SlideShare a Scribd company logo
Purely Functional
Data Structures in Scala
Vladimir Kostyukov
http://vkostyukov.ru
Agenda
โ€ข Immutability & Persistence
โ€ข Singly-Linked List
โ€ข Bankerโ€™s Queue
โ€ข Binary Search Tree
โ€ข Balanced BST: Red-Black Tree
โ€ข Scala support of these things
โ€ข Patricia Trie
โ€ข Hash Array Mapped Trie
2
Immutability & Persistence
Two problems:
โ€ข FP paradigm doesnโ€™t support destructive updates
โ€ข FP paradigm expects both the old and new
versions of DS will be available after update
Two solutions:
โ€ข Immutable objects arenโ€™t changeable
โ€ข Persistent objects support multiple versions
3
Singly-Linked List
4
35 7
Cons
Nil
abstract sealed class List {
def head: Int
def tail: List
def isEmpty: Boolean
}
case object Nil extends List {
def head: Int = fail("Empty list.")
def tail: List = fail("Empty list.")
def isEmpty: Boolean = true
}
case class Cons(head: Int, tail: List = Nil) extends List {
def isEmpty: Boolean = false
}
List: analysis
5
35 7A =
B = Cons(9, A) = 9
C = Cons(1, Cons(8, B)) = 1 8
structural sharing
/**
* Time - O(1)
* Space - O(1)
*/
def prepend(x: Int): List = Cons(x, this)
/**
* Time - O(n)
* Space - O(n)
*/
def append(x: Int): List =
if (isEmpty) Cons(x)
else Cons(head, tail.append(x))
List: append & prepend
6
35 79
35 7 9
List: apply
7
35 7 42 6
n - 1
/**
* Time - O(n)
* Space - O(n)
*/
def apply(n: Int): A =
if (isEmpty) fail("Index out of bounds.")
else if (n == 0) head
else tail(n - 1) // or tail.apply(n - 1)
List: concat
8
path copying
A = 42 6
B = 35 7
C = A.concat(B) = 42 6
/**
* Time - O(n)
* Space - O(n)
*/
def concat(xs: List): List =
if (isEmpty) xs
else tail.concat(xs).prepend(head)
List: reverse (two approaches)
9
42 6 46 2reverse( ) =
def reverse: List =
if (isEmpty) Nil
else tail.reverse.append(head)
, or tail recursion in O(n)
The straightforward solution in O(n2)
def reverse: List = {
@tailrec
def loop(s: List, d: List): List =
if (s.isEmpty) d
else loop(s.tail, d.prepend(s.head))
loop(this, Nil)
}
List performance
10
prepend
head
tail
append
apply
reverse
concat
Bankerโ€™s Queue
โ€ข Based on two lists (in and out)
โ€ข Guarantees amortized O(1) performance
11
class Queue(in: List[Int] = Nil, out: List[Int] = Nil) {
def enqueue(x: Int): Queue = ???
def dequeue: (Int, Queue) = ???
def front: Int = dequeue match { case (a, _) => a }
def rear: Queue = dequeue match { case (_, q) => q }
def isEmpty: Boolean = in.isEmpty && out.isEmpty
}
Queue: analysis
12
A = new Queue( , )
B = A.enqueue(1) = 1 , )
C = B.enqueue(2) = 12 , )
D = C.enqueue(3) = 23 1 , )
(V, E) = D.dequeue = , ))2 3
(U, F) = E.dequeue = , ))3
reverse
new Queue(
new Queue(
new Queue(
(1, new Queue(
(2, new Queue(
Amortized vs. Average Case
โ€ข Average Case analysis makes assumptions about
typical (most likely) input
โ€ข Amortized analysis considers total performance of
sequence of operations in a the worst case
Example:
โ€ข Dynamically-Resizing Array (java.util.ArrayList)
โ€“ Has O(n) average case performance for add operation
โ€“ It can be amortized to O(1)
โ€ข Usually it takes O(1) since the storage is big enough
โ€ข Sometimes it can take O(n) due to reallocation & copying
13
Queue: enqueue & dequeue
14
/**
* Time - O(1)
* Space - O(1)
*/
def enqueue(x: Int): Queue = new Queue(x :: in, out)
/**
* Time - O(1)
* Space - O(1)
*/
def dequeue: (Int, Queue) = out match {
case hd :: tl => (hd, new Queue(in, tl)) // O(1)
case Nil => in.reverse match { // O(n)
case hd :: tl => (hd, new Queue(Nil, tl))
case Nil => fail("Empty queue.")
