SlideShare a Scribd company logo
Ashwin Shankar
Nezih Yigitbasi
Productionizing
Spark on Yarn
for ETL
Producing Spark on YARN for ETL
Producing Spark on YARN for ETL
Scale
81+ million
members
Global 1000+ devices
supported
125 million
hours / day
Netflix Key Business Metrics
40 PB DW Read 3PB Write 300TB700B Events
Netflix Key Platform Metrics
Outline
● Big Data Platform Architecture
● Technical Challenges
● ETL
Big Data Platform Architecture
Cloud
apps
Kafka Ursula
Cassandra
Aegisthus
Dimension Data
Event Data
~ 1 min
Daily
S3
SS
Tables
Data Pipeline
Storage
Compute
Service
Tools
Big Data APIBig Data Portal
S3 Parquet
Transport VisualizationQuality PigWorkflowVis Job/ClusterVis
Interface
Execution Metadata
Notebooks
• 3000 EC2 nodes on two clusters (d2.4xlarge)
• Multiple Spark versions
• Share the same infrastructure with MapReduce jobs
S M
S M
S M
M
…
16 vcores
120 GB
M
S
MapReduceS
S M
S M
S M
MS
Spark
S M
S M
S M
MS
S M
S M
S M
MS
Spark on YARN at Netflix
$ spark-shell --ver 1.6 …
s3://…/spark-1.6.tar.gz
s3://…/spark-2.0.tar.gz
s3://…/spark-2.0-unstable.tar.gz
s3://…/1.6/spark-defaults.conf
…
s3://…/prod/yarn-site.xml
s3://../prod/core-site.xml
ConfigurationApplication
Multi-version Support
Technical Challenges
YARN
Resource
Manager
Node
Manager
Spark
AM
RDD
Custom Coalescer Support [SPARK-14042]
• coalesce() can only “merge” using the given number of partitions
– how to merge by size?
• CombineFileInputFormat with Hive
• Support custom partition coalescing strategies
• Parent RDD partitions are listed sequentially
• Slow for tables with lots of partitions
• Parallelize listing of parent RDD partitions
UnionRDD Parallel Listing [SPARK-9926]
YARN
Resource
Manager
S3Filesystem
RDD
Node
Manager
Spark
AM
• Unnecessary getFileStatus() call
• SPARK-9926 and HADOOP-12810 yield faster startup
• ~20x speedup in input split calculation
Optimize S3 Listing Performance [HADOOP-12810]
• Each task writes output to a temp directory
• Rename first successful task’s temp directory to final destination
• Problems with S3
• S3 rename => copy + delete
• S3 is eventually consistent
Hadoop Output Committer
• Each task writes output to local disk
• Copy first successful task’s output to S3
• Advantages
• avoid redundant S3 copy
• avoid eventual consistency
S3 Output Committer
YARN
Resource
Manager
Dynamic
Allocation
S3Filesystem
RDD
Node
Manager
Spark
AM
• Broadcast joins/variables
• Replicas can be removed with dynamic allocation
Poor Broadcast Read Performance [SPARK-13328]
...
16/02/13 01:02:27WARN BlockManager:
Failed to fetch remote block broadcast_18_piece0 (failed attempt 70)
...
16/02/13 01:02:27 INFOTorrentBroadcast:
Reading broadcast variable 18 took 1051049 ms
• Refresh replica locations from the driver on multiple failures
• Cancel & resend pending container requests
• if the locality preference is no longer needed
• if no locality preference is set
• No locality information with S3
• Do not cancel requests without locality preference
Incorrect Locality Optimization [SPARK-13779]
YARN
Resource
Manager
Parquet R/W
Dynamic
Allocation
S3Filesystem
RDD
Node
Manager
Spark
AM
A B C D
a1 b1 c1 d1
… … … …
aN bN cN dN
A B C D
dictionary
from “Analytic Data Storage in Hadoop”, Ryan Blue
Parquet Dictionary Filtering [PARQUET-384*]
0
10
20
30
40
50
60
70
80
DF disabled DF enabled
64MB split
DF enabled
1G split
DF disabled
DF enabled
64MB split
DF enabled
1G split
~8x ~18x
Parquet Dictionary Filtering [PARQUET-384*]
Avg.CompletionTime[m]
Property Value Description
spark.sql.hive.convertMetastoreParquet true enable native Parquet read path
parquet.filter.statistics.enabled true enable stats filtering
parquet.filter.dictionary.enabled true enable dictionary filtering
spark.sql.parquet.filterPushdown true enable Parquet filter pushdown optimization
spark.sql.parquet.mergeSchema false disable schema merging
spark.sql.hive.convertMetastoreParquet.mergeSchema false use Hive SerDe instead of built-in Parquet support
How to Enable Dictionary Filtering?
Efficient Dynamic Partition Inserts [SPARK-15420*]
• Parquet buffers row group data for each file during writes
• Spark already sorts before writes, but has some limitations
• Detect if the data is already sorted
• Expose the ability to repartition data before write
YARN
Resource
Manager
Parquet R/W
Dynamic
Allocation
Spark
HistoryServer
S3Filesystem
RDD
Node
Manager
Spark
AM
Spark History Server – Where is My Job?
• A large application can prevent new applications from showing up
• not uncommon to see event logs of GBs
• SPARK-13988 makes the processing multi-threaded
• GC tuning helps further
• move from CMS to G1 GC
• allocate more space to young generation
Spark History Server – Where is My Job?
Extract
Transform
Load
group
foreach
join
foreach + filter + store
join
foreach foreach
join
join
join
load + filter load + filter load + filter load + filter load + filter load + filter
Pig vs. Spark: Job #1
0
100
200
300
400
Pig Spark PySpark
~2.4x ~2x
Avg.CompletionTime[s]
Pig vs. Spark (Scala) vs. PySpark
load + filter
cogroup
join
order by + store
foreach
load + filter load + filter
join
foreach
foreach
foreach foreach foreach
Pig vs. Spark: Job #2
0
100
200
300
400
500
Pig Spark PySpark
~3.2x ~1.6x
Avg.CompletionTime[s]
Pig vs. Spark (Scala) vs. PySpark
Prototype DeployBuild Run
S3
Production Workflow
• A rapid innovation platform for targeting algorithms
• 5 hours (vs. 10s of hours) to compute similarity for all Netflix
profiles for 30-day window of new arrival titles
• 10 minutes to score 4M profiles for 14-day window of new
arrival titles
Production Spark Application #1: Yogen
• Personalized ordering of rows of titles
• Enrich page/row/title features with play history
• 14 stages, ~10Ks of tasks, severalTBs
Production Spark Application #2: ARO
What’s Next?
• Improved Parquet support
• Better visibility
• Explore new use cases
Questions?
Ad

