Recursively Summarizing Books with Human Feedbackharmonylab
公開URL:https://arxiv.org/abs/2109.10862
出典:Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, Paul Christiano : Recursively Summarizing Books with Human Feedback, arXiv:2109.10862 (2021).
概要:MLモデルの学習のために行動の良し悪しを表すtraining signalを人間がループの中で提供する必要があるタスクが多く存在する.人間による評価に時間や専門的な知識を要するタスクの学習のためには,効果的なtraining signalを生成するためのスケーラブルな手法が必要となる.本論文では書籍全体の要約タスク(abstractive)を対象として,再帰的なタスクの分解と人間のフィードバックからの学習を組み合わせたアプローチを紹介する.モデルによる要約の中には人間が書いた要約の品質に匹敵する要約もあるが,平均するとモデルの要約は人間の要約に著しく劣ることが示された.
Variational Template Machine for Data-to-Text Generationharmonylab
公開URL:https://openreview.net/forum?id=HkejNgBtPB
出典:Rong Ye, Wenxian Shi, Hao Zhou, Zhongyu Wei, Lei Li : Variational Template Machine for Data-to-Text Generation, 8th International Conference on Learning Representations(ICLR2020), Addis Ababa, Ethiopia (2020)
概要:Table形式の構造化データから文章を生成するタスク(Data-to-Text)において、Variational Auto Encoder(VAE)ベースの手法Variational Template Machine(VTM)を提案する論文です。Encoder-Decoderモデルを用いた既存のアプローチでは、生成文の多様性に欠けるという課題があります。本論文では多様な文章を生成するためにはテンプレートが重要であるという主張に基づき、テンプレートを学習可能なVAEベースの手法を提案します。提案手法では潜在変数の空間をテンプレート空間とコンテンツ空間に明示的に分離することによって、正確で多様な文生成が可能となります。また、table-textのペアデータだけではなくtableデータのないraw textデータを利用した半教師あり学習を行います。
Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised L...harmonylab
紹介論文
Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos
出典: Vincent Casser, Soeren Pirk Reza, Mahjourian, Anelia Angelova : Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos, the AAAI Conference on Artificial Intelligence, Vol. 33, pp. 8001-8008 (2019)
概要: カメラ映像による深度予測は、屋内及び屋外のロボットナビゲーションにとって必要なタスクです。本研究では、教師なし学習を用いて映像の深度予測とカメラのエゴモーション(自身の動き)の学習に取り組んでいます。先行研究で確立されたベースラインのモデルに、移動する個々の物体のモデル化と、オンラインでのモデルの調整を行う手法を取り入れています。結果として、物体の動きを多く含むシーンでの予測結果を大幅に向上させています。
Cloudera World Tokyo 2014 で発表した、 Strata + Hadoop World 2014 のレポートです。Cloudera 会長 Mike Olson のキーノートや、保険会社の事例、ソーシャルグラフ作成、ETLの課題、HBase のアーキテクチャなどについて紹介しています。
Recursively Summarizing Books with Human Feedbackharmonylab
公開URL:https://arxiv.org/abs/2109.10862
出典:Jeff Wu, Long Ouyang, Daniel M. Ziegler, Nisan Stiennon, Ryan Lowe, Jan Leike, Paul Christiano : Recursively Summarizing Books with Human Feedback, arXiv:2109.10862 (2021).
概要:MLモデルの学習のために行動の良し悪しを表すtraining signalを人間がループの中で提供する必要があるタスクが多く存在する.人間による評価に時間や専門的な知識を要するタスクの学習のためには,効果的なtraining signalを生成するためのスケーラブルな手法が必要となる.本論文では書籍全体の要約タスク(abstractive)を対象として,再帰的なタスクの分解と人間のフィードバックからの学習を組み合わせたアプローチを紹介する.モデルによる要約の中には人間が書いた要約の品質に匹敵する要約もあるが,平均するとモデルの要約は人間の要約に著しく劣ることが示された.
