promiscuous mode:
$ iwpan dev wpan0 del
$ iwpan phy phy0 interface add monitor%d type monitor
$ iwpan phy phy0 set channel 0 26
$ ip link set monitor0 up
$ wireshark -i monitor0
● No automatic channel hopping (you can change the
channel manually in the background)
Communication with RIOT &
Contiki
RIOT
● “The friendly Operating System for the
Internet of Things” (LGPL)
● Testing against Linux-wpan part of the
release testing process for RIOT
● Active developer discussions and bug
fixing between projects
Contiki
● “The Open Source OS for the Internet of Things”
(BSD)
● Very fragmented project
● Sadly many forks for academic or commercial
purpose which have a hard time to get merged
● Still an important role as IoT OS for tiny devices
Comparison
Feature Linux RIOT Contiki
IEEE 802.15.4: data and ACK frames ✔ ✔ ✔
IEEE 802.15.4: beacon and MAC command frames ✘ ✘ ✘
IEEE 802.15.4: scanning, joining, PAN coordinator ✘ ✘ ✘
IEEE 802.15.4: link layer security ✔ ✘ ✔
6LoWPAN: frame encapsulation, fragmentation, addressing (RFC 4944) ✔ ✔ ✔
6LoWPAN: IP header compression (RFC 6282) ✔ ✔ ✔
6LoWPAN: next header compression, UDP only (RFC 6282) ✔ ✔ ✔
6LoWPAN: generic header compression (RFC 7400) ✘ ✘ ✘
6LoWPAN: neighbour discovery optimizations (RFC 6775) Partial ✔ ✘
RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks ✔ ✔ ✔
Mesh link establishment draft ✘ ✘ ✘
Others
● Mbed OS from ARM: network stack is
closed source so nothing to test against
● Zephyr: network stack from Contiki used
right now but a new one is planned
Link Layer Security
Link Layer Security
● Specified by IEEE 802.15.4
● It defines confidentiality (AES-CTR), integrity (AES
CBC-MAC) and encryption and authentication (AES
CCM) security suites
● Key handling, key exchange, roll over, etc is not defined
● Tested Linux against Linux and Contiki 3.0
● No way to test against RIOT as they have no LLSEC
support right now
LLSEC Linux-wpan
● Needs the llsec branch in wpan-tools for
configuration
● CONFIG_IEEE802154_NL802154_EXPERIMENTAL
$ iwpan dev wpan0 set security 1
$ iwpan dev wpan0 key add 2 $KEY 0 $PANID 3 $EXTADDR
$ iwpan dev wpan0 seclevel add 0xff 2 0
$ iwpan dev wpan0 device add 0 $PANID $SHORTADDR $EXTADDR 0
0
LLSEC Contiki 3.0
● You need the following Contiki build options
configured in your project-conf.h to make use of
LLSEC with network wide key:
#define NETSTACK_CONF_LLSEC noncoresec_driver
#define LLSEC802154_CONF_SECURITY_LEVEL FRAME802154_SECURITY_LEVEL_ENC_MIC_32
#define NONCORESEC_CONF_KEY { 
0x00, 0x01, 0x02, 0x03, 
0x04, 0x05, 0x06, 0x07, 
0x08, 0x09, 0x0A, 0x0B, 
0x0C, 0x0D, 0x0E, 0x0F, 
}
Routing: Mesh-under and
Route-over
Mesh-under
● Allows fast forwarding of packets in a mesh without travelling
the IP stack
● IEEE 802.15.4 does not include mesh routing in the MAC specification
● Thus the mesh implementations sit above the MAC but below the
network layer
● Various (proprietary) implementations
● 6LoWPAN specification has a field for mesh headers
● No support in Linux-wpan for mesh header as of now
● Lost fragments of bigger packets will cause troubles
● Mesh Link Establishment draft at IETF
RPL
● IPv6 Routing Protocol for Low-Power and
Lossy Networks (RFC6550)
● Route over protocol
● Implementations in RIOT and Contiki
● Unstrung as Linux userspace reference
● Bit rotted in-kernel RPL demo patches on
the internet
Future
Linux-wpan Future
●
Implement missing parts of the IEEE 802.15.4 specification
● Beacon and MAC command frame support
● Coordinator support in MAC layer and wpan-tools
● Scanning for available networks
● Improve existing drivers and add support for new hardware
● Neighbour Discovery Optimizations (RFC 6775), started
●
Evaluate running OpenThread on top of linux-wpan
●
Configuration interface for various header compression
modules
●
Expose information for route-over and mesh-under protocols
Summary
Take away
● Running an IEEE 802.15.4 wireless
network under Linux is not hard
● Tooling and kernel support is already
there
● Border router scenario most likely use
case but nodes or routers also possible
Thank you!
http://www.slideshare.net/SamsungOSG
Ad

More Related Content

What's hot (20)

Introduction to OpenFlow
Introduction to OpenFlowIntroduction to OpenFlow
Introduction to OpenFlow
Joel W. King
 
Ethernet protocol
Ethernet protocolEthernet protocol
Ethernet protocol
Tom Chou
 
Autobahn primer
Autobahn primerAutobahn primer
Autobahn primer
Robbie Byrd
 
Distributed system architecture
Distributed system architectureDistributed system architecture
Distributed system architecture
Yisal Khan
 
Web servers for the Internet of Things
Web servers for the Internet of ThingsWeb servers for the Internet of Things
Web servers for the Internet of Things
Alexandru Radovici
 
Tutorial: IPv6-only transition with demo
Tutorial: IPv6-only transition with demoTutorial: IPv6-only transition with demo
Tutorial: IPv6-only transition with demo
APNIC
 
Chapter1 computer introduction note
Chapter1  computer introduction note Chapter1  computer introduction note
Chapter1 computer introduction note
arvind pandey
 