More Related Content

What's hot (20)

Advanced Natural Language Processing with Apache Spark NLP
Advanced Natural Language Processing with Apache Spark NLPAdvanced Natural Language Processing with Apache Spark NLP
Advanced Natural Language Processing with Apache Spark NLP
Databricks
 
Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
Hyperspace for Delta Lake
Hyperspace for Delta LakeHyperspace for Delta Lake
Hyperspace for Delta Lake
Databricks
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Tachyon and Apache Spark
Tachyon and Apache SparkTachyon and Apache Spark
Tachyon and Apache Spark
rhatr
 
Omid: A Transactional Framework for HBase
Omid: A Transactional Framework for HBaseOmid: A Transactional Framework for HBase
Omid: A Transactional Framework for HBase
DataWorks Summit/Hadoop Summit
 
Spark and Spark Streaming at Netfix-(Kedar Sedekar and Monal Daxini, Netflix)
Spark and Spark Streaming at Netfix-(Kedar Sedekar and Monal Daxini, Netflix)Spark and Spark Streaming at Netfix-(Kedar Sedekar and Monal Daxini, Netflix)
Spark and Spark Streaming at Netfix-(Kedar Sedekar and Monal Daxini, Netflix)
Spark Summit
 
Sqoop on Spark for Data Ingestion
Sqoop on Spark for Data IngestionSqoop on Spark for Data Ingestion
Sqoop on Spark for Data Ingestion
DataWorks Summit
 
Deep Dive into GPU Support in Apache Spark 3.x
Deep Dive into GPU Support in Apache Spark 3.xDeep Dive into GPU Support in Apache Spark 3.x
Deep Dive into GPU Support in Apache Spark 3.x
Databricks
 
Large-Scaled Telematics Analytics in Apache Spark with Wayne Zhang and Neil P...
Large-Scaled Telematics Analytics in Apache Spark with Wayne Zhang and Neil P...Large-Scaled Telematics Analytics in Apache Spark with Wayne Zhang and Neil P...
Large-Scaled Telematics Analytics in Apache Spark with Wayne Zhang and Neil P...
Databricks
 
