SlideShare a Scribd company logo
Summary:
Probability-based Learning
(from book: Machine learning for predictve data analytics)
Duyen Do
1
NỘI DUNG
Bayes’ Theorem
Fundamentals
Bayes Prediction
Standard Approach: The Naïve Bayes Model
Conditional Independence and Factorization
Smoothing
Extensions and Variations
Continuous Features
Bayesian Network
Summary
Q&A
Probability basic
2
 Probability function: P()
Probability mass function (categorical features) and Probability density function (continuous features)
0 ≤ P (f = level) ≤ 1
𝑙 ∈ 𝑙𝑒𝑣𝑒𝑙𝑠(𝑓)
𝑃 𝑓 = 𝑙 = 1.0
 Prior probability or Unconditional probability
P(X)
 Posterior probability or Conditional probability
P(X|Y)
 Joint probability
P(X, Y)
 Joint probability distribution
Example
Table 6.1
Fundamentals3
 Conditional probability in terms of joint probability:
𝑃(𝑋|𝑌) =
𝑃(𝑋, 𝑌)
𝑃(𝑌)
 Product rule:
P(X,Y) = P(X|Y) P(Y) = P(Y|X) P(X)
0 ≤ P(X|Y) ≤ 1
𝑖 𝑃 𝑋𝑖 𝑌 𝑃(𝑌) = 1.0
 Chain rule:
P(A,B,C,…,Z) = P(Z) P(Y|Z) P(X|Y,Z)…P(A|B,…,X,Y,Z)
 Theorem of Total Probability:
𝑃(𝑋) =
𝑖
𝑃 𝑋 𝑌𝑖 𝑃(𝑌𝑖)
Fundamentals4
Fundamentals: Bayes’s Theorem
P(X|Y) =
𝑃(𝑌|𝑋)𝑃(𝑋)
𝑃(𝑌)
A doctor inform a patient both bad news and good news:
- Bad news: 99% has a serious desease
- Good news: the desease is rarely and only 1 in 10,000 people
What is actually probability that patient has the desease?
Using Bayes’Theorem:
𝑃 𝑑 𝑡 =
𝑃 𝑡 𝑑 𝑃 𝑑
𝑃 𝑡
P(t) = P(t|d)P(d) + P(t|-d)P(-d) = (0.99 * 0.0001) + (0.01 * 0.9999) = 0.0101
P(d|t) =
0.99 ∗0.0001
0.0101
= 0.0098
5
With P(t=l): the prior probability of target feature t taking the level l
P(q[1],…,q[m]): joint probability of descriptive feature
P(q[1],…,q[m] | t=l): the conditional probability
Example 1:
Table 6.1
What is probability a person has MENINGTIS when he/she has HEADACHE=true, FEVER=false,
VOMITING=true?
=> P(m | h, -f, v)
Bayesian prediction
P(t=l | q[1],…,q[m]) =
𝑃 𝑞 1 ,…,𝑞 𝑚 𝑡=𝑙)𝑃(𝑡=𝑙)
𝑃(𝑞 1 ,…,𝑞 𝑚 )
6
P(m | h, -f, v) =
𝑃 ℎ,−𝑓,𝑣 𝑚)𝑃(𝑚)
𝑃(ℎ,−ℎ,𝑣)
P(m) =
|{𝐼𝐷5,𝐼𝐷8,𝐼𝐷10}|
|{𝐼𝐷1,𝐼𝐷2,𝐼𝐷3,𝐼𝐷4,𝐼𝐷5,𝐼𝐷6,𝐼𝐷7,𝐼𝐷8,𝐼𝐷9,𝐼𝐷10}|
= 0.3
P(h,-f,v) =
|{𝐼𝐷3,𝐼𝐷4,𝐼𝐷6,𝐼𝐷7,𝐼𝐷8,𝐼𝐷10}|
|{𝐼𝐷1,𝐼𝐷2,𝐼𝐷3,𝐼𝐷4,𝐼𝐷5,𝐼𝐷6,𝐼𝐷7,𝐼𝐷8,𝐼𝐷9,𝐼𝐷10}|
= 0.6
P(h, -f, v | m) = P(h|m) P(-f | h,m) P(v | -f, h, m)
=
|{𝐼𝐷8,𝐼𝐷10}|
|{𝐼𝐷5,𝐼𝐷8,𝐼𝐷10}|
x
|{𝐼𝐷8,𝐼𝐷10}|
|{𝐼𝐷8,𝐼𝐷10}|
x
|{𝐼𝐷8,𝐼𝐷10}|
|{𝐼𝐷8,𝐼𝐷10}|
=
2
3
x