Routing
RoutingRouting
Routing
Saima Azam
 
Routing ppt
Routing pptRouting ppt
Routing ppt
ArpiSaxena1
 
Unit 2,3,4 _ Internet of Things A Hands-On Approach (Arshdeep Bahga, Vijay Ma...
Unit 2,3,4 _ Internet of Things A Hands-On Approach (Arshdeep Bahga, Vijay Ma...Unit 2,3,4 _ Internet of Things A Hands-On Approach (Arshdeep Bahga, Vijay Ma...
Unit 2,3,4 _ Internet of Things A Hands-On Approach (Arshdeep Bahga, Vijay Ma...
Selvaraj Seerangan
 
802.11w Tutorial
802.11w Tutorial802.11w Tutorial
802.11w Tutorial
AirTight Networks
 
Ipv6
Ipv6Ipv6
Ipv6
satish 486
 
Unicasting , Broadcasting And Multicasting New
Unicasting , Broadcasting And Multicasting NewUnicasting , Broadcasting And Multicasting New
Unicasting , Broadcasting And Multicasting New
techbed
 
Http
HttpHttp
Http
Luavis Kang
 
Routing protocols
Routing protocolsRouting protocols
Routing protocols
Sourabh Goyal
 
Transitioning IPv4 to IPv6
Transitioning IPv4 to IPv6Transitioning IPv4 to IPv6
Transitioning IPv4 to IPv6
Jhoni Guerrero
 
Routers and Routing Configuration
Routers and Routing ConfigurationRouters and Routing Configuration
Routers and Routing Configuration
yasir1122
 
IEEE 802 Standard for Computer Networks
IEEE 802 Standard for Computer NetworksIEEE 802 Standard for Computer Networks
IEEE 802 Standard for Computer Networks
Pradeep Kumar TS
 
Election algorithms
Election algorithmsElection algorithms
Election algorithms
Ankush Kumar
 
DHCP
DHCPDHCP
DHCP
Kashif Latif
 
Introduction to OpenFlow
Introduction to OpenFlowIntroduction to OpenFlow
Introduction to OpenFlow
Joel W. King
 
Ethernet protocol
Ethernet protocolEthernet protocol
Ethernet protocol
Tom Chou
 
Autobahn primer
Autobahn primerAutobahn primer
Autobahn primer
Robbie Byrd
 
Distributed system architecture
Distributed system architectureDistributed system architecture
Distributed system architecture
Yisal Khan
 
Web servers for the Internet of Things
Web servers for the Internet of ThingsWeb servers for the Internet of Things
Web servers for the Internet of Things
Alexandru Radovici
 
Tutorial: IPv6-only transition with demo
Tutorial: IPv6-only transition with demoTutorial: IPv6-only transition with demo
Tutorial: IPv6-only transition with demo
APNIC
 
Chapter1 computer introduction note
Chapter1  computer introduction note Chapter1  computer introduction note
Chapter1 computer introduction note
arvind pandey
 
Routing ppt
Routing pptRouting ppt
Routing ppt
ArpiSaxena1
 
Unit 2,3,4 _ Internet of Things A Hands-On Approach (Arshdeep Bahga, Vijay Ma...
Unit 2,3,4 _ Internet of Things A Hands-On Approach (Arshdeep Bahga, Vijay Ma...Unit 2,3,4 _ Internet of Things A Hands-On Approach (Arshdeep Bahga, Vijay Ma...
Unit 2,3,4 _ Internet of Things A Hands-On Approach (Arshdeep Bahga, Vijay Ma...
Selvaraj Seerangan
 
Unicasting , Broadcasting And Multicasting New
Unicasting , Broadcasting And Multicasting NewUnicasting , Broadcasting And Multicasting New
Unicasting , Broadcasting And Multicasting New
techbed
 
Routing protocols
Routing protocolsRouting protocols
Routing protocols
Sourabh Goyal
 
Transitioning IPv4 to IPv6
Transitioning IPv4 to IPv6Transitioning IPv4 to IPv6
Transitioning IPv4 to IPv6
Jhoni Guerrero
 
Routers and Routing Configuration
Routers and Routing ConfigurationRouters and Routing Configuration
Routers and Routing Configuration
yasir1122
 
IEEE 802 Standard for Computer Networks
IEEE 802 Standard for Computer NetworksIEEE 802 Standard for Computer Networks
IEEE 802 Standard for Computer Networks
Pradeep Kumar TS
 
Election algorithms
Election algorithmsElection algorithms
Election algorithms
Ankush Kumar
 

Similar to Practical Guide to Run an IEEE 802.15.4 Network with 6LoWPAN Under Linux (20)

Run Your Own 6LoWPAN Based IoT Network
Run Your Own 6LoWPAN Based IoT NetworkRun Your Own 6LoWPAN Based IoT Network
Run Your Own 6LoWPAN Based IoT Network
Samsung Open Source Group
 
Adding IEEE 802.15.4 and 6LoWPAN to an Embedded Linux Device
Adding IEEE 802.15.4 and 6LoWPAN to an Embedded Linux DeviceAdding IEEE 802.15.4 and 6LoWPAN to an Embedded Linux Device
Adding IEEE 802.15.4 and 6LoWPAN to an Embedded Linux Device
Samsung Open Source Group
 
Linux-wpan: IEEE 802.15.4 and 6LoWPAN in the Linux Kernel - BUD17-120
Linux-wpan: IEEE 802.15.4 and 6LoWPAN in the Linux Kernel - BUD17-120Linux-wpan: IEEE 802.15.4 and 6LoWPAN in the Linux Kernel - BUD17-120
Linux-wpan: IEEE 802.15.4 and 6LoWPAN in the Linux Kernel - BUD17-120
Linaro
 