}
}
Queue performance
15
enqueue
dequeue*
front*
rear*
* amortized complexity
Binary Search Tree
16
5
2 7
1 3 8
BST hierarchy
17
abstract sealed class Tree {
def value: Int
def left: Tree
def right: Tree
def isEmpty: Boolean
}
case object Leaf extends Tree {
def value: Int = fail("Empty tree.")
def left: Tree = fail("Empty tree.")
def right: Tree = fail("Empty tree.")
def isEmpty: Boolean = true
}
case class Branch(value: Int,
left: Tree = Leaf,
right: Tree = Leaf) extends Tree {
def isEmpty: Boolean = false
}
5
Branch
Leaf
BST: analysis
18
A = Branch(5) = 5
B = Branch(7, A, Branch(9)) = 7
9
C = Branch(1, Leaf, B) = 1
structural sharing
BST: insert
19
5
2 7
1 3 86
path copying
7
5
/**
* Time - O(log n)
* Space - O(log n)
*/
def add(x: Int): Tree =
if (isEmpty) Branch(x)
else if (x < value) Branch(value, left.add(x), right)
else if (x > value) Branch(value, left, right.add(x))
else this
BST: remove (cases)
20
5
2 7
1 3 8
5
2 7
1 3 8
5
2 7
1 3 8
BST: remove (code)
21
/**
* Time - O(log n)
* Space - O(log n)
*/
def remove(x: Int): Tree =
if (isEmpty) fail("Can't find " + x + " in this tree.")
else if (x < value) Branch(value, left.remove(x), right)
else if (x > value) Branch(value, left, right.remove(x))
else {
if (left.isEmpty && right.isEmpty) Leaf // case 1
else if (left.isEmpty) right // case 2
else if (right.isEmpty) left // case 2
else { // case 3
val succ = right.min // case 3
Branch(succ, left, right.remove(succ)) // case 3
}
}
/**
* Time - O(log n)
* Space - O(log n)
*/
def min: Int = {
@tailrec def loop(t: Tree, m: Int): Int =
if (t.isEmpty) m else loop(t.left, t.value)
if (isEmpty) fail("Empty tree.")
else loop(left, value)
}
/**
* Time - O(log n)
* Space - O(log n)
*/
def max: Int = {
@tailrec def loop(t: Tree[Int], m: Int): Int =
if (t.isEmpty) m else loop(t.right, t.value)
if (isEmpty) fail("Empty tree.")
else loop(right, value)
}
BST: min & max
22
5
2 7
1 3 8
5
2 7
1 3 8
BST: apply
23
5
2 7
1 3 6 8
n - 1
/**
* Time - O(log n)
* Space - O(log n)
*/
def apply(n: Int): A =
if (isEmpty) fail("Tree doesn't contain a " + n + "th element.")
else if (n < left.size) left(n)
else if (n > left.size) right(n - size - 1)
else value
BST: DFS (pre-order traversal)
24
/**
* Time - O(n)
* Space - O(log n)
*/
def valuesByDepth: List[Int] = {
def loop(s: List[Tree]): List[Int] =
if (s.isEmpty) Nil
else if (s.head.isEmpty) loop(s.tail)
else s.head.value :: loop(s.head.right :: s.head.left :: s.tail)
loop(List(this))
}
5
2 7
1 3 8
BST: BFS (level-order traversal)
25
/**
* Time - O(n)
* Space - O(log n)
*/
def valuesByBreadth: List[Int] = {
import scala.collection.immutable.Queue
def loop(q: Queue[Tree]): List[Int] =
if (q.isEmpty) Nil
else if (q.head.isEmpty) loop(q.tail)
else q.head.value :: loop(q.tail :+ q.head.left :+ q.head.right)
loop(Queue(this))
}
5
2 7
1 3 8
BST: inverse (problem)
26
-5
-7 -2
-8 -3 -1
5
2 7
1 3 8
invert
BST: inverse (solution)
27
/**
* Time - O(n)
* Space - O(log n)
*/
def invert: Tree =
if (isEmpty) Leaf else Branch(-value, right.invert, left.invert)
BST performance
28
insert
contains
remove
min
max
apply
bfs
dfs
How fast BST?