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Databricks
 
Spark Summit EU talk by Mike Percy
Spark Summit EU talk by Mike PercySpark Summit EU talk by Mike Percy
Spark Summit EU talk by Mike Percy
Spark Summit
 
Managing Apache Spark Workload and Automatic Optimizing
Managing Apache Spark Workload and Automatic OptimizingManaging Apache Spark Workload and Automatic Optimizing
Managing Apache Spark Workload and Automatic Optimizing
Databricks
 
Lessons Learned from Managing Thousands of Production Apache Spark Clusters w...
Lessons Learned from Managing Thousands of Production Apache Spark Clusters w...Lessons Learned from Managing Thousands of Production Apache Spark Clusters w...
Lessons Learned from Managing Thousands of Production Apache Spark Clusters w...
Databricks
 
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy StarzhinskySpark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit
 
Rds data lake @ Robinhood
Rds data lake @ Robinhood Rds data lake @ Robinhood
Rds data lake @ Robinhood
BalajiVaradarajan13
 
Elastify Cloud-Native Spark Application with Persistent Memory
Elastify Cloud-Native Spark Application with Persistent MemoryElastify Cloud-Native Spark Application with Persistent Memory
Elastify Cloud-Native Spark Application with Persistent Memory
Databricks
 
Managing ADLS gen2 using Apache Spark
Managing ADLS gen2 using Apache SparkManaging ADLS gen2 using Apache Spark
Managing ADLS gen2 using Apache Spark
Databricks
 
Taming the Search: A Practical Way of Enforcing GDPR and CCPA in Very Large D...
Taming the Search: A Practical Way of Enforcing GDPR and CCPA in Very Large D...Taming the Search: A Practical Way of Enforcing GDPR and CCPA in Very Large D...
Taming the Search: A Practical Way of Enforcing GDPR and CCPA in Very Large D...
Databricks
 
Optimising Geospatial Queries with Dynamic File Pruning
Optimising Geospatial Queries with Dynamic File PruningOptimising Geospatial Queries with Dynamic File Pruning
Optimising Geospatial Queries with Dynamic File Pruning
Databricks
 
Advanced Natural Language Processing with Apache Spark NLP
Advanced Natural Language Processing with Apache Spark NLPAdvanced Natural Language Processing with Apache Spark NLP
Advanced Natural Language Processing with Apache Spark NLP
Databricks
 
Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
Hyperspace for Delta Lake
Hyperspace for Delta LakeHyperspace for Delta Lake
Hyperspace for Delta Lake
Databricks
 
Next CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub WozniakNext CERN Accelerator Logging Service with Jakub Wozniak
Next CERN Accelerator Logging Service with Jakub Wozniak
Spark Summit
 
Tachyon and Apache Spark
Tachyon and Apache SparkTachyon and Apache Spark
Tachyon and Apache Spark
rhatr
 
Spark and Spark Streaming at Netfix-(Kedar Sedekar and Monal Daxini, Netflix)
Spark and Spark Streaming at Netfix-(Kedar Sedekar and Monal Daxini, Netflix)Spark and Spark Streaming at Netfix-(Kedar Sedekar and Monal Daxini, Netflix)
Spark and Spark Streaming at Netfix-(Kedar Sedekar and Monal Daxini, Netflix)
Spark Summit
 
Sqoop on Spark for Data Ingestion
Sqoop on Spark for Data IngestionSqoop on Spark for Data Ingestion
Sqoop on Spark for Data Ingestion
DataWorks Summit
 
Deep Dive into GPU Support in Apache Spark 3.x
Deep Dive into GPU Support in Apache Spark 3.xDeep Dive into GPU Support in Apache Spark 3.x
Deep Dive into GPU Support in Apache Spark 3.x
Databricks
 
Large-Scaled Telematics Analytics in Apache Spark with Wayne Zhang and Neil P...
Large-Scaled Telematics Analytics in Apache Spark with Wayne Zhang and Neil P...Large-Scaled Telematics Analytics in Apache Spark with Wayne Zhang and Neil P...
Large-Scaled Telematics Analytics in Apache Spark with Wayne Zhang and Neil P...
Databricks
 
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Databricks
 
Spark Summit EU talk by Mike Percy
Spark Summit EU talk by Mike PercySpark Summit EU talk by Mike Percy
Spark Summit EU talk by Mike Percy
Spark Summit
 