6LoWPAN: An Open IoT Networking Protocol
6LoWPAN: An Open IoT Networking Protocol6LoWPAN: An Open IoT Networking Protocol
6LoWPAN: An Open IoT Networking Protocol
Samsung Open Source Group
 
Introduction to Linux-wpan and Potential Collaboration
Introduction to Linux-wpan and Potential CollaborationIntroduction to Linux-wpan and Potential Collaboration
Introduction to Linux-wpan and Potential Collaboration
Samsung Open Source Group
 
[OpenStack Day in Korea 2015] Track 1-6 - ê°ˆëŒíŒŒêł ìŠ€ì˜ ìŽê”Źì•„ë‚˜, 읞프띌에 였픈소슀넌 ì˜ŹëŠŹë‹€. 귞래서 ëłŽìŽ...
[OpenStack Day in Korea 2015] Track 1-6 - ê°ˆëŒíŒŒêł ìŠ€ì˜ ìŽê”Źì•„ë‚˜, 읞프띌에 였픈소슀넌 ì˜ŹëŠŹë‹€. 귞래서 ëłŽìŽ...[OpenStack Day in Korea 2015] Track 1-6 - ê°ˆëŒíŒŒêł ìŠ€ì˜ ìŽê”Źì•„ë‚˜, 읞프띌에 였픈소슀넌 ì˜ŹëŠŹë‹€. 귞래서 ëłŽìŽ...
[OpenStack Day in Korea 2015] Track 1-6 - ê°ˆëŒíŒŒêł ìŠ€ì˜ ìŽê”Źì•„ë‚˜, 읞프띌에 였픈소슀넌 ì˜ŹëŠŹë‹€. 귞래서 ëłŽìŽ...
OpenStack Korea Community
 
FD.io Vector Packet Processing (VPP)
FD.io Vector Packet Processing (VPP)FD.io Vector Packet Processing (VPP)
FD.io Vector Packet Processing (VPP)
Kirill Tsym
 
FD.IO Vector Packet Processing
FD.IO Vector Packet ProcessingFD.IO Vector Packet Processing
FD.IO Vector Packet Processing
Kernel TLV
 
Summit 16: How to Compose a New OPNFV Solution Stack?
Summit 16: How to Compose a New OPNFV Solution Stack?Summit 16: How to Compose a New OPNFV Solution Stack?
Summit 16: How to Compose a New OPNFV Solution Stack?
OPNFV
 
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT ProtocolsSFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
South Tyrol Free Software Conference
 
dpdk acceleration techniques ncdßs ßdcnß
dpdk acceleration techniques ncdßs ßdcnßdpdk acceleration techniques ncdßs ßdcnß
dpdk acceleration techniques ncdßs ßdcnß
rxtx1024
 
Linux Kernel Status Report for IEEE 802.15.4 & 6LoWPAN
Linux Kernel Status Report for IEEE 802.15.4 & 6LoWPANLinux Kernel Status Report for IEEE 802.15.4 & 6LoWPAN
Linux Kernel Status Report for IEEE 802.15.4 & 6LoWPAN
Samsung Open Source Group
 
PLNOG16: ObsƂuga 100M pps na platformie PC , PrzemysƂaw Frasunek, PaweƂ MaƂa...
PLNOG16: ObsƂuga 100M pps na platformie PC, PrzemysƂaw Frasunek, PaweƂ MaƂa...PLNOG16: ObsƂuga 100M pps na platformie PC, PrzemysƂaw Frasunek, PaweƂ MaƂa...
PLNOG16: ObsƂuga 100M pps na platformie PC , PrzemysƂaw Frasunek, PaweƂ MaƂa...
PROIDEA
 
DPDK summit 2015: It's kind of fun to do the impossible with DPDK
DPDK summit 2015: It's kind of fun  to do the impossible with DPDKDPDK summit 2015: It's kind of fun  to do the impossible with DPDK
DPDK summit 2015: It's kind of fun to do the impossible with DPDK
Lagopus SDN/OpenFlow switch
 
DPDK Summit 2015 - NTT - Yoshihiro Nakajima
DPDK Summit 2015 - NTT - Yoshihiro NakajimaDPDK Summit 2015 - NTT - Yoshihiro Nakajima
DPDK Summit 2015 - NTT - Yoshihiro Nakajima
Jim St. Leger
 
DPDK Summit - 08 Sept 2014 - 6WIND - High Perf Networking Leveraging the DPDK...
DPDK Summit - 08 Sept 2014 - 6WIND - High Perf Networking Leveraging the DPDK...DPDK Summit - 08 Sept 2014 - 6WIND - High Perf Networking Leveraging the DPDK...
DPDK Summit - 08 Sept 2014 - 6WIND - High Perf Networking Leveraging the DPDK...
Jim St. Leger
 
L6 6 lowpan
L6 6 lowpanL6 6 lowpan
L6 6 lowpan
bimal2638
 
Stacks and Layers: Integrating P4, C, OVS and OpenStack
Stacks and Layers: Integrating P4, C, OVS and OpenStackStacks and Layers: Integrating P4, C, OVS and OpenStack
Stacks and Layers: Integrating P4, C, OVS and OpenStack
Open-NFP
 
Lagopus presentation on 14th Annual ON*VECTOR International Photonics Workshop
Lagopus presentation on 14th Annual ON*VECTOR International Photonics WorkshopLagopus presentation on 14th Annual ON*VECTOR International Photonics Workshop
Lagopus presentation on 14th Annual ON*VECTOR International Photonics Workshop
Lagopus SDN/OpenFlow switch
 
DPDK Summit - 08 Sept 2014 - NTT - High Performance vSwitch
DPDK Summit - 08 Sept 2014 - NTT - High Performance vSwitchDPDK Summit - 08 Sept 2014 - NTT - High Performance vSwitch
DPDK Summit - 08 Sept 2014 - NTT - High Performance vSwitch
Jim St. Leger
 