29
Itโ€™s extremely fast if itโ€™s balanced
Balanced BST: Red-Black Tree
โ€ข Red invariant: No red node has red parent
โ€ข Black invariant: Every root-to-leaf path contains
the same number of black nodes
โ€ข Suggested by Chris Okasaki in his paper โ€œRed-Black
Trees in a Functional Settingsโ€
โ€ข Asymptotically optimal implementation
โ€ข Easy to understand and implement
30
R-B Tree chart sheet
31
z
y
x
x
y
z
z
y
x
z
x
y
x
z
y
Double Rotation
Double Rotation
Single Rotation
Single Rotation
R-B Tree: balanced insert
32
def balancedAdd(x: Int): Tree =
if (isEmpty) RedBranch(x)
else if (x < value) balance(isBlack, value, left.balancedAdd(x), right)
else if (x > value) balance(isBlack, value, left, right.balancedAdd(x))
else this
def balance(b: Boolean, x: Int, left: Tree, right: Tree): Tree =
(b, left, right) match {
case (true, RedBranch(y, RedBranch(z, a, b), c), d) =>
BlackBranch(y, RedBranch(z, a, b), RedBranch(x, c, d))
case (true, a, RedBranch(y, b, RedBranch(z, c, d))) =>
BlackBranch(y, RedBranch(x, a, b), RedBranch(z, c, d))
case (true, RedBranch(z, a, RedBranch(y, b, c)), d) =>
BlackBranch(y, RedBranch(z, a, b), RedBranch(x, c, d))
case (true, a, RedBranch(z, RedBranch(y, b, c), d)) =>
BlackBranch(y, RedBranch(x, a, b), RedBranch(z, c, d))
case (true, _, _) => BlackBranch(x, left, right)
case (false, _, _) => RedBranch(x, left, right)
}
What about Scala?
โ€ข Scala has Singly-Linked List
โ€“ scala.collection.immutable.List
โ€ข Scala has Bankerโ€™s Queue
โ€“ scala.collection.immutable.Queue
โ€ข Scala has Balanced BST (R-B Tree)
โ€“ scala.collection.immutable.TreeSet
โ€“ scala.collection.immutable.TreeMap
โ€ข And a bit more โ€ฆ
33
Patricia Trie
34
Binary Trie analysis
35
{ 1 -> โ€œoneโ€, 4 -> โ€œfourโ€, 5 -> โ€œfiveโ€ }
0 1
00 10 1101
100
four
001 101
one five
Patricia Trie analysis
36
{ 1 -> โ€œoneโ€, 4 -> โ€œfourโ€, 5 -> โ€œfiveโ€ }
1
44 -> four
1 -> one 5 -> five
Branching Bit
= 0x001
= 0x100
Hash Array Mapped Trie
37
HMAT analysis
38
โ— ... โ—
โ— ... โ— โ— ... โ—
1 2 ... 32 993 994 ... 1024 31755 31756 ... 31786 32737 32736 ... 32768
Bedtime Reading
โ€ข Okasakiโ€™s Purely Functional Data Structures
โ€ข http://okasaki.blogspot.com/
โ€ข https://github.com/vkostyukov/scalacaster
โ€ข http://www.codecommit.com/blog/
โ€ข http://cstheory.stackexchange.com/questions/1539/whats-new-in-
purely-functional-data-structures-since-okasaki
39
40
vkostyukov
vkostyukov
Ad

More Related Content

What's hot (20)

Why functional programming and category theory strongly matters
Why functional programming and category theory strongly mattersWhy functional programming and category theory strongly matters
Why functional programming and category theory strongly matters
Piotr Paradziล„ski
ย 
Functor, Apply, Applicative And Monad
Functor, Apply, Applicative And MonadFunctor, Apply, Applicative And Monad
Functor, Apply, Applicative And Monad
Oliver Daff
ย 
Sum and Product Types - The Fruit Salad & Fruit Snack Example - From F# to Ha...