Managing Apache Spark Workload and Automatic Optimizing
Managing Apache Spark Workload and Automatic OptimizingManaging Apache Spark Workload and Automatic Optimizing
Managing Apache Spark Workload and Automatic Optimizing
Databricks
 
Lessons Learned from Managing Thousands of Production Apache Spark Clusters w...
Lessons Learned from Managing Thousands of Production Apache Spark Clusters w...Lessons Learned from Managing Thousands of Production Apache Spark Clusters w...
Lessons Learned from Managing Thousands of Production Apache Spark Clusters w...
Databricks
 
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy StarzhinskySpark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit EU talk by Yaroslav Nedashkovsky and Andy Starzhinsky
Spark Summit
 
Elastify Cloud-Native Spark Application with Persistent Memory
Elastify Cloud-Native Spark Application with Persistent MemoryElastify Cloud-Native Spark Application with Persistent Memory
Elastify Cloud-Native Spark Application with Persistent Memory
Databricks
 
Managing ADLS gen2 using Apache Spark
Managing ADLS gen2 using Apache SparkManaging ADLS gen2 using Apache Spark
Managing ADLS gen2 using Apache Spark
Databricks
 
Taming the Search: A Practical Way of Enforcing GDPR and CCPA in Very Large D...
Taming the Search: A Practical Way of Enforcing GDPR and CCPA in Very Large D...Taming the Search: A Practical Way of Enforcing GDPR and CCPA in Very Large D...
Taming the Search: A Practical Way of Enforcing GDPR and CCPA in Very Large D...
Databricks
 
Optimising Geospatial Queries with Dynamic File Pruning
Optimising Geospatial Queries with Dynamic File PruningOptimising Geospatial Queries with Dynamic File Pruning
Optimising Geospatial Queries with Dynamic File Pruning
Databricks
 

Viewers also liked (15)

Hadoop and Spark Analytics over Better Storage
Hadoop and Spark Analytics over Better StorageHadoop and Spark Analytics over Better Storage
Hadoop and Spark Analytics over Better Storage
Sandeep Patil
 
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
Spark-on-YARN: Empower Spark Applications on Hadoop ClusterSpark-on-YARN: Empower Spark Applications on Hadoop Cluster
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
DataWorks Summit
 
Dynamically Allocate Cluster Resources to your Spark Application
Dynamically Allocate Cluster Resources to your Spark ApplicationDynamically Allocate Cluster Resources to your Spark Application
Dynamically Allocate Cluster Resources to your Spark Application
DataWorks Summit
 
Productionizing Spark and the Spark Job Server
Productionizing Spark and the Spark Job ServerProductionizing Spark and the Spark Job Server
Productionizing Spark and the Spark Job Server
Evan Chan
 
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
gethue
 
Get most out of Spark on YARN
Get most out of Spark on YARNGet most out of Spark on YARN
Get most out of Spark on YARN
DataWorks Summit
 
Spark on yarn
Spark on yarnSpark on yarn
Spark on yarn
datamantra
 
Spark Compute as a Service at Paypal with Prabhu Kasinathan
Spark Compute as a Service at Paypal with Prabhu KasinathanSpark Compute as a Service at Paypal with Prabhu Kasinathan
Spark Compute as a Service at Paypal with Prabhu Kasinathan
Databricks
 
ETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetupETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetup
Rafal Kwasny
 
Why your Spark job is failing
Why your Spark job is failingWhy your Spark job is failing
Why your Spark job is failing
Sandy Ryza
 
Proxy Servers
Proxy ServersProxy Servers
Proxy Servers
Sourav Roy
 
Apache Spark Model Deployment
Apache Spark Model Deployment Apache Spark Model Deployment
Apache Spark Model Deployment
Databricks
 
Proxy Server
Proxy ServerProxy Server
Proxy Server
guest095022
 
Spark 2.x Troubleshooting Guide
Spark 2.x Troubleshooting GuideSpark 2.x Troubleshooting Guide
Spark 2.x Troubleshooting Guide
IBM
 
Hadoop and Spark Analytics over Better Storage
Hadoop and Spark Analytics over Better StorageHadoop and Spark Analytics over Better Storage
Hadoop and Spark Analytics over Better Storage
Sandeep Patil
 
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
Spark-on-YARN: Empower Spark Applications on Hadoop ClusterSpark-on-YARN: Empower Spark Applications on Hadoop Cluster
Spark-on-YARN: Empower Spark Applications on Hadoop Cluster
DataWorks Summit
 