Run Your Own 6LoWPAN Based IoT Network
Run Your Own 6LoWPAN Based IoT NetworkRun Your Own 6LoWPAN Based IoT Network
Run Your Own 6LoWPAN Based IoT Network
Samsung Open Source Group
 
Adding IEEE 802.15.4 and 6LoWPAN to an Embedded Linux Device
Adding IEEE 802.15.4 and 6LoWPAN to an Embedded Linux DeviceAdding IEEE 802.15.4 and 6LoWPAN to an Embedded Linux Device
Adding IEEE 802.15.4 and 6LoWPAN to an Embedded Linux Device
Samsung Open Source Group
 
Linux-wpan: IEEE 802.15.4 and 6LoWPAN in the Linux Kernel - BUD17-120
Linux-wpan: IEEE 802.15.4 and 6LoWPAN in the Linux Kernel - BUD17-120Linux-wpan: IEEE 802.15.4 and 6LoWPAN in the Linux Kernel - BUD17-120
Linux-wpan: IEEE 802.15.4 and 6LoWPAN in the Linux Kernel - BUD17-120
Linaro
 
6LoWPAN: An Open IoT Networking Protocol
6LoWPAN: An Open IoT Networking Protocol6LoWPAN: An Open IoT Networking Protocol
6LoWPAN: An Open IoT Networking Protocol
Samsung Open Source Group
 
Introduction to Linux-wpan and Potential Collaboration
Introduction to Linux-wpan and Potential CollaborationIntroduction to Linux-wpan and Potential Collaboration
Introduction to Linux-wpan and Potential Collaboration
Samsung Open Source Group
 
[OpenStack Day in Korea 2015] Track 1-6 - ê°ˆëŒíŒŒêł ìŠ€ì˜ ìŽê”Źì•„ë‚˜, 읞프띌에 였픈소슀넌 ì˜ŹëŠŹë‹€. 귞래서 ëłŽìŽ...
[OpenStack Day in Korea 2015] Track 1-6 - ê°ˆëŒíŒŒêł ìŠ€ì˜ ìŽê”Źì•„ë‚˜, 읞프띌에 였픈소슀넌 ì˜ŹëŠŹë‹€. 귞래서 ëłŽìŽ...[OpenStack Day in Korea 2015] Track 1-6 - ê°ˆëŒíŒŒêł ìŠ€ì˜ ìŽê”Źì•„ë‚˜, 읞프띌에 였픈소슀넌 ì˜ŹëŠŹë‹€. 귞래서 ëłŽìŽ...
[OpenStack Day in Korea 2015] Track 1-6 - ê°ˆëŒíŒŒêł ìŠ€ì˜ ìŽê”Źì•„ë‚˜, 읞프띌에 였픈소슀넌 ì˜ŹëŠŹë‹€. 귞래서 ëłŽìŽ...
OpenStack Korea Community
 
FD.io Vector Packet Processing (VPP)
FD.io Vector Packet Processing (VPP)FD.io Vector Packet Processing (VPP)
FD.io Vector Packet Processing (VPP)
Kirill Tsym
 
FD.IO Vector Packet Processing
FD.IO Vector Packet ProcessingFD.IO Vector Packet Processing
FD.IO Vector Packet Processing
Kernel TLV
 
Summit 16: How to Compose a New OPNFV Solution Stack?
Summit 16: How to Compose a New OPNFV Solution Stack?Summit 16: How to Compose a New OPNFV Solution Stack?
Summit 16: How to Compose a New OPNFV Solution Stack?
OPNFV
 
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT ProtocolsSFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
SFScon 21 - Stefan Schmidt - The Rise of IPv6 in IoT Protocols
South Tyrol Free Software Conference
 
dpdk acceleration techniques ncdßs ßdcnß
dpdk acceleration techniques ncdßs ßdcnßdpdk acceleration techniques ncdßs ßdcnß
dpdk acceleration techniques ncdßs ßdcnß
rxtx1024
 
Linux Kernel Status Report for IEEE 802.15.4 & 6LoWPAN
Linux Kernel Status Report for IEEE 802.15.4 & 6LoWPANLinux Kernel Status Report for IEEE 802.15.4 & 6LoWPAN
Linux Kernel Status Report for IEEE 802.15.4 & 6LoWPAN
Samsung Open Source Group
 
PLNOG16: ObsƂuga 100M pps na platformie PC , PrzemysƂaw Frasunek, PaweƂ MaƂa...
PLNOG16: ObsƂuga 100M pps na platformie PC, PrzemysƂaw Frasunek, PaweƂ MaƂa...PLNOG16: ObsƂuga 100M pps na platformie PC, PrzemysƂaw Frasunek, PaweƂ MaƂa...
PLNOG16: ObsƂuga 100M pps na platformie PC , PrzemysƂaw Frasunek, PaweƂ MaƂa...
PROIDEA
 
DPDK summit 2015: It's kind of fun to do the impossible with DPDK
DPDK summit 2015: It's kind of fun  to do the impossible with DPDKDPDK summit 2015: It's kind of fun  to do the impossible with DPDK
DPDK summit 2015: It's kind of fun to do the impossible with DPDK
Lagopus SDN/OpenFlow switch
 
DPDK Summit 2015 - NTT - Yoshihiro Nakajima
DPDK Summit 2015 - NTT - Yoshihiro NakajimaDPDK Summit 2015 - NTT - Yoshihiro Nakajima
DPDK Summit 2015 - NTT - Yoshihiro Nakajima
Jim St. Leger
 
DPDK Summit - 08 Sept 2014 - 6WIND - High Perf Networking Leveraging the DPDK...
DPDK Summit - 08 Sept 2014 - 6WIND - High Perf Networking Leveraging the DPDK...DPDK Summit - 08 Sept 2014 - 6WIND - High Perf Networking Leveraging the DPDK...
DPDK Summit - 08 Sept 2014 - 6WIND - High Perf Networking Leveraging the DPDK...
Jim St. Leger
 