2
2
x
2
2
= 0.66
P(m | h, -f, v) = (0.66*0.3) / 0.6 = 0.33
P(-m | h, -f, v) =
𝑃 ℎ,−𝑓,𝑣 −𝑚)𝑃(−𝑚)
𝑃(ℎ,−ℎ,𝑣)
=
𝑃 ℎ −𝑚)𝑃(−𝑓 ℎ,−𝑚 𝑃 𝑣 −𝑓,ℎ,−𝑚)𝑃(−𝑚)
𝑃(ℎ,−ℎ,𝑣)
= 0.667
Bayesian prediction
P(t=l | q[1],…,q[m]) =
𝑃 𝑞 1 ,…,𝑞 𝑚 𝑡=𝑙)𝑃(𝑡=𝑙)
𝑃(𝑞 1 ,…,𝑞 𝑚 )
7
Bayesian prediction
Maximum a posterior predction:
M (q) = arg max P(t=l | q[1],…,q[m])
= arg max l ∈ 𝑙𝑒𝑣𝑒𝑙𝑠( 𝑡)
𝑃 𝑞 1 , … , 𝑞 𝑚 𝑡 = 𝑙)𝑃(𝑡 = 𝑙)
𝑃(𝑞 1 , … , 𝑞 𝑚 )
Bayesian MAP prediction model:
M (q) = arg max P(t=l | q[1],…,q[m])
= arg max l ∈ 𝑙𝑒𝑣𝑒𝑙𝑠( 𝑡)
𝑃 𝑞 1 , … , 𝑞 𝑚 𝑡 = 𝑙)𝑃(𝑡 = 𝑙)
8
Example 2:
Table 6.1
What is probability a person has MENINGTIS when he/she has HEADACHE=true, FEVER=true,
VOMITING=false?
 P(m | h, f, -v) =
𝑃 ℎ 𝑚 𝑃 𝑓 ℎ, 𝑚 𝑃 −𝑣 𝑓, ℎ, 𝑚 𝑃(𝑚)
𝑃(ℎ,𝑓,−𝑣)
=
0.66 ∗ 0 ∗0 ∗0.3
0.1
= 0.0
P(-m| h, f, -v) = 1.0 – 0.0 = 1.0
 Overfit data
Bayesian prediction
P(t=l | q[1],…,q[m]) =
𝑃 𝑞 1 ,…,𝑞 𝑚 𝑡=𝑙)𝑃(𝑡=𝑙)
𝑃(𝑞 1 ,…,𝑞 𝑚 )
9
Conditional independence
when X and Y (independence) share the same cause Z.
 P(X | Y, Z) = P(X | Z)
P(X, Y | Z) = P(X | Z)*P(Y | Z)
 Chain rule:
P(q[1],…,q[m] | t=l) = P(q[1] | t=l)*P(q[2] | t=l)*…*P(q[m] | t=l)
= Π P(q[i] | t=l)
P(t=l | q[1],…,q[m]) =
Π P(q[i] | t=l) ∗ P(t=l)
𝑃(𝑞 1 ,…,𝑞 𝑚 )
= Joint probability:
P(H,F,V,M) = P(M) * P(H|M) * P(F|M) * P(V|M)
Conditional independence and Factorization10
If X and Y are independent, then:
P(X|Y) = P(X)
P(X, Y) = P(X) P(Y)
Example 2:
Table 6.1
What is probability a person has MENINGTIS when he/she has HEADACHE=true, FEVER=true,
VOMITING=false?
P(m | h, f, -v) =
P(h |m) ∗ P(f | m) ∗ P(−v | m) ∗ P(m)
𝑃(ℎ,𝑓,−𝑣)
=
P(h |m) ∗ P(f | m) ∗ P(−v | m) ∗ P(m)
Σ𝑖
𝑃 ℎ 𝑀𝑖 ∗𝑃 𝑓 𝑀𝑖 ∗𝑃 −𝑣 𝑀𝑖 ∗𝑃(𝑀𝑖)
= 0.1948
P(-m | h, f, -v) = 0.8052
Conditional independence and Factorization11
If X and Y are independent, then:
P(X|Y) = P(X)
P(X, Y) = P(X) P(Y)
Example
Table 6.2
Naïve Bayes Model12
MAP (Maximum a posterior):
M(q) = arg maxl ∈ levels(t) ((Πi P(q[i] | t=l) * P(t=l))
Example
Table 6.2
CREDIT HISTORY = paid, GUANRANTOR/COAPPLICANT = guarantor, ACCOMMODATION = free?
Extensions and Variations: Smoothing13
Laplace smoothing:
𝑃 𝑓 = 𝑙 𝑡) =
𝑐𝑜𝑢𝑛𝑡 𝑓 = 𝑙 𝑡) + 𝑘
𝑐𝑜𝑢𝑛𝑡 𝑓 𝑡) + (𝑘 ∗ 𝐷𝑜𝑚𝑎𝑖𝑛 𝑓 )
Transform continuous feature to categorical feature with:
 Equal-width binning
 Equal-frequency binning
Example
Table 6.11
Extensions and Variations:
Continuous feature - Binning14
A Bayesian network, Bayes network, Bayes(ian) model or probabilistic directed acyclic graphical
model is a probabilistic graphical model that represents a structural relationship - a set of random variables
and their conditional dependencies - via a directed acyclic graph (DAG)
P(A,B) = P(B|A) * P(A)
Ex1:
P(a, -b) = P(-b|a) * P(a)
= 0.7 * 0.4 = 0.28
The probability of an event x1,…,xn
P(x1,…,xn) = ∏ P(xi | Parents(xi))
Bayesian Network15
A
B
P(A=T) P(A=F)
0.4 0.6
A P(B=T | A) P(B=F | A)
T 0.3 0.7
F 0.4 0.6
Ex2:
P (a, -b, -c, d)
= P(-b|a,-c) * P(-c|d) * P(a) * P(d)
= 0.5 * 0.8 * 0.4 * 0.4
= 0.064
Bayesian Network16
A
B
C
D
P(D=T)
0.4
P(A=T)
0.4 D P(C=T|D)
T 0.2
F 0.5
A C P(B=T|A,C)
T T 0.2
T F 0.5
F T 0.4
F F 0.3
The conditional probability of node xi with n nodes
P(xi | x1,…, xi-1, xi+1,…,xn)
= P(xi | Parents(xi) ∏ P(xj | Parents(xj))
with j ∈ Children(xi)
Ex2:
P(c | -a, b, d) = P(c | d) * P(b | -a, c)
= 0.2 * 0.4 = 0.08
Bayesian Network17
A
B
C
D
P(D=T)
0.4
P(A=T)
0.4 D P(C=T|D)
T 0.2
F 0.5
A C P(B=T|A,C)
T T 0.2
T F 0.5
F T 0.4
F F 0.3
P(t |d[1], …, d[n]) = P(t) * ∏ P(d[j] | t)
Naïve Bayes Classifier18
Target
Descriptive
feature 1
Descriptive
feature 2
Descriptive
feature n
P(A, B, C) = P(C | A, B) * P(B |A) * P(A) P(A, B, C) = P(A| C, B) * P(B |C) * P(C)
Building Bayesian Network19
B
C
A
A
C
B
P(A=T)
0.6
P(C=T)
0.2
A P(B=T|A)
T 0.333
F 0.5
C P(B=T|C)
T 0.5
F 0.375
A B P(C|A,B)
T T 0.25
T F 0.125
F T 0.25
F F 0.25
C B P(A|B,C)
T T 0.5
T F 0.5
F T 0.5
F F 0.7
Building Bayesian Network20
Hybrid approach:
 1. Given the topology of the network
 2. Induce the CPT
What is the best topology structure to give the algorithm as input?
 Causal graphs
Example
Table 6.18
Building Bayesian Network21
A potential causal theory:
The more equal in a society, the higher the investment that society will make in health and
education, and this in turn result in a lower of corruption
SY LE P(CPI|SY, LE)
L L 1.0
L H 0
H L 1.0
H H 1.0
CPI
GC
SC
LE
GC P(SY=L|GC)
L 0.2
H 0.8 GC P(LE=L|GC)
L 0.2
H 0.8
B P(GC=L)
T 0.5
Using Bayesian Network make predictions22
M (q) = arg max l ∈ levels(t) BayesianNetwork(t=l,q)
Making prediction with missing descriptive feature values:
GC = high, SC = high =>?
Example
Table 6.18
Ad