Variational Template Machine for Data-to-Text Generationharmonylab
公開URL:https://openreview.net/forum?id=HkejNgBtPB
出典:Rong Ye, Wenxian Shi, Hao Zhou, Zhongyu Wei, Lei Li : Variational Template Machine for Data-to-Text Generation, 8th International Conference on Learning Representations(ICLR2020), Addis Ababa, Ethiopia (2020)
概要:Table形式の構造化データから文章を生成するタスク(Data-to-Text)において、Variational Auto Encoder(VAE)ベースの手法Variational Template Machine(VTM)を提案する論文です。Encoder-Decoderモデルを用いた既存のアプローチでは、生成文の多様性に欠けるという課題があります。本論文では多様な文章を生成するためにはテンプレートが重要であるという主張に基づき、テンプレートを学習可能なVAEベースの手法を提案します。提案手法では潜在変数の空間をテンプレート空間とコンテンツ空間に明示的に分離することによって、正確で多様な文生成が可能となります。また、table-textのペアデータだけではなくtableデータのないraw textデータを利用した半教師あり学習を行います。
Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised L...harmonylab
紹介論文
Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos
出典: Vincent Casser, Soeren Pirk Reza, Mahjourian, Anelia Angelova : Depth Prediction Without the Sensors: Leveraging Structure for Unsupervised Learning from Monocular Videos, the AAAI Conference on Artificial Intelligence, Vol. 33, pp. 8001-8008 (2019)
概要: カメラ映像による深度予測は、屋内及び屋外のロボットナビゲーションにとって必要なタスクです。本研究では、教師なし学習を用いて映像の深度予測とカメラのエゴモーション(自身の動き)の学習に取り組んでいます。先行研究で確立されたベースラインのモデルに、移動する個々の物体のモデル化と、オンラインでのモデルの調整を行う手法を取り入れています。結果として、物体の動きを多く含むシーンでの予測結果を大幅に向上させています。
Cloudera World Tokyo 2014 で発表した、 Strata + Hadoop World 2014 のレポートです。Cloudera 会長 Mike Olson のキーノートや、保険会社の事例、ソーシャルグラフ作成、ETLの課題、HBase のアーキテクチャなどについて紹介しています。
文献紹介:PolyViT: Co-training Vision Transformers on Images, Videos and AudioToru Tamaki
Valerii Likhosherstov, Anurag Arnab, Krzysztof Choromanski, Mario Lucic, Yi Tay, Adrian Weller, Mostafa Dehghani, "PolyViT: Co-training Vision Transformers on Images, Videos and Audio" arXiv2021
https://arxiv.org/abs/2111.12993
公開URL:https://openaccess.thecvf.com/content/CVPR2024/papers/Li_Generative
_Image_Dynamics_CVPR_2024_paper.pdf
出典:Zhengqi Li, Richard Tucker, Noah Snavely, Aleksander Holynski: Generative Image Dynamics, Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2024)
概要:自然な物体の動きを学習し、静止画から動画を生成する新しいアプローチを提案しています。実際の映像から抽出した動きのパターンをフーリエ領域でモデル化し、拡散モデルを用いて予測します。単一の画像から、周波数調整された拡散サンプリングプロセスを使用してスペクトル体積を予測し、これを動画全体をカバーする動きのテクスチャに変換します。この手法により、静止画からシームレスにループする動画を作成したり、実際の画像内のオブジェクトとインタラクティブに動きを生成したりすることが可能になります。
【DLゼミ】XFeat: Accelerated Features for Lightweight Image Matchingharmonylab
公開URL:https://arxiv.org/pdf/2404.19174
出典:Guilherme Potje, Felipe Cadar, Andre Araujo, Renato Martins, Erickson R. ascimento: XFeat: Accelerated Features for Lightweight Image Matching, Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
概要:リソース効率に優れた特徴点マッチングのための軽量なアーキテクチャ「XFeat(Accelerated Features)」を提案します。手法は、局所的な特徴点の検出、抽出、マッチングのための畳み込みニューラルネットワークの基本的な設計を再検討します。特に、リソースが限られたデバイス向けに迅速かつ堅牢なアルゴリズムが必要とされるため、解像度を可能な限り高く保ちながら、ネットワークのチャネル数を制限します。さらに、スパース下でのマッチングを選択できる設計となっており、ナビゲーションやARなどのアプリケーションに適しています。XFeatは、高速かつ同等以上の精度を実現し、一般的なラップトップのCPU上でリアルタイムで動作します。
A Study on Decision Support System for Snow Removal Dispatch using Road Surfa...harmonylab
This study focuses on addressing the challenges associated with decision-making in winter road snow removal operations, aiming to alleviate the burden on snow removal personnel. Specifically, we propose an approach to develop a system that collects and visualizes information on road snow conditions and weather data to support decision-making by personnel. Additionally, by sharing the collected information, we aim to facilitate the sharing of premonitions about changes in decision-making among snow removal personnel, reducing the need for physical inspections.We have validated the effectiveness of the system and confirmed its efficacy.
DLゼミ: MobileOne: An Improved One millisecond Mobile Backboneharmonylab
公開URL:https://openaccess.thecvf.com/content/CVPR2023/html/Vasu_MobileOne_An_Improved_One_Millisecond_Mobile_Backbone_CVPR_2023_paper.html
出典:Vasu, Pavan Kumar Anasosalu, et al.: MobileOne: An Improved One Millisecond Mobile Backbone, Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)
概要:モバイル端末向けのニューラルネットワークは多くの場合、FLOPsやパラメータ数で最適化されています。しかし、これらの最適化は実際のモバイルデバイスで実行した場合のネットワークの応答時間に相関しない場合があります。我々は昨今のニューラルネットワークの最適化のボトルネックを特定・分析し、その結果をもとにした新たな効率的なバックボーンMobileOneを設計しました。結果はMobileFormerと同等の性能を得ながら、38倍高速であり、最先端の効率性を達成しました。
2. 1
1書誌情報
• Author
• David Silver · Hado van Hasselt · Matteo Hessel · Tom Schaul · Arthur Guez · Tim Harley ·
Gabriel Dulac-Arnold · David Reichert · Neil Rabinowitz · Andre Barreto · Thomas Degris
(DeepMind)
• ICML2017
• (arxiv2016/12/28)
• URL
• https://icml.cc/Conferences/2017/Schedule?showParentSession=1427
• https://arxiv.org/abs/1612.08810
25. 24
24参考文献
• The Predictron: End-To-End Learning and Planning
• David Silver · Hado van Hasselt · Matteo Hessel · Tom Schaul · Arthur Guez · Tim Harley ·
Gabriel Dulac-Arnold · David Reichert · Neil Rabinowitz · Andre Barreto · Thomas Degris
• ICML2017
• https://vimeo.com/238243832