L6 6 lowpan
L6 6 lowpanL6 6 lowpan
L6 6 lowpan
bimal2638
 
Stacks and Layers: Integrating P4, C, OVS and OpenStack
Stacks and Layers: Integrating P4, C, OVS and OpenStackStacks and Layers: Integrating P4, C, OVS and OpenStack
Stacks and Layers: Integrating P4, C, OVS and OpenStack
Open-NFP
 
Lagopus presentation on 14th Annual ON*VECTOR International Photonics Workshop
Lagopus presentation on 14th Annual ON*VECTOR International Photonics WorkshopLagopus presentation on 14th Annual ON*VECTOR International Photonics Workshop
Lagopus presentation on 14th Annual ON*VECTOR International Photonics Workshop
Lagopus SDN/OpenFlow switch
 
DPDK Summit - 08 Sept 2014 - NTT - High Performance vSwitch
DPDK Summit - 08 Sept 2014 - NTT - High Performance vSwitchDPDK Summit - 08 Sept 2014 - NTT - High Performance vSwitch
DPDK Summit - 08 Sept 2014 - NTT - High Performance vSwitch
Jim St. Leger
 
Ad

More from Samsung Open Source Group (20)

The Complex IoT Equation (and FLOSS solutions)
The Complex IoT Equation (and FLOSS solutions)The Complex IoT Equation (and FLOSS solutions)
The Complex IoT Equation (and FLOSS solutions)
Samsung Open Source Group
 
Easy IoT with JavaScript
Easy IoT with JavaScriptEasy IoT with JavaScript
Easy IoT with JavaScript
Samsung Open Source Group
 
Spawny: A New Approach to Logins
Spawny: A New Approach to LoginsSpawny: A New Approach to Logins
Spawny: A New Approach to Logins
Samsung Open Source Group
 
Rapid SPi Device Driver Development over USB
Rapid SPi Device Driver Development over USBRapid SPi Device Driver Development over USB
Rapid SPi Device Driver Development over USB
Samsung Open Source Group
 
Tizen RT: A Lightweight RTOS Platform for Low-End IoT Devices
Tizen RT: A Lightweight RTOS Platform for Low-End IoT DevicesTizen RT: A Lightweight RTOS Platform for Low-End IoT Devices
Tizen RT: A Lightweight RTOS Platform for Low-End IoT Devices
Samsung Open Source Group
 
IoTivity: Smart Home to Automotive and Beyond
IoTivity: Smart Home to Automotive and BeyondIoTivity: Smart Home to Automotive and Beyond
IoTivity: Smart Home to Automotive and Beyond
Samsung Open Source Group
 
IoTivity for Automotive: meta-ocf-automotive tutorial
IoTivity for Automotive: meta-ocf-automotive tutorialIoTivity for Automotive: meta-ocf-automotive tutorial
IoTivity for Automotive: meta-ocf-automotive tutorial
Samsung Open Source Group
 
GENIVI + OCF Cooperation
GENIVI + OCF CooperationGENIVI + OCF Cooperation
GENIVI + OCF Cooperation
Samsung Open Source Group
 
Framework for IoT Interoperability
Framework for IoT InteroperabilityFramework for IoT Interoperability
Framework for IoT Interoperability
Samsung Open Source Group
 
Open Source Metrics to Inform Corporate Strategy
Open Source Metrics to Inform Corporate StrategyOpen Source Metrics to Inform Corporate Strategy
Open Source Metrics to Inform Corporate Strategy
Samsung Open Source Group
 
IoTivity for Automotive IoT Interoperability
IoTivity for Automotive IoT InteroperabilityIoTivity for Automotive IoT Interoperability
IoTivity for Automotive IoT Interoperability
Samsung Open Source Group
 
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Thin...
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Thin...JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Thin...
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Thin...
Samsung Open Source Group
 
IoTivity: From Devices to the Cloud
IoTivity: From Devices to the CloudIoTivity: From Devices to the Cloud
IoTivity: From Devices to the Cloud
Samsung Open Source Group
 
SOSCON 2016 JerryScript
SOSCON 2016 JerryScriptSOSCON 2016 JerryScript
SOSCON 2016 JerryScript
Samsung Open Source Group
 
IoT: From Arduino Microcontrollers to Tizen Products using IoTivity
IoT: From Arduino Microcontrollers to Tizen Products using IoTivityIoT: From Arduino Microcontrollers to Tizen Products using IoTivity
IoT: From Arduino Microcontrollers to Tizen Products using IoTivity
Samsung Open Source Group
 
IoTivity Tutorial: Prototyping IoT Devices on GNU/Linux
IoTivity Tutorial: Prototyping IoT Devices on GNU/LinuxIoTivity Tutorial: Prototyping IoT Devices on GNU/Linux
IoTivity Tutorial: Prototyping IoT Devices on GNU/Linux
Samsung Open Source Group
 
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Things
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of ThingsJerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Things
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Things
Samsung Open Source Group
 
Clang: More than just a C/C++ Compiler
Clang: More than just a C/C++ CompilerClang: More than just a C/C++ Compiler
Clang: More than just a C/C++ Compiler
Samsung Open Source Group
 
JerryScript on RIOT
JerryScript on RIOTJerryScript on RIOT
JerryScript on RIOT
Samsung Open Source Group
 
Development Boards for Tizen IoT
Development Boards for Tizen IoTDevelopment Boards for Tizen IoT
Development Boards for Tizen IoT
Samsung Open Source Group
 
The Complex IoT Equation (and FLOSS solutions)
The Complex IoT Equation (and FLOSS solutions)The Complex IoT Equation (and FLOSS solutions)
The Complex IoT Equation (and FLOSS solutions)
Samsung Open Source Group
 