More Related Content

What's hot (20)

Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reduction
mrizwan969
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
butest
 
Question bank soft computing
Question bank   soft computingQuestion bank   soft computing
Question bank soft computing
Mohit Singh
 
Mining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and CorrelationsMining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and Correlations
Justin Cletus
 
Support Vector Machines ( SVM )
Support Vector Machines ( SVM ) Support Vector Machines ( SVM )
Support Vector Machines ( SVM )
Mohammad Junaid Khan
 
AI Lecture 7 (uncertainty)
AI Lecture 7 (uncertainty)AI Lecture 7 (uncertainty)
AI Lecture 7 (uncertainty)
Tajim Md. Niamat Ullah Akhund
 
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
Simplilearn
 
Deep Learning Explained
Deep Learning ExplainedDeep Learning Explained
Deep Learning Explained
Melanie Swan
 
GAN in medical imaging
GAN in medical imagingGAN in medical imaging
GAN in medical imaging
Cheng-Bin Jin
 
Scikit Learn intro
Scikit Learn introScikit Learn intro
Scikit Learn intro
9xdot
 
Data Analysis with Python Pandas
Data Analysis with Python PandasData Analysis with Python Pandas
Data Analysis with Python Pandas
Neeru Mittal
 
Introduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-LearnIntroduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-Learn
Benjamin Bengfort
 
AI vs Machine Learning vs Deep Learning | Machine Learning Training with Pyth...
AI vs Machine Learning vs Deep Learning | Machine Learning Training with Pyth...AI vs Machine Learning vs Deep Learning | Machine Learning Training with Pyth...
AI vs Machine Learning vs Deep Learning | Machine Learning Training with Pyth...
Edureka!
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
Girish Khanzode
 
Python pandas tutorial
Python pandas tutorialPython pandas tutorial
Python pandas tutorial
HarikaReddy115
 
Hands-on Introduction to Machine Learning
Hands-on Introduction to Machine LearningHands-on Introduction to Machine Learning
Hands-on Introduction to Machine Learning
Brittany Lasseigne, Ph.D.
 
Machine learning Lecture 1
Machine learning Lecture 1Machine learning Lecture 1
Machine learning Lecture 1
Srinivasan R
 
Bayesian networks
Bayesian networksBayesian networks
Bayesian networks
Massimiliano Patacchiola
 
Naive Bayes Presentation
Naive Bayes PresentationNaive Bayes Presentation
Naive Bayes Presentation
Md. Enamul Haque Chowdhury
 
Machine learning
Machine learningMachine learning
Machine learning
vaishnavip23
 
Dimensionality Reduction
Dimensionality ReductionDimensionality Reduction
Dimensionality Reduction
mrizwan969
 
MachineLearning.ppt
MachineLearning.pptMachineLearning.ppt
MachineLearning.ppt
butest
 
Question bank soft computing
Question bank   soft computingQuestion bank   soft computing
Question bank soft computing
Mohit Singh
 
Mining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and CorrelationsMining Frequent Patterns, Association and Correlations
Mining Frequent Patterns, Association and Correlations
Justin Cletus
 
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
K Means Clustering Algorithm | K Means Clustering Example | Machine Learning ...
Simplilearn
 
Deep Learning Explained
Deep Learning ExplainedDeep Learning Explained
Deep Learning Explained
Melanie Swan
 
GAN in medical imaging
GAN in medical imagingGAN in medical imaging
GAN in medical imaging
Cheng-Bin Jin
 
Scikit Learn intro
Scikit Learn introScikit Learn intro
Scikit Learn intro
9xdot
 
Data Analysis with Python Pandas
Data Analysis with Python PandasData Analysis with Python Pandas
Data Analysis with Python Pandas
Neeru Mittal
 
Introduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-LearnIntroduction to Machine Learning with SciKit-Learn
Introduction to Machine Learning with SciKit-Learn
Benjamin Bengfort
 
AI vs Machine Learning vs Deep Learning | Machine Learning Training with Pyth...
AI vs Machine Learning vs Deep Learning | Machine Learning Training with Pyth...AI vs Machine Learning vs Deep Learning | Machine Learning Training with Pyth...
AI vs Machine Learning vs Deep Learning | Machine Learning Training with Pyth...
Edureka!
 
Python pandas tutorial
Python pandas tutorialPython pandas tutorial
Python pandas tutorial
HarikaReddy115
 
Machine learning Lecture 1
Machine learning Lecture 1Machine learning Lecture 1
Machine learning Lecture 1
Srinivasan R
 

Similar to Probability based learning (in book: Machine learning for predictve data analytics) (20)

Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VECUnit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
sundarKanagaraj1
 
LectureNotes for Bayesian methods in Recommendation system
LectureNotes for Bayesian methods in Recommendation systemLectureNotes for Bayesian methods in Recommendation system
LectureNotes for Bayesian methods in Recommendation system
Xudong Sun
 
Madrid easy
Madrid easyMadrid easy
Madrid easy
Sebastien Destercke
 
Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...
Advanced-Concepts-Team
 
GonzalezGinestetResearchDay2016
GonzalezGinestetResearchDay2016GonzalezGinestetResearchDay2016
GonzalezGinestetResearchDay2016
Pablo Ginestet
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Gabriel Peyré
 
sada_pres
sada_pressada_pres
sada_pres
Stephane Senecal
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
Gabriel Peyré
 
talk MCMC & SMC 2004
talk MCMC & SMC 2004talk MCMC & SMC 2004
talk MCMC & SMC 2004
Stephane Senecal
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
The Statistical and Applied Mathematical Sciences Institute
 