Sum and Product Types -The Fruit Salad & Fruit Snack Example - From F# to Ha...Sum and Product Types -The Fruit Salad & Fruit Snack Example - From F# to Ha...
Sum and Product Types - The Fruit Salad & Fruit Snack Example - From F# to Ha...
Philip Schwarz
ย 
High-Performance Haskell
High-Performance HaskellHigh-Performance Haskell
High-Performance Haskell
Johan Tibell
ย 
Refactoring Functional Type Classes
Refactoring Functional Type ClassesRefactoring Functional Type Classes
Refactoring Functional Type Classes
John De Goes
ย 
ZIO-Direct - Functional Scala 2022
ZIO-Direct - Functional Scala 2022ZIO-Direct - Functional Scala 2022
ZIO-Direct - Functional Scala 2022
Alexander Ioffe
ย 
ZIO Queue
ZIO QueueZIO Queue
ZIO Queue
John De Goes
ย 
Boost your productivity with Scala tooling!
Boost your productivity  with Scala tooling!Boost your productivity  with Scala tooling!
Boost your productivity with Scala tooling!
MeriamLachkar1
ย 
Implementing the IO Monad in Scala
Implementing the IO Monad in ScalaImplementing the IO Monad in Scala
Implementing the IO Monad in Scala
Hermann Hueck
ย 
Folding Unfolded - Polyglot FP for Fun and Profit - Haskell and Scala - with ...
Folding Unfolded - Polyglot FP for Fun and Profit - Haskell and Scala - with ...Folding Unfolded - Polyglot FP for Fun and Profit - Haskell and Scala - with ...
Folding Unfolded - Polyglot FP for Fun and Profit - Haskell and Scala - with ...
Philip Schwarz
ย 
LDAP Injection & Blind LDAP Injection
LDAP Injection & Blind LDAP InjectionLDAP Injection & Blind LDAP Injection
LDAP Injection & Blind LDAP Injection
Chema Alonso
ย 
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...
Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...
Philip Schwarz
ย 
Left and Right Folds - Comparison of a mathematical definition and a programm...
Left and Right Folds- Comparison of a mathematical definition and a programm...Left and Right Folds- Comparison of a mathematical definition and a programm...
Left and Right Folds - Comparison of a mathematical definition and a programm...
Philip Schwarz
ย 
Why The Free Monad isn't Free
Why The Free Monad isn't FreeWhy The Free Monad isn't Free
Why The Free Monad isn't Free
Kelley Robinson
ย 
Scala Intro
Scala IntroScala Intro
Scala Intro
Alexey (Mr_Mig) Migutsky
ย 
End-to-end Data Pipeline with Apache Spark
End-to-end Data Pipeline with Apache SparkEnd-to-end Data Pipeline with Apache Spark
End-to-end Data Pipeline with Apache Spark
Databricks
ย 
Traversals for all ocasions
Traversals for all ocasionsTraversals for all ocasions
Traversals for all ocasions
Luka Jacobowitz
ย 
Big picture of category theory in scala with deep dive into contravariant and...
Big picture of category theory in scala with deep dive into contravariant and...Big picture of category theory in scala with deep dive into contravariant and...
Big picture of category theory in scala with deep dive into contravariant and...
Piotr Paradziล„ski
ย 
Domain Modeling with FP (DDD Europe 2020)
Domain Modeling with FP (DDD Europe 2020)Domain Modeling with FP (DDD Europe 2020)
Domain Modeling with FP (DDD Europe 2020)
Scott Wlaschin
ย 
The lazy programmer's guide to writing thousands of tests
The lazy programmer's guide to writing thousands of testsThe lazy programmer's guide to writing thousands of tests
The lazy programmer's guide to writing thousands of tests
Scott Wlaschin
ย 
Why functional programming and category theory strongly matters
Why functional programming and category theory strongly mattersWhy functional programming and category theory strongly matters
Why functional programming and category theory strongly matters
Piotr Paradziล„ski
ย 
Functor, Apply, Applicative And Monad
Functor, Apply, Applicative And MonadFunctor, Apply, Applicative And Monad
Functor, Apply, Applicative And Monad
Oliver Daff
ย 
Sum and Product Types - The Fruit Salad & Fruit Snack Example - From F# to Ha...