Rapid SPi Device Driver Development over USB
Rapid SPi Device Driver Development over USBRapid SPi Device Driver Development over USB
Rapid SPi Device Driver Development over USB
Samsung Open Source Group
 
Tizen RT: A Lightweight RTOS Platform for Low-End IoT Devices
Tizen RT: A Lightweight RTOS Platform for Low-End IoT DevicesTizen RT: A Lightweight RTOS Platform for Low-End IoT Devices
Tizen RT: A Lightweight RTOS Platform for Low-End IoT Devices
Samsung Open Source Group
 
IoTivity: Smart Home to Automotive and Beyond
IoTivity: Smart Home to Automotive and BeyondIoTivity: Smart Home to Automotive and Beyond
IoTivity: Smart Home to Automotive and Beyond
Samsung Open Source Group
 
IoTivity for Automotive: meta-ocf-automotive tutorial
IoTivity for Automotive: meta-ocf-automotive tutorialIoTivity for Automotive: meta-ocf-automotive tutorial
IoTivity for Automotive: meta-ocf-automotive tutorial
Samsung Open Source Group
 
Open Source Metrics to Inform Corporate Strategy
Open Source Metrics to Inform Corporate StrategyOpen Source Metrics to Inform Corporate Strategy
Open Source Metrics to Inform Corporate Strategy
Samsung Open Source Group
 
IoTivity for Automotive IoT Interoperability
IoTivity for Automotive IoT InteroperabilityIoTivity for Automotive IoT Interoperability
IoTivity for Automotive IoT Interoperability
Samsung Open Source Group
 
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Thin...
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Thin...JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Thin...
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Thin...
Samsung Open Source Group
 
IoT: From Arduino Microcontrollers to Tizen Products using IoTivity
IoT: From Arduino Microcontrollers to Tizen Products using IoTivityIoT: From Arduino Microcontrollers to Tizen Products using IoTivity
IoT: From Arduino Microcontrollers to Tizen Products using IoTivity
Samsung Open Source Group
 
IoTivity Tutorial: Prototyping IoT Devices on GNU/Linux
IoTivity Tutorial: Prototyping IoT Devices on GNU/LinuxIoTivity Tutorial: Prototyping IoT Devices on GNU/Linux
IoTivity Tutorial: Prototyping IoT Devices on GNU/Linux
Samsung Open Source Group
 
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Things
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of ThingsJerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Things
JerryScript: An ultra-lighteweight JavaScript Engine for the Internet of Things
Samsung Open Source Group
 
Clang: More than just a C/C++ Compiler
Clang: More than just a C/C++ CompilerClang: More than just a C/C++ Compiler
Clang: More than just a C/C++ Compiler
Samsung Open Source Group
 
Ad

Recently uploaded (20)

PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
Download YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full ActivatedDownload YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full Activated
saniamalik72555
 
Not So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java WebinarNot So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java Webinar
Tier1 app
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage DashboardsAdobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
BradBedford3
 
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Dele Amefo
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
University of Hawai‘i at Mānoa
 
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and CollaborateMeet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Maxim Salnikov
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
Douwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License codeDouwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License code
aneelaramzan63
 
Landscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature ReviewLandscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature Review
Hironori Washizaki
 
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Ranjan Baisak
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025Why Orangescrum Is a Game Changer for Construction Companies in 2025
Why Orangescrum Is a Game Changer for Construction Companies in 2025
Orangescrum
 
Download YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full ActivatedDownload YouTube By Click 2025 Free Full Activated
Download YouTube By Click 2025 Free Full Activated
saniamalik72555
 
Not So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java WebinarNot So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java Webinar
Tier1 app
 
Kubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptxKubernetes_101_Zero_to_Platform_Engineer.pptx
Kubernetes_101_Zero_to_Platform_Engineer.pptx
CloudScouts
 
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Requirements in Engineering AI- Enabled Systems: Open Problems and Safe AI Sy...
Lionel Briand
 
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Mastering Fluent Bit: Ultimate Guide to Integrating Telemetry Pipelines with ...
Eric D. Schabell
 
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software DevelopmentSecure Test Infrastructure: The Backbone of Trustworthy Software Development
Secure Test Infrastructure: The Backbone of Trustworthy Software Development
Shubham Joshi
 
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage DashboardsAdobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
Adobe Marketo Engage Champion Deep Dive - SFDC CRM Synch V2 & Usage Dashboards
BradBedford3
 
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Salesforce Data Cloud- Hyperscale data platform, built for Salesforce.
Dele Amefo
 
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
F-Secure Freedome VPN 2025 Crack Plus Activation  New VersionF-Secure Freedome VPN 2025 Crack Plus Activation  New Version
F-Secure Freedome VPN 2025 Crack Plus Activation New Version
saimabibi60507
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
University of Hawai‘i at Mānoa
 
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and CollaborateMeet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Meet the Agents: How AI Is Learning to Think, Plan, and Collaborate
Maxim Salnikov
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
Douwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License codeDouwan Crack 2025 new verson+ License code
Douwan Crack 2025 new verson+ License code
aneelaramzan63
 
Landscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature ReviewLandscape of Requirements Engineering for/by AI through Literature Review
Landscape of Requirements Engineering for/by AI through Literature Review
Hironori Washizaki
 
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...
Ranjan Baisak
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 