AIML unit-2(1).ppt
AIML unit-2(1).pptAIML unit-2(1).ppt
AIML unit-2(1).ppt
ashudhanraj
 
Slides ACTINFO 2016
Slides ACTINFO 2016Slides ACTINFO 2016
Slides ACTINFO 2016
Arthur Charpentier
 
Slides: Hypothesis testing, information divergence and computational geometry
Slides: Hypothesis testing, information divergence and computational geometrySlides: Hypothesis testing, information divergence and computational geometry
Slides: Hypothesis testing, information divergence and computational geometry
Frank Nielsen
 
Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...
Alexander Decker
 
11.[29 35]a unique common fixed point theorem under psi varphi contractive co...
11.[29 35]a unique common fixed point theorem under psi varphi contractive co...11.[29 35]a unique common fixed point theorem under psi varphi contractive co...
11.[29 35]a unique common fixed point theorem under psi varphi contractive co...
Alexander Decker
 
A/B Testing for Game Design
A/B Testing for Game DesignA/B Testing for Game Design
A/B Testing for Game Design
Trieu Nguyen
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...
Valentin De Bortoli
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular Gauges
Gabriel Peyré
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheet
Suvrat Mishra
 
Bayes Classification
Bayes ClassificationBayes Classification
Bayes Classification
sathish sak
 
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VECUnit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
Unit IV UNCERTAINITY AND STATISTICAL REASONING in AI K.Sundar,AP/CSE,VEC
sundarKanagaraj1
 
LectureNotes for Bayesian methods in Recommendation system
LectureNotes for Bayesian methods in Recommendation systemLectureNotes for Bayesian methods in Recommendation system
LectureNotes for Bayesian methods in Recommendation system
Xudong Sun
 
Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...Equational axioms for probability calculus and modelling of Likelihood ratio ...
Equational axioms for probability calculus and modelling of Likelihood ratio ...
Advanced-Concepts-Team
 
GonzalezGinestetResearchDay2016
GonzalezGinestetResearchDay2016GonzalezGinestetResearchDay2016
GonzalezGinestetResearchDay2016
Pablo Ginestet
 
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Low Complexity Regularization of Inverse Problems - Course #2 Recovery Guaran...
Gabriel Peyré
 
Low Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse ProblemsLow Complexity Regularization of Inverse Problems
Low Complexity Regularization of Inverse Problems
Gabriel Peyré
 
AIML unit-2(1).ppt
AIML unit-2(1).pptAIML unit-2(1).ppt
AIML unit-2(1).ppt
ashudhanraj
 
Slides: Hypothesis testing, information divergence and computational geometry
Slides: Hypothesis testing, information divergence and computational geometrySlides: Hypothesis testing, information divergence and computational geometry
Slides: Hypothesis testing, information divergence and computational geometry
Frank Nielsen
 
Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...
Alexander Decker
 
11.[29 35]a unique common fixed point theorem under psi varphi contractive co...
11.[29 35]a unique common fixed point theorem under psi varphi contractive co...11.[29 35]a unique common fixed point theorem under psi varphi contractive co...
11.[29 35]a unique common fixed point theorem under psi varphi contractive co...
Alexander Decker
 
A/B Testing for Game Design
A/B Testing for Game DesignA/B Testing for Game Design
A/B Testing for Game Design
Trieu Nguyen
 
Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...Maximum likelihood estimation of regularisation parameters in inverse problem...
Maximum likelihood estimation of regularisation parameters in inverse problem...
Valentin De Bortoli
 
Model Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular GaugesModel Selection with Piecewise Regular Gauges
Model Selection with Piecewise Regular Gauges
Gabriel Peyré
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheet
Suvrat Mishra
 
Bayes Classification
Bayes ClassificationBayes Classification
Bayes Classification
sathish sak
 
Ad

Recently uploaded (20)

Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
Process Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial IndustryProcess Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial Industry
Process mining Evangelist
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
Safety Innovation in Mt. Vernon A Westchester County Model for New Rochelle a...
James Francis Paradigm Asset Management
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf4. Multivariable statistics_Using Stata_2025.pdf
4. Multivariable statistics_Using Stata_2025.pdf
axonneurologycenter1
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Deloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit contextDeloitte Analytics - Applying Process Mining in an audit context
Deloitte Analytics - Applying Process Mining in an audit context
Process mining Evangelist
 
Modern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx AaModern_Distribution_Presentation.pptx Aa
Modern_Distribution_Presentation.pptx Aa
MuhammadAwaisKamboh
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Decision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdfDecision Trees in Artificial-Intelligence.pdf
Decision Trees in Artificial-Intelligence.pdf
Saikat Basu
 