Sum and Product Types -The Fruit Salad & Fruit Snack Example - From F# to Ha...Sum and Product Types -The Fruit Salad & Fruit Snack Example - From F# to Ha...
Sum and Product Types - The Fruit Salad & Fruit Snack Example - From F# to Ha...
Philip Schwarz
ย 
High-Performance Haskell
High-Performance HaskellHigh-Performance Haskell
High-Performance Haskell
Johan Tibell
ย 
Refactoring Functional Type Classes
Refactoring Functional Type ClassesRefactoring Functional Type Classes
Refactoring Functional Type Classes
John De Goes
ย 
ZIO-Direct - Functional Scala 2022
ZIO-Direct - Functional Scala 2022ZIO-Direct - Functional Scala 2022
ZIO-Direct - Functional Scala 2022
Alexander Ioffe
ย 
ZIO Queue
ZIO QueueZIO Queue
ZIO Queue
John De Goes
ย 
Boost your productivity with Scala tooling!
Boost your productivity  with Scala tooling!Boost your productivity  with Scala tooling!
Boost your productivity with Scala tooling!
MeriamLachkar1
ย 
Implementing the IO Monad in Scala
Implementing the IO Monad in ScalaImplementing the IO Monad in Scala
Implementing the IO Monad in Scala
Hermann Hueck
ย 
Folding Unfolded - Polyglot FP for Fun and Profit - Haskell and Scala - with ...
Folding Unfolded - Polyglot FP for Fun and Profit - Haskell and Scala - with ...Folding Unfolded - Polyglot FP for Fun and Profit - Haskell and Scala - with ...
Folding Unfolded - Polyglot FP for Fun and Profit - Haskell and Scala - with ...
Philip Schwarz
ย 
LDAP Injection & Blind LDAP Injection
LDAP Injection & Blind LDAP InjectionLDAP Injection & Blind LDAP Injection
LDAP Injection & Blind LDAP Injection
Chema Alonso
ย 
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...
Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...Algebraic Data Types forData Oriented Programming - From Haskell and Scala t...
Algebraic Data Types for Data Oriented Programming - From Haskell and Scala t...
Philip Schwarz
ย 
Left and Right Folds - Comparison of a mathematical definition and a programm...
Left and Right Folds- Comparison of a mathematical definition and a programm...Left and Right Folds- Comparison of a mathematical definition and a programm...
Left and Right Folds - Comparison of a mathematical definition and a programm...
Philip Schwarz
ย 
Why The Free Monad isn't Free
Why The Free Monad isn't FreeWhy The Free Monad isn't Free
Why The Free Monad isn't Free
Kelley Robinson
ย 
End-to-end Data Pipeline with Apache Spark
End-to-end Data Pipeline with Apache SparkEnd-to-end Data Pipeline with Apache Spark
End-to-end Data Pipeline with Apache Spark
Databricks
ย 
Traversals for all ocasions
Traversals for all ocasionsTraversals for all ocasions
Traversals for all ocasions
Luka Jacobowitz
ย 
Big picture of category theory in scala with deep dive into contravariant and...
Big picture of category theory in scala with deep dive into contravariant and...Big picture of category theory in scala with deep dive into contravariant and...
Big picture of category theory in scala with deep dive into contravariant and...
Piotr Paradziล„ski
ย 
Domain Modeling with FP (DDD Europe 2020)
Domain Modeling with FP (DDD Europe 2020)Domain Modeling with FP (DDD Europe 2020)
Domain Modeling with FP (DDD Europe 2020)
Scott Wlaschin
ย 
The lazy programmer's guide to writing thousands of tests
The lazy programmer's guide to writing thousands of testsThe lazy programmer's guide to writing thousands of tests
The lazy programmer's guide to writing thousands of tests
Scott Wlaschin
ย 

Similar to Purely Functional Data Structures in Scala (20)

JDD2015: Functional programing and Event Sourcing - a pair made in heaven - e...
JDD2015: Functional programing and Event Sourcing - a pair made in heaven - e...JDD2015: Functional programing and Event Sourcing - a pair made in heaven - e...
JDD2015: Functional programing and Event Sourcing - a pair made in heaven - e...