Dynamically Allocate Cluster Resources to your Spark Application
Dynamically Allocate Cluster Resources to your Spark ApplicationDynamically Allocate Cluster Resources to your Spark Application
Dynamically Allocate Cluster Resources to your Spark Application
DataWorks Summit
 
Productionizing Spark and the Spark Job Server
Productionizing Spark and the Spark Job ServerProductionizing Spark and the Spark Job Server
Productionizing Spark and the Spark Job Server
Evan Chan
 
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
Spark Summit Europe: Building a REST Job Server for interactive Spark as a se...
gethue
 
Get most out of Spark on YARN
Get most out of Spark on YARNGet most out of Spark on YARN
Get most out of Spark on YARN
DataWorks Summit
 
Spark Compute as a Service at Paypal with Prabhu Kasinathan
Spark Compute as a Service at Paypal with Prabhu KasinathanSpark Compute as a Service at Paypal with Prabhu Kasinathan
Spark Compute as a Service at Paypal with Prabhu Kasinathan
Databricks
 
ETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetupETL with SPARK - First Spark London meetup
ETL with SPARK - First Spark London meetup
Rafal Kwasny
 
Why your Spark job is failing
Why your Spark job is failingWhy your Spark job is failing
Why your Spark job is failing
Sandy Ryza
 
Apache Spark Model Deployment
Apache Spark Model Deployment Apache Spark Model Deployment
Apache Spark Model Deployment
Databricks
 
Spark 2.x Troubleshooting Guide
Spark 2.x Troubleshooting GuideSpark 2.x Troubleshooting Guide
Spark 2.x Troubleshooting Guide
IBM
 
Ad

Similar to Producing Spark on YARN for ETL (20)

Netflix - Productionizing Spark On Yarn For ETL At Petabyte Scale
Netflix - Productionizing Spark On Yarn For ETL At Petabyte ScaleNetflix - Productionizing Spark On Yarn For ETL At Petabyte Scale
Netflix - Productionizing Spark On Yarn For ETL At Petabyte Scale
Jen Aman
 
Running Presto and Spark on the Netflix Big Data Platform
Running Presto and Spark on the Netflix Big Data PlatformRunning Presto and Spark on the Netflix Big Data Platform
Running Presto and Spark on the Netflix Big Data Platform
Eva Tse
 
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at LyftSF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
Chester Chen
 
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Databricks
 
Spark: The State of the Art Engine for Big Data Processing
Spark: The State of the Art Engine for Big Data ProcessingSpark: The State of the Art Engine for Big Data Processing
Spark: The State of the Art Engine for Big Data Processing
Ramaninder Singh Jhajj
 
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
Spark Summit
 
Scaling spark on kubernetes at Lyft
Scaling spark on kubernetes at LyftScaling spark on kubernetes at Lyft
Scaling spark on kubernetes at Lyft
Li Gao
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Anyscale
 
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
Philippe Fierens
 
Build Large-Scale Data Analytics and AI Pipeline Using RayDP
Build Large-Scale Data Analytics and AI Pipeline Using RayDPBuild Large-Scale Data Analytics and AI Pipeline Using RayDP
Build Large-Scale Data Analytics and AI Pipeline Using RayDP
Databricks
 
Running Apache Spark on Kubernetes: Best Practices and Pitfalls
Running Apache Spark on Kubernetes: Best Practices and PitfallsRunning Apache Spark on Kubernetes: Best Practices and Pitfalls
Running Apache Spark on Kubernetes: Best Practices and Pitfalls
Databricks
 
Spark cep
Spark cepSpark cep
Spark cep
Byungjin Kim
 
Extending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event ProcessingExtending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event Processing
Oh Chan Kwon
 
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Tracing the Breadcrumbs: Apache Spark Workload Diagnostics
Tracing the Breadcrumbs: Apache Spark Workload DiagnosticsTracing the Breadcrumbs: Apache Spark Workload Diagnostics
Tracing the Breadcrumbs: Apache Spark Workload Diagnostics
Databricks
 
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
DataWorks Summit/Hadoop Summit
 
Data Processing with Apache Spark Meetup Talk
Data Processing with Apache Spark Meetup TalkData Processing with Apache Spark Meetup Talk
Data Processing with Apache Spark Meetup Talk
Eren Avşaroğulları
 
Big Telco - Yousun Jeong
Big Telco - Yousun JeongBig Telco - Yousun Jeong
Big Telco - Yousun Jeong
Spark Summit
 