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnTemplate_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Template_A3nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
cegiver630
 
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
Molecular methods diagnostic and monitoring of infection  -  Repaired.pptxMolecular methods diagnostic and monitoring of infection  -  Repaired.pptx
Molecular methods diagnostic and monitoring of infection - Repaired.pptx
7tzn7x5kky
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证定制学历(美国Purdue毕业证)普渡大学电子版毕业证
定制学历(美国Purdue毕业证)普渡大学电子版毕业证
Taqyea
 
Process Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial IndustryProcess Mining and Data Science in the Financial Industry
Process Mining and Data Science in the Financial Industry
Process mining Evangelist
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Stack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptxStack_and_Queue_Presentation_Final (1).pptx
Stack_and_Queue_Presentation_Final (1).pptx
binduraniha86
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Ad

Probability based learning (in book: Machine learning for predictve data analytics)

  • 1. Summary: Probability-based Learning (from book: Machine learning for predictve data analytics) Duyen Do 1
  • 2. NỘI DUNG Bayes’ Theorem Fundamentals Bayes Prediction Standard Approach: The Naïve Bayes Model Conditional Independence and Factorization Smoothing Extensions and Variations Continuous Features Bayesian Network Summary Q&A Probability basic 2
  • 3.  Probability function: P() Probability mass function (categorical features) and Probability density function (continuous features) 0 ≤ P (f = level) ≤ 1 𝑙 ∈ 𝑙𝑒𝑣𝑒𝑙𝑠(𝑓) 𝑃 𝑓 = 𝑙 = 1.0  Prior probability or Unconditional probability P(X)  Posterior probability or Conditional probability P(X|Y)  Joint probability P(X, Y)  Joint probability distribution Example Table 6.1 Fundamentals3
  • 4.  Conditional probability in terms of joint probability: 𝑃(𝑋|𝑌) = 𝑃(𝑋, 𝑌) 𝑃(𝑌)  Product rule: P(X,Y) = P(X|Y) P(Y) = P(Y|X) P(X) 0 ≤ P(X|Y) ≤ 1 𝑖 𝑃 𝑋𝑖 𝑌 𝑃(𝑌) = 1.0  Chain rule: P(A,B,C,…,Z) = P(Z) P(Y|Z) P(X|Y,Z)…P(A|B,…,X,Y,Z)  Theorem of Total Probability: 𝑃(𝑋) = 𝑖 𝑃 𝑋 𝑌𝑖 𝑃(𝑌𝑖) Fundamentals4
  • 5. Fundamentals: Bayes’s Theorem P(X|Y) = 𝑃(𝑌|𝑋)𝑃(𝑋) 𝑃(𝑌) A doctor inform a patient both bad news and good news: - Bad news: 99% has a serious desease - Good news: the desease is rarely and only 1 in 10,000 people What is actually probability that patient has the desease? Using Bayes’Theorem: 𝑃 𝑑 𝑡 = 𝑃 𝑡 𝑑 𝑃 𝑑 𝑃 𝑡 P(t) = P(t|d)P(d) + P(t|-d)P(-d) = (0.99 * 0.0001) + (0.01 * 0.9999) = 0.0101 P(d|t) = 0.99 ∗0.0001 0.0101 = 0.0098 5