PROIDEA
ย 
CS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdfCS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdf
ssuser034ce1
ย 
Zippers
ZippersZippers
Zippers
David Overton
ย 
Lispprograaming excercise
Lispprograaming excerciseLispprograaming excercise
Lispprograaming excercise
ilias ahmed
ย 
Functional programming in scala
Functional programming in scalaFunctional programming in scala
Functional programming in scala
Siarhiej Siemianchuk
ย 
Data structures in scala
Data structures in scalaData structures in scala
Data structures in scala
Meetu Maltiar
ย 
Python_ 3 CheatSheet
Python_ 3 CheatSheetPython_ 3 CheatSheet
Python_ 3 CheatSheet
Dr. Volkan OBAN
ย 
Python3 cheatsheet
Python3 cheatsheetPython3 cheatsheet
Python3 cheatsheet
Gil Cohen
ย 
lecture 12
lecture 12lecture 12
lecture 12
sajinsc
ย 
Review session2
Review session2Review session2
Review session2
NEEDY12345
ย 
Mementopython3 english
Mementopython3 englishMementopython3 english
Mementopython3 english
ssuser442080
ย 
Python3
Python3Python3
Python3
Sourodip Kundu
ย 
Mementopython3 english
Mementopython3 englishMementopython3 english
Mementopython3 english
yassminkhaldi1
ย 
Advance LISP (Artificial Intelligence)
Advance LISP (Artificial Intelligence) Advance LISP (Artificial Intelligence)
Advance LISP (Artificial Intelligence)
wahab khan
ย 
Introduction to python cheat sheet for all
Introduction to python cheat sheet for allIntroduction to python cheat sheet for all
Introduction to python cheat sheet for all
shwetakushwaha45
ย 
Functional programming with_scala
Functional programming with_scalaFunctional programming with_scala
Functional programming with_scala
Raymond Tay
ย 
lecture 13
lecture 13lecture 13
lecture 13
sajinsc
ย 
R Cheat Sheet for Data Analysts and Statisticians.pdf
R Cheat Sheet for Data Analysts and Statisticians.pdfR Cheat Sheet for Data Analysts and Statisticians.pdf
R Cheat Sheet for Data Analysts and Statisticians.pdf
Timothy McBush Hiele
ย 
2 depth first
2 depth first2 depth first
2 depth first
Priyanka Singh
ย 
lecture 11
lecture 11lecture 11
lecture 11
sajinsc
ย 
JDD2015: Functional programing and Event Sourcing - a pair made in heaven - e...
JDD2015: Functional programing and Event Sourcing - a pair made in heaven - e...JDD2015: Functional programing and Event Sourcing - a pair made in heaven - e...
JDD2015: Functional programing and Event Sourcing - a pair made in heaven - e...
PROIDEA
ย 
CS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdfCS-102 BST_27_3_14v2.pdf
CS-102 BST_27_3_14v2.pdf
ssuser034ce1
ย 
Lispprograaming excercise
Lispprograaming excerciseLispprograaming excercise
Lispprograaming excercise
ilias ahmed
ย 
Functional programming in scala
Functional programming in scalaFunctional programming in scala
Functional programming in scala
Siarhiej Siemianchuk
ย 
Data structures in scala
Data structures in scalaData structures in scala
Data structures in scala
Meetu Maltiar
ย 
Python_ 3 CheatSheet
Python_ 3 CheatSheetPython_ 3 CheatSheet
Python_ 3 CheatSheet
Dr. Volkan OBAN
ย 
Python3 cheatsheet
Python3 cheatsheetPython3 cheatsheet
Python3 cheatsheet
Gil Cohen
ย 
lecture 12
lecture 12lecture 12
lecture 12
sajinsc
ย 
Review session2
Review session2Review session2
Review session2
NEEDY12345
ย 
Mementopython3 english
Mementopython3 englishMementopython3 english
Mementopython3 english
ssuser442080
ย 
Mementopython3 english
Mementopython3 englishMementopython3 english
Mementopython3 english
yassminkhaldi1
ย 
Advance LISP (Artificial Intelligence)
Advance LISP (Artificial Intelligence) Advance LISP (Artificial Intelligence)
Advance LISP (Artificial Intelligence)
wahab khan
ย 
Introduction to python cheat sheet for all
Introduction to python cheat sheet for allIntroduction to python cheat sheet for all
Introduction to python cheat sheet for all
shwetakushwaha45
ย 
Functional programming with_scala
Functional programming with_scalaFunctional programming with_scala
Functional programming with_scala
Raymond Tay
ย 
lecture 13
lecture 13lecture 13
lecture 13
sajinsc
ย 
R Cheat Sheet for Data Analysts and Statisticians.pdf
R Cheat Sheet for Data Analysts and Statisticians.pdfR Cheat Sheet for Data Analysts and Statisticians.pdf
R Cheat Sheet for Data Analysts and Statisticians.pdf
Timothy McBush Hiele
ย 
2 depth first
2 depth first2 depth first
2 depth first
Priyanka Singh
ย 
lecture 11
lecture 11lecture 11
lecture 11
sajinsc
ย 
Ad

Recently uploaded (20)

"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko
Fwdays
ย 
Datastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptxDatastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptx
kaleeswaric3
ย 
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
Lynda Kane
ย 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
ย 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
ย 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
ย 
Rock, Paper, Scissors: An Apex Map Learning Journey
Rock, Paper, Scissors: An Apex Map Learning JourneyRock, Paper, Scissors: An Apex Map Learning Journey
Rock, Paper, Scissors: An Apex Map Learning Journey
Lynda Kane
ย 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
ย 
AI Changes Everything โ€“ Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything โ€“ Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything โ€“ Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything โ€“ Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
ย 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
ย 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
ย 
Leading AI Innovation As A Product Manager - Michael Jidael
Leading AI Innovation As A Product Manager - Michael JidaelLeading AI Innovation As A Product Manager - Michael Jidael
Leading AI Innovation As A Product Manager - Michael Jidael
Michael Jidael
ย 
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your UsersAutomation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Lynda Kane
ย 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
ย 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
ย 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
ย 
"Client Partnership โ€” the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership โ€” the Path to Exponential Growth for Companies Sized 50-5..."Client Partnership โ€” the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership โ€” the Path to Exponential Growth for Companies Sized 50-5...
Fwdays
ย 
Image processinglab image processing image processing
Image processinglab image processing  image processingImage processinglab image processing  image processing
Image processinglab image processing image processing
RaghadHany
ย 
"PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System""PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System"
Jainul Musani
ย 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
ย 
"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko
Fwdays
ย 
Datastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptxDatastucture-Unit 4-Linked List Presentation.pptx
Datastucture-Unit 4-Linked List Presentation.pptx
kaleeswaric3
ย 
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
#AdminHour presents: Hour of Code2018 slide deck from 12/6/2018
Lynda Kane
ย 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
ย 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
ย 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
ย 
Rock, Paper, Scissors: An Apex Map Learning Journey
Rock, Paper, Scissors: An Apex Map Learning JourneyRock, Paper, Scissors: An Apex Map Learning Journey
Rock, Paper, Scissors: An Apex Map Learning Journey
Lynda Kane
ย 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
ย 
AI Changes Everything โ€“ Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything โ€“ Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything โ€“ Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything โ€“ Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
ย 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
ย 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
ย 
Leading AI Innovation As A Product Manager - Michael Jidael
Leading AI Innovation As A Product Manager - Michael JidaelLeading AI Innovation As A Product Manager - Michael Jidael
Leading AI Innovation As A Product Manager - Michael Jidael
Michael Jidael
ย 
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your UsersAutomation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Lynda Kane
ย 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
ย 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
ย 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
ย 
"Client Partnership โ€” the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership โ€” the Path to Exponential Growth for Companies Sized 50-5..."Client Partnership โ€” the Path to Exponential Growth for Companies Sized 50-5...
"Client Partnership โ€” the Path to Exponential Growth for Companies Sized 50-5...