Practical Guide to Run an IEEE 802.15.4 Network with 6LoWPAN Under Linux

  • 1. Practical Guide to Run an IEEE 802.15.4 Network with 6LoWPAN under Linux Netdev 2016, Tokyo, Japan Stefan Schmidt [email protected] Samsung Open Source Group
  • 2. Agenda ● Motivation ● Linux-wpan Project ● Wpan-tools ● Hardware and Basic Setup ● Communication with RIOT and Contiki ● Link Layer Security ● Routing: Route-over and Mesh-under
  • 4. IEEE 802.15.4 ● IEEE specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs) ● Not only low-rate, but also low-power ● Designed for small sensors to run years on battery with the right duty cycle ● 127 bytes MTU and 250 kbit/s ● PHY and MAC layers used in ZigBee
  • 5. 6LoWPAN ● Physical and MAC layer defined by IEEE 802.15.4 from 2003 onwards ● Series of IETF specifications from 2007 onwards (RFCs 4944, 6282, etc) L3 Network Layer L4 Transport Layer L1 Physical Layer L5 Application Layer L2 Data Link Layer IP TCP | UDP | ICMP Ethernet PHY Application Ethernet MAC IPv6 UDP | ICMPv6 6LoWPAN IEEE 802.15.4 PHY Application IEEE 802.15.4 MAC
  • 6. The Header Size Problem ● Worst-case scenario calculations ● Maximum frame size in IEEE 802.15.4: 127 bytes ● Reduced by the max. frame header (25 bytes): 102 bytes ● Reduced by highest link-layer security (21 bytes): 81 bytes ● Reduced by standard IPv6 header (40 bytes): 41 bytes ● Reduced by standard UDP header (8 bytes): 33 bytes ● This leaves only 33 bytes for actual payload ● The rest of the space is used by headers (~ 3:1 ratio) Frame Header (25) LLSEC (21) IPv6 Header (40) UDP Payload (33)
  • 7. Header Size Compressed ● IPv6 with link-local and UDP on top ● IPHC with NHC for UDP ● The 48 bytes IPv6 + UDP header could in the best cases be reduced to 6 bytes Frame Header (25) LLSEC (21) 6 Payload (75) Dispatch (1) LOWPAN_IPHC (1) LOWPAN_NHC (1) UDP Ports (1) UDP Checksum (2)
  • 8. Linux-wpan ● Platforms already running Linux would benefit from native 802.15.4 and 6LoWPAN subsystems ● 802.15.4 transceivers can easily be added to existing hardware designs ● Battery powered sensors on the other hand are more likely to run an OS like RIOT or Contiki ● Example 1: Google OnHub AP which already comes with, de-activated, 802.15.4 hardware ● Example 2: Ci40 Creator board as home IoT hub
  • 10. Linux-wpan Project ● IEEE 802.15.4 and 6LoWPAN support in mainline Linux ● Started in 2008 as linux-zigbee project on SourceForge ● First steps of mainlining in 2012 ● New project name to avoid confusion: linux-wpan ● New maintainer: Alexander Aring, Pengutronix ● Normal kernel development model ● Patches are posted and reviewed on the mailing list ● Accepted patches find their way through bluetooth-next, wireless and netdev towards Linus tree
  • 11. Linux-wpan Community ● Small community: 2 core devs and ~4 additional people for specific drivers ● Linux-wpan mailing list (~94 people) ● #linux-wpan on Freenode (~25 people) ● https://github.com/linux-wpan (no PR model) ● http://wpan.cakelab.org used for wpan-tools releases
  • 12. Current Status ● ieee802154 layer with softMAC driver for various transceivers ● 6LoWPAN with fragmentation and reassembly (RFC 4944) ● Header compression with IPHC and NHC for UDP (RFC 6282), shared with BT subsystem ● Link Layer Security ● Testing between Linux, RIOT and Contiki ● Mainline 4.1 onwards recommended
  • 13. Development Boards ● Ci40 Creator (CA-8210) ● Raspberry Pi with Openlabs shield (AT86RF233) ● ARTIK 5/10 (802.15.4 network soc) ● Various transceivers can be hooked up via SPI (all drivers have devicetree bindings) ● ATUSB USB dongle
  • 14. 6LoWPAN Fragmentation ● IPv6 requires the link to allow for a MTU of at least 1280 bytes ● This is impossible to handle in the 127 bytes MTU of IEEE 802.15.4 ● 6LoWPAN 11 bit fragmentation header allows for 2048 bytes packet size with fragmentation ● But fragmentation can still lead to bad performance in lossy networks, best to avoid it in the first place
  • 15. IPv6 Header Compression (IPHC) ● Defining some default values in IPv6 header – Version == 6, traffic class & flow-label == 0, hop-limit only well-known values (1, 64, 255) – Remove the payload length (available in 6LoWPAN fragment header or data-link header) ● IPv6 stateless address auto configuration based on L2 address – Omit the IPv6 prefix (global known by network, link-local defined by compression (FE80::/64) – Extended: EUI-64 L2 address use as is – Short: pseudo 48 bit address based short address: PAN_ID:16 bit zero:SHORT_ADDRESS Version Source Address (128 bit) Destination Address (128 bit) Traffic Class Flow Label (20 bit) Payload Length (16 bit) Next Header Hop Limit (8 bit) Source Address Dispatch 6LoWPAN Header IPHC multi-hop (7 bytes) Hop LimitLoWPAN_IPHC Destination Address Dispatch 6LoWPAN Header IPHC link-local (2 bytes) LoWPAN_IPHC
  • 16. Next Header Compression ● NHC IPv6 Extension Header compression (RFC6282) – Hop-by-Hop, Routing Header, Fragment Header, Destination Options Header, Mobility Header ● NHC UDP Header compression (RFC6282) – Compressing ports range to 4 bits – Allows to omit the UDP checksum for cases where upper layers handle message integrity checks ● GHC: LZ-77 style compression with byte codes (RFC7400) – Appending zeroes, back referencing to a static dictionary and copy – Useful for DTLS or RPL (addresses elided from dictionary)