  • 6. With P(t=l): the prior probability of target feature t taking the level l P(q[1],…,q[m]): joint probability of descriptive feature P(q[1],…,q[m] | t=l): the conditional probability Example 1: Table 6.1 What is probability a person has MENINGTIS when he/she has HEADACHE=true, FEVER=false, VOMITING=true? => P(m | h, -f, v) Bayesian prediction P(t=l | q[1],…,q[m]) = 𝑃 𝑞 1 ,…,𝑞 𝑚 𝑡=𝑙)𝑃(𝑡=𝑙) 𝑃(𝑞 1 ,…,𝑞 𝑚 ) 6
  • 7. P(m | h, -f, v) = 𝑃 ℎ,−𝑓,𝑣 𝑚)𝑃(𝑚) 𝑃(ℎ,−ℎ,𝑣) P(m) = |{𝐼𝐷5,𝐼𝐷8,𝐼𝐷10}| |{𝐼𝐷1,𝐼𝐷2,𝐼𝐷3,𝐼𝐷4,𝐼𝐷5,𝐼𝐷6,𝐼𝐷7,𝐼𝐷8,𝐼𝐷9,𝐼𝐷10}| = 0.3 P(h,-f,v) = |{𝐼𝐷3,𝐼𝐷4,𝐼𝐷6,𝐼𝐷7,𝐼𝐷8,𝐼𝐷10}| |{𝐼𝐷1,𝐼𝐷2,𝐼𝐷3,𝐼𝐷4,𝐼𝐷5,𝐼𝐷6,𝐼𝐷7,𝐼𝐷8,𝐼𝐷9,𝐼𝐷10}| = 0.6 P(h, -f, v | m) = P(h|m) P(-f | h,m) P(v | -f, h, m) = |{𝐼𝐷8,𝐼𝐷10}| |{𝐼𝐷5,𝐼𝐷8,𝐼𝐷10}| x |{𝐼𝐷8,𝐼𝐷10}| |{𝐼𝐷8,𝐼𝐷10}| x |{𝐼𝐷8,𝐼𝐷10}| |{𝐼𝐷8,𝐼𝐷10}| = 2 3 x 2 2 x 2 2 = 0.66 P(m | h, -f, v) = (0.66*0.3) / 0.6 = 0.33 P(-m | h, -f, v) = 𝑃 ℎ,−𝑓,𝑣 −𝑚)𝑃(−𝑚) 𝑃(ℎ,−ℎ,𝑣) = 𝑃 ℎ −𝑚)𝑃(−𝑓 ℎ,−𝑚 𝑃 𝑣 −𝑓,ℎ,−𝑚)𝑃(−𝑚) 𝑃(ℎ,−ℎ,𝑣) = 0.667 Bayesian prediction P(t=l | q[1],…,q[m]) = 𝑃 𝑞 1 ,…,𝑞 𝑚 𝑡=𝑙)𝑃(𝑡=𝑙) 𝑃(𝑞 1 ,…,𝑞 𝑚 ) 7
  • 8. Bayesian prediction Maximum a posterior predction: M (q) = arg max P(t=l | q[1],…,q[m]) = arg max l ∈ 𝑙𝑒𝑣𝑒𝑙𝑠( 𝑡) 𝑃 𝑞 1 , … , 𝑞 𝑚 𝑡 = 𝑙)𝑃(𝑡 = 𝑙) 𝑃(𝑞 1 , … , 𝑞 𝑚 ) Bayesian MAP prediction model: M (q) = arg max P(t=l | q[1],…,q[m]) = arg max l ∈ 𝑙𝑒𝑣𝑒𝑙𝑠( 𝑡) 𝑃 𝑞 1 , … , 𝑞 𝑚 𝑡 = 𝑙)𝑃(𝑡 = 𝑙) 8
  • 9. Example 2: Table 6.1 What is probability a person has MENINGTIS when he/she has HEADACHE=true, FEVER=true, VOMITING=false?  P(m | h, f, -v) = 𝑃 ℎ 𝑚 𝑃 𝑓 ℎ, 𝑚 𝑃 −𝑣 𝑓, ℎ, 𝑚 𝑃(𝑚) 𝑃(ℎ,𝑓,−𝑣) = 0.66 ∗ 0 ∗0 ∗0.3 0.1 = 0.0 P(-m| h, f, -v) = 1.0 – 0.0 = 1.0  Overfit data Bayesian prediction P(t=l | q[1],…,q[m]) = 𝑃 𝑞 1 ,…,𝑞 𝑚 𝑡=𝑙)𝑃(𝑡=𝑙) 𝑃(𝑞 1 ,…,𝑞 𝑚 ) 9
  • 10. Conditional independence when X and Y (independence) share the same cause Z.  P(X | Y, Z) = P(X | Z) P(X, Y | Z) = P(X | Z)*P(Y | Z)  Chain rule: P(q[1],…,q[m] | t=l) = P(q[1] | t=l)*P(q[2] | t=l)*…*P(q[m] | t=l) = Π P(q[i] | t=l) P(t=l | q[1],…,q[m]) = Π P(q[i] | t=l) ∗ P(t=l) 𝑃(𝑞 1 ,…,𝑞 𝑚 ) = Joint probability: P(H,F,V,M) = P(M) * P(H|M) * P(F|M) * P(V|M) Conditional independence and Factorization10 If X and Y are independent, then: P(X|Y) = P(X) P(X, Y) = P(X) P(Y)
  • 11. Example 2: Table 6.1 What is probability a person has MENINGTIS when he/she has HEADACHE=true, FEVER=true, VOMITING=false? P(m | h, f, -v) = P(h |m) ∗ P(f | m) ∗ P(−v | m) ∗ P(m) 𝑃(ℎ,𝑓,−𝑣) = P(h |m) ∗ P(f | m) ∗ P(−v | m) ∗ P(m) Σ𝑖 𝑃 ℎ 𝑀𝑖 ∗𝑃 𝑓 𝑀𝑖 ∗𝑃 −𝑣 𝑀𝑖 ∗𝑃(𝑀𝑖) = 0.1948 P(-m | h, f, -v) = 0.8052 Conditional independence and Factorization11 If X and Y are independent, then: P(X|Y) = P(X) P(X, Y) = P(X) P(Y)
  • 12. Example Table 6.2 Naïve Bayes Model12 MAP (Maximum a posterior): M(q) = arg maxl ∈ levels(t) ((Πi P(q[i] | t=l) * P(t=l))
