An educational institution needs to have an approximate prior knowledge of enrolled students to predict
their performance in future academics. This helps them to identify promising students and also provides
them an opportunity to pay attention to and improve those who would probably get lower grades. As a
solution, we have developed a system which can predict the performance of students from their previous
performances using concepts of data mining techniques under Classification. We have analyzed the data
set containing information about students, such as gender, marks scored in the board examinations of
classes X and XII, marks and rank in entrance examinations and results in first year of the previous batch
of students. By applying the ID3 (Iterative Dichotomiser 3) and C4.5 classification algorithms on this data,
we have predicted the general and individual performance of freshly admitted students in future
examinations.