Big Telco Real-Time Network Analytics
Big Telco Real-Time Network AnalyticsBig Telco Real-Time Network Analytics
Big Telco Real-Time Network Analytics
Yousun Jeong
 
Netflix - Productionizing Spark On Yarn For ETL At Petabyte Scale
Netflix - Productionizing Spark On Yarn For ETL At Petabyte ScaleNetflix - Productionizing Spark On Yarn For ETL At Petabyte Scale
Netflix - Productionizing Spark On Yarn For ETL At Petabyte Scale
Jen Aman
 
Running Presto and Spark on the Netflix Big Data Platform
Running Presto and Spark on the Netflix Big Data PlatformRunning Presto and Spark on the Netflix Big Data Platform
Running Presto and Spark on the Netflix Big Data Platform
Eva Tse
 
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at LyftSF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
Chester Chen
 
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Spark Saturday: Spark SQL & DataFrame Workshop with Apache Spark 2.3
Databricks
 
Spark: The State of the Art Engine for Big Data Processing
Spark: The State of the Art Engine for Big Data ProcessingSpark: The State of the Art Engine for Big Data Processing
Spark: The State of the Art Engine for Big Data Processing
Ramaninder Singh Jhajj
 
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
Highlights and Challenges from Running Spark on Mesos in Production by Morri ...
Spark Summit
 
Scaling spark on kubernetes at Lyft
Scaling spark on kubernetes at LyftScaling spark on kubernetes at Lyft
Scaling spark on kubernetes at Lyft
Li Gao
 
Jump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on DatabricksJump Start with Apache Spark 2.0 on Databricks
Jump Start with Apache Spark 2.0 on Databricks
Anyscale
 
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
What we unlearned_and_learned_by_moving_from_m9000_to_ssc_ukoug2014
Philippe Fierens
 
Build Large-Scale Data Analytics and AI Pipeline Using RayDP
Build Large-Scale Data Analytics and AI Pipeline Using RayDPBuild Large-Scale Data Analytics and AI Pipeline Using RayDP
Build Large-Scale Data Analytics and AI Pipeline Using RayDP
Databricks
 
Running Apache Spark on Kubernetes: Best Practices and Pitfalls
Running Apache Spark on Kubernetes: Best Practices and PitfallsRunning Apache Spark on Kubernetes: Best Practices and Pitfalls
Running Apache Spark on Kubernetes: Best Practices and Pitfalls
Databricks
 
Extending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event ProcessingExtending Spark Streaming to Support Complex Event Processing
Extending Spark Streaming to Support Complex Event Processing
Oh Chan Kwon
 
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Vectorized Deep Learning Acceleration from Preprocessing to Inference and Tra...
Databricks
 
Scaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on KubernetesScaling your Data Pipelines with Apache Spark on Kubernetes
Scaling your Data Pipelines with Apache Spark on Kubernetes
Databricks
 
Tracing the Breadcrumbs: Apache Spark Workload Diagnostics
Tracing the Breadcrumbs: Apache Spark Workload DiagnosticsTracing the Breadcrumbs: Apache Spark Workload Diagnostics
Tracing the Breadcrumbs: Apache Spark Workload Diagnostics
Databricks
 
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
End to End Processing of 3.7 Million Telemetry Events per Second using Lambda...
DataWorks Summit/Hadoop Summit
 
Data Processing with Apache Spark Meetup Talk
Data Processing with Apache Spark Meetup TalkData Processing with Apache Spark Meetup Talk
Data Processing with Apache Spark Meetup Talk
Eren Avşaroğulları
 
Big Telco - Yousun Jeong
Big Telco - Yousun JeongBig Telco - Yousun Jeong
Big Telco - Yousun Jeong
Spark Summit
 
Big Telco Real-Time Network Analytics
Big Telco Real-Time Network AnalyticsBig Telco Real-Time Network Analytics
Big Telco Real-Time Network Analytics
Yousun Jeong
 
Ad

More from DataWorks Summit/Hadoop Summit (20)

Running Apache Spark & Apache Zeppelin in Production
Running Apache Spark & Apache Zeppelin in ProductionRunning Apache Spark & Apache Zeppelin in Production
Running Apache Spark & Apache Zeppelin in Production
DataWorks Summit/Hadoop Summit
 