  • 13. Example Table 6.2 CREDIT HISTORY = paid, GUANRANTOR/COAPPLICANT = guarantor, ACCOMMODATION = free? Extensions and Variations: Smoothing13 Laplace smoothing: 𝑃 𝑓 = 𝑙 𝑡) = 𝑐𝑜𝑢𝑛𝑡 𝑓 = 𝑙 𝑡) + 𝑘 𝑐𝑜𝑢𝑛𝑡 𝑓 𝑡) + (𝑘 ∗ 𝐷𝑜𝑚𝑎𝑖𝑛 𝑓 )
  • 14. Transform continuous feature to categorical feature with:  Equal-width binning  Equal-frequency binning Example Table 6.11 Extensions and Variations: Continuous feature - Binning14
  • 15. A Bayesian network, Bayes network, Bayes(ian) model or probabilistic directed acyclic graphical model is a probabilistic graphical model that represents a structural relationship - a set of random variables and their conditional dependencies - via a directed acyclic graph (DAG) P(A,B) = P(B|A) * P(A) Ex1: P(a, -b) = P(-b|a) * P(a) = 0.7 * 0.4 = 0.28 The probability of an event x1,…,xn P(x1,…,xn) = ∏ P(xi | Parents(xi)) Bayesian Network15 A B P(A=T) P(A=F) 0.4 0.6 A P(B=T | A) P(B=F | A) T 0.3 0.7 F 0.4 0.6
  • 16. Ex2: P (a, -b, -c, d) = P(-b|a,-c) * P(-c|d) * P(a) * P(d) = 0.5 * 0.8 * 0.4 * 0.4 = 0.064 Bayesian Network16 A B C D P(D=T) 0.4 P(A=T) 0.4 D P(C=T|D) T 0.2 F 0.5 A C P(B=T|A,C) T T 0.2 T F 0.5 F T 0.4 F F 0.3
  • 17. The conditional probability of node xi with n nodes P(xi | x1,…, xi-1, xi+1,…,xn) = P(xi | Parents(xi) ∏ P(xj | Parents(xj)) with j ∈ Children(xi) Ex2: P(c | -a, b, d) = P(c | d) * P(b | -a, c) = 0.2 * 0.4 = 0.08 Bayesian Network17 A B C D P(D=T) 0.4 P(A=T) 0.4 D P(C=T|D) T 0.2 F 0.5 A C P(B=T|A,C) T T 0.2 T F 0.5 F T 0.4 F F 0.3
  • 18. P(t |d[1], …, d[n]) = P(t) * ∏ P(d[j] | t) Naïve Bayes Classifier18 Target Descriptive feature 1 Descriptive feature 2 Descriptive feature n
  • 19. P(A, B, C) = P(C | A, B) * P(B |A) * P(A) P(A, B, C) = P(A| C, B) * P(B |C) * P(C) Building Bayesian Network19 B C A A C B P(A=T) 0.6 P(C=T) 0.2 A P(B=T|A) T 0.333 F 0.5 C P(B=T|C) T 0.5 F 0.375 A B P(C|A,B) T T 0.25 T F 0.125 F T 0.25 F F 0.25 C B P(A|B,C) T T 0.5 T F 0.5 F T 0.5 F F 0.7
  • 20. Building Bayesian Network20 Hybrid approach:  1. Given the topology of the network  2. Induce the CPT What is the best topology structure to give the algorithm as input?  Causal graphs Example Table 6.18
  • 21. Building Bayesian Network21 A potential causal theory: The more equal in a society, the higher the investment that society will make in health and education, and this in turn result in a lower of corruption SY LE P(CPI|SY, LE) L L 1.0 L H 0 H L 1.0 H H 1.0 CPI GC SC LE GC P(SY=L|GC) L 0.2 H 0.8 GC P(LE=L|GC) L 0.2 H 0.8 B P(GC=L) T 0.5
  • 22. Using Bayesian Network make predictions22 M (q) = arg max l ∈ levels(t) BayesianNetwork(t=l,q) Making prediction with missing descriptive feature values: GC = high, SC = high =>? Example Table 6.18