  • 17. Wpan-tools ● Netlink interface ideas as well as code borrowed from the iw utility ● Used to configure PHY and MAC layer parameters ● Including channel, PAN ID, power setting, short address, frame retries, etc ● Version 0.7 with network namespace support released two weeks ago ● Packaged by some distributions (Fedora and Debian up to date, Ubuntu on 0.5, OpenSUSE, Gentoo, Arch, etc missing)
  • 19. Hardware Support ● Mainline drivers for at86rf2xx, mrf24j40, cc2520, atusb and adf7242 ● Pending driver for ca-8210 ● Old out of tree driver for Xbee ● Most transceiver easy to hook up to SPI and some GPIOs ● ATUSB available as USB dongle to be used on your normal workstation (sold out but a new batch is being produced)
  • 20. Virtual Driver ● Fake loopback driver (similar to hwsim of wireless) ● Great for testing ● Support for RIOT and OpenThread to use this when running as native Linux process ● Will help interop testing between the different network stacks in an virtual environment $ modprobe fakelb numlbs=4 $ Configure for Linux, RIOT, OpenThread and monitor
  • 21. Interface Bringup ● The wpan0 interface shows up automatically ● Setting up the basic parameters: $ ip link set lowpan0 down $ ip link set wpan0 down $ iwpan dev wpan0 set pan_id 0xabcd $ iwpan phy phy0 set channel 0 26 $ ip link add link wpan0 name lowpan0 type lowpan $ ip link set wpan0 up $ ip link set lowpan0 up
  • 22. Monitoring ● Setting up the interface in promiscuous mode: $ iwpan dev wpan0 del $ iwpan phy phy0 interface add monitor%d type monitor $ iwpan phy phy0 set channel 0 26 $ ip link set monitor0 up $ wireshark -i monitor0 ● No automatic channel hopping (you can change the channel manually in the background)
  • 24. RIOT ● “The friendly Operating System for the Internet of Things” (LGPL) ● Testing against Linux-wpan part of the release testing process for RIOT ● Active developer discussions and bug fixing between projects
  • 25. Contiki ● “The Open Source OS for the Internet of Things” (BSD) ● Very fragmented project ● Sadly many forks for academic or commercial purpose which have a hard time to get merged ● Still an important role as IoT OS for tiny devices
  • 26. Comparison Feature Linux RIOT Contiki IEEE 802.15.4: data and ACK frames ✔ ✔ ✔ IEEE 802.15.4: beacon and MAC command frames ✘ ✘ ✘ IEEE 802.15.4: scanning, joining, PAN coordinator ✘ ✘ ✘ IEEE 802.15.4: link layer security ✔ ✘ ✔ 6LoWPAN: frame encapsulation, fragmentation, addressing (RFC 4944) ✔ ✔ ✔ 6LoWPAN: IP header compression (RFC 6282) ✔ ✔ ✔ 6LoWPAN: next header compression, UDP only (RFC 6282) ✔ ✔ ✔ 6LoWPAN: generic header compression (RFC 7400) ✘ ✘ ✘ 6LoWPAN: neighbour discovery optimizations (RFC 6775) Partial ✔ ✘ RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks ✔ ✔ ✔ Mesh link establishment draft ✘ ✘ ✘
  • 27. Others ● Mbed OS from ARM: network stack is closed source so nothing to test against ● Zephyr: network stack from Contiki used right now but a new one is planned
  • 29. Link Layer Security ● Specified by IEEE 802.15.4 ● It defines confidentiality (AES-CTR), integrity (AES CBC-MAC) and encryption and authentication (AES CCM) security suites ● Key handling, key exchange, roll over, etc is not defined ● Tested Linux against Linux and Contiki 3.0 ● No way to test against RIOT as they have no LLSEC support right now
  • 30. LLSEC Linux-wpan ● Needs the llsec branch in wpan-tools for configuration ● CONFIG_IEEE802154_NL802154_EXPERIMENTAL $ iwpan dev wpan0 set security 1 $ iwpan dev wpan0 key add 2 $KEY 0 $PANID 3 $EXTADDR $ iwpan dev wpan0 seclevel add 0xff 2 0 $ iwpan dev wpan0 device add 0 $PANID $SHORTADDR $EXTADDR 0 0
  • 31. LLSEC Contiki 3.0 ● You need the following Contiki build options configured in your project-conf.h to make use of LLSEC with network wide key: #define NETSTACK_CONF_LLSEC noncoresec_driver #define LLSEC802154_CONF_SECURITY_LEVEL FRAME802154_SECURITY_LEVEL_ENC_MIC_32 #define NONCORESEC_CONF_KEY { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, }
  • 33. Mesh-under ● Allows fast forwarding of packets in a mesh without travelling the IP stack ● IEEE 802.15.4 does not include mesh routing in the MAC specification ● Thus the mesh implementations sit above the MAC but below the network layer ● Various (proprietary) implementations ● 6LoWPAN specification has a field for mesh headers ● No support in Linux-wpan for mesh header as of now ● Lost fragments of bigger packets will cause troubles ● Mesh Link Establishment draft at IETF
  • 34. RPL ● IPv6 Routing Protocol for Low-Power and Lossy Networks (RFC6550) ● Route over protocol ● Implementations in RIOT and Contiki ● Unstrung as Linux userspace reference ● Bit rotted in-kernel RPL demo patches on the internet
  • 36. Linux-wpan Future ● Implement missing parts of the IEEE 802.15.4 specification ● Beacon and MAC command frame support ● Coordinator support in MAC layer and wpan-tools ● Scanning for available networks ● Improve existing drivers and add support for new hardware ● Neighbour Discovery Optimizations (RFC 6775), started ● Evaluate running OpenThread on top of linux-wpan ● Configuration interface for various header compression modules ● Expose information for route-over and mesh-under protocols
  • 38. Take away ● Running an IEEE 802.15.4 wireless network under Linux is not hard ● Tooling and kernel support is already there ● Border router scenario most likely use case but nodes or routers also possible