State of Security: Apache Spark & Apache Zeppelin
State of Security: Apache Spark & Apache ZeppelinState of Security: Apache Spark & Apache Zeppelin
State of Security: Apache Spark & Apache Zeppelin
DataWorks Summit/Hadoop Summit
 
Unleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache RangerUnleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache Ranger
DataWorks Summit/Hadoop Summit
 
Enabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science PlatformEnabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science Platform
DataWorks Summit/Hadoop Summit
 
Revolutionize Text Mining with Spark and Zeppelin
Revolutionize Text Mining with Spark and ZeppelinRevolutionize Text Mining with Spark and Zeppelin
Revolutionize Text Mining with Spark and Zeppelin
DataWorks Summit/Hadoop Summit
 
Double Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSenseDouble Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSense
DataWorks Summit/Hadoop Summit
 
Hadoop Crash Course
Hadoop Crash CourseHadoop Crash Course
Hadoop Crash Course
DataWorks Summit/Hadoop Summit
 
Data Science Crash Course
Data Science Crash CourseData Science Crash Course
Data Science Crash Course
DataWorks Summit/Hadoop Summit
 
Apache Spark Crash Course
Apache Spark Crash CourseApache Spark Crash Course
Apache Spark Crash Course
DataWorks Summit/Hadoop Summit
 
Dataflow with Apache NiFi
Dataflow with Apache NiFiDataflow with Apache NiFi
Dataflow with Apache NiFi
DataWorks Summit/Hadoop Summit
 
Schema Registry - Set you Data Free
Schema Registry - Set you Data FreeSchema Registry - Set you Data Free
Schema Registry - Set you Data Free
DataWorks Summit/Hadoop Summit
 
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
DataWorks Summit/Hadoop Summit
 
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
DataWorks Summit/Hadoop Summit
 
Mool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and MLMool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and ML
DataWorks Summit/Hadoop Summit
 
How Hadoop Makes the Natixis Pack More Efficient
How Hadoop Makes the Natixis Pack More Efficient How Hadoop Makes the Natixis Pack More Efficient
How Hadoop Makes the Natixis Pack More Efficient
DataWorks Summit/Hadoop Summit
 
HBase in Practice
HBase in Practice HBase in Practice
HBase in Practice
DataWorks Summit/Hadoop Summit
 
The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)
DataWorks Summit/Hadoop Summit
 
Breaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
Breaking the 1 Million OPS/SEC Barrier in HOPS HadoopBreaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
Breaking the 1 Million OPS/SEC Barrier in HOPS Hadoop
DataWorks Summit/Hadoop Summit
 
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
DataWorks Summit/Hadoop Summit
 
Backup and Disaster Recovery in Hadoop
Backup and Disaster Recovery in Hadoop Backup and Disaster Recovery in Hadoop
Backup and Disaster Recovery in Hadoop
DataWorks Summit/Hadoop Summit
 
Unleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache RangerUnleashing the Power of Apache Atlas with Apache Ranger
Unleashing the Power of Apache Atlas with Apache Ranger
DataWorks Summit/Hadoop Summit
 
Enabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science PlatformEnabling Digital Diagnostics with a Data Science Platform
Enabling Digital Diagnostics with a Data Science Platform
DataWorks Summit/Hadoop Summit
 
Double Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSenseDouble Your Hadoop Performance with Hortonworks SmartSense
Double Your Hadoop Performance with Hortonworks SmartSense
DataWorks Summit/Hadoop Summit
 
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
Building a Large-Scale, Adaptive Recommendation Engine with Apache Flink and ...
DataWorks Summit/Hadoop Summit
 
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
Real-Time Anomaly Detection using LSTM Auto-Encoders with Deep Learning4J on ...
DataWorks Summit/Hadoop Summit
 
Mool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and MLMool - Automated Log Analysis using Data Science and ML
Mool - Automated Log Analysis using Data Science and ML
DataWorks Summit/Hadoop Summit
 
The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)The Challenge of Driving Business Value from the Analytics of Things (AOT)
The Challenge of Driving Business Value from the Analytics of Things (AOT)
DataWorks Summit/Hadoop Summit
 
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
From Regulatory Process Verification to Predictive Maintenance and Beyond wit...
DataWorks Summit/Hadoop Summit
 

Recently uploaded (20)

#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 

Producing Spark on YARN for ETL

Editor's Notes

  • #2: Good afternoon everybody. I'm Ashwin and this is Nezih. We work for the big data platform team at Netflix. Today we are going to talk about our experience productionizing spark for running ETL workloads on YARN
  • #3: I'm sure all of you have seen this netflix page before. Do you also know that spark contributes pipeline that does personalized ordering of the rows in this page. We will talk about this application in the second part of the presentation. Not just that, spark is also used to train some of machine learning models that powers our recommendations alogorithms.
  • #4: Netflix is a data driven company collect a lot of data from user interactions, platforms, services One example where we use this data is A/B testing. Lets say we have UI change actually improves the experience The biggest challenge that we face…
  • #5: Just to give an idea of at what scale we operate, I'm going to share with you some numbers.
  • #6: this would generate a lot of data. But how much
  • #8: Today, we'll walk you through three sections
  • #9: We need to answer two questions. First ques how do we get data in platform? It looks like this
  • #10: two pipelines. event data, so this is all the data from devices and microservices running out in the cloud. This goes into a kakfa clusters,ursula. This pipeline runs under a min. At the bottom, dimension data pipeline. live data in casssandra. Everyday this data is backed up and a tool called Aegisthus processes these backups and writes into our data warehouse. In the end, we have all of event and dimension data on s3, ready for processing.
  • #11: At this point, our data is on s3 which is our source of truth, parquet .. At the very top in our interface. hundreds of internal users using platform. bigdataportal, one stop shop to access our big data services. From this portal, users pick a compute engine and run their jobs. cool features like schema browsing and accessing s3. The portal uses the Bigdata api under the hood..
  • #12: Here is how our spark on yarn deployment looks like Thanks to genie, multiple spark versions. This helps experiment with new features, bug fixes To make best use of our resources, spark alongside mapreduce
  • #14: Now lets move on to the technical challenges. We are going to walk through the lifecycle of a spark job, as we do that we'll talk about the challenges that we had.
  • #15: resource manager, master process, managing the cluster resources. driver via the AM requests from initial set of executors from the RM, and NM launches In a typical spark job, probably use the RDD interface.. We faced two technical challenges here. the first one is a limitation of RDD interface and second one is perf optimization. T : Here is the first one
  • #16: Recently we had a usecase where we wanted to merge small files. merges partitions according to a given number of paritions, but we want to merge by file size added support for passing a custom coalescer to this interface. and we implemented a size based coalescing strategy T : Now lets look at the optimization in UnionRDD.
  • #17: We noticed select * from table limit 10, slow against partitioned hive table Found each hive partition, spark hadoopRDD,UnionRDD. reason poor performance sequential listing of parent hadoopRDD partitions. resolved this by computing the partitions of unionRDD in parallel. T : This fix was good but we found another important problem in s3 filesystem that was affecting the listing performance.
  • #19: in hadoop we found, Filesystem making an unnecssary rpc call to s3, which is expensive. We fixed this issue by removing this redundant rpc call. This along with Union RDD fix improved in split calculation performance by 20x. T: : This problem was on the read path, we hit another issue on the write path, which was with Output committers.
  • #20: Output committer writes the output of single task in an all or nothing fashion. Each task writes output to a temp directory. First successful.. But this doesn't work well with S3. To solve this we use our internal s3 output committer, which we plan to open source in the future.
  • #22: At this point, driver has finished listing and it starts running tasks on the executors. dynamic allocation will kick in, and scale job's execturos up and down based on the workload. We had several major problems with dyn alloc and I'll now talk about two of them here. T : Here is the first one.
  • #23: When dynamic allocation is enabled, we found that reading broadcast data can take a long time. reason is executors retrieve block locations only once from the driver during the read. But with dynamic allocation , replicas can be removed resulting in stale entries in the retrived block locations. Production job example We fixed this problem on the executor side, now the executors refresh the block locations from the driver after multiple failed attempts. T: The second problem we had is with locality optimization.
  • #24: noticed a spark application failed due to timeouts. On debugging we found that AM would cancel and resend container requests if the one, locality preference is no longer needed or two if locality preference is not set. Problem is we run on s3 and s3 doesn't have locality information set, which was why we see this thrashing. We fixed this by not cancelling container requests that don't have a locality pref set.
  • #29: See also https://issues.apache.org/jira/browse/SPARK-8890 Inserting a repartition minimizes the number of output files and the memory consumption. In progress, not merged.
  • #32: Due to sequential processing one large application event log can block new applications from showing up. Other configs which helped fix OOM errors Move from CMS to G1GC Garbage collector -XX:NewRatio=1 (give more space to YoungGen)
  • #41: Available in Spark 2.0