Fwdays
ย 
Image processinglab image processing image processing
Image processinglab image processing  image processingImage processinglab image processing  image processing
Image processinglab image processing image processing
RaghadHany
ย 
"PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System""PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System"
Jainul Musani
ย 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
ย 
Ad

Purely Functional Data Structures in Scala

  • 1. Purely Functional Data Structures in Scala Vladimir Kostyukov http://vkostyukov.ru
  • 2. Agenda โ€ข Immutability & Persistence โ€ข Singly-Linked List โ€ข Bankerโ€™s Queue โ€ข Binary Search Tree โ€ข Balanced BST: Red-Black Tree โ€ข Scala support of these things โ€ข Patricia Trie โ€ข Hash Array Mapped Trie 2
  • 3. Immutability & Persistence Two problems: โ€ข FP paradigm doesnโ€™t support destructive updates โ€ข FP paradigm expects both the old and new versions of DS will be available after update Two solutions: โ€ข Immutable objects arenโ€™t changeable โ€ข Persistent objects support multiple versions 3
  • 4. Singly-Linked List 4 35 7 Cons Nil abstract sealed class List { def head: Int def tail: List def isEmpty: Boolean } case object Nil extends List { def head: Int = fail("Empty list.") def tail: List = fail("Empty list.") def isEmpty: Boolean = true } case class Cons(head: Int, tail: List = Nil) extends List { def isEmpty: Boolean = false }
  • 5. List: analysis 5 35 7A = B = Cons(9, A) = 9 C = Cons(1, Cons(8, B)) = 1 8 structural sharing
  • 6. /** * Time - O(1) * Space - O(1) */ def prepend(x: Int): List = Cons(x, this) /** * Time - O(n) * Space - O(n) */ def append(x: Int): List = if (isEmpty) Cons(x) else Cons(head, tail.append(x)) List: append & prepend 6 35 79 35 7 9
  • 7. List: apply 7 35 7 42 6 n - 1 /** * Time - O(n) * Space - O(n) */ def apply(n: Int): A = if (isEmpty) fail("Index out of bounds.") else if (n == 0) head else tail(n - 1) // or tail.apply(n - 1)
  • 8. List: concat 8 path copying A = 42 6 B = 35 7 C = A.concat(B) = 42 6 /** * Time - O(n) * Space - O(n) */ def concat(xs: List): List = if (isEmpty) xs else tail.concat(xs).prepend(head)
  • 9. List: reverse (two approaches) 9 42 6 46 2reverse( ) = def reverse: List = if (isEmpty) Nil else tail.reverse.append(head) , or tail recursion in O(n) The straightforward solution in O(n2) def reverse: List = { @tailrec def loop(s: List, d: List): List = if (s.isEmpty) d else loop(s.tail, d.prepend(s.head)) loop(this, Nil) }
  • 11. Bankerโ€™s Queue โ€ข Based on two lists (in and out) โ€ข Guarantees amortized O(1) performance 11 class Queue(in: List[Int] = Nil, out: List[Int] = Nil) { def enqueue(x: Int): Queue = ??? def dequeue: (Int, Queue) = ??? def front: Int = dequeue match { case (a, _) => a } def rear: Queue = dequeue match { case (_, q) => q } def isEmpty: Boolean = in.isEmpty && out.isEmpty }
  • 12. Queue: analysis 12 A = new Queue( , ) B = A.enqueue(1) = 1 , ) C = B.enqueue(2) = 12 , ) D = C.enqueue(3) = 23 1 , ) (V, E) = D.dequeue = , ))2 3 (U, F) = E.dequeue = , ))3 reverse new Queue( new Queue( new Queue( (1, new Queue( (2, new Queue(
  • 13. Amortized vs. Average Case โ€ข Average Case analysis makes assumptions about typical (most likely) input โ€ข Amortized analysis considers total performance of sequence of operations in a the worst case Example: โ€ข Dynamically-Resizing Array (java.util.ArrayList) โ€“ Has O(n) average case performance for add operation โ€“ It can be amortized to O(1) โ€ข Usually it takes O(1) since the storage is big enough โ€ข Sometimes it can take O(n) due to reallocation & copying 13
  • 14. Queue: enqueue & dequeue 14 /** * Time - O(1) * Space - O(1) */ def enqueue(x: Int): Queue = new Queue(x :: in, out) /** * Time - O(1) * Space - O(1) */ def dequeue: (Int, Queue) = out match { case hd :: tl => (hd, new Queue(in, tl)) // O(1) case Nil => in.reverse match { // O(n) case hd :: tl => (hd, new Queue(Nil, tl)) case Nil => fail("Empty queue.") } }
  • 17. BST hierarchy 17 abstract sealed class Tree { def value: Int def left: Tree def right: Tree def isEmpty: Boolean } case object Leaf extends Tree { def value: Int = fail("Empty tree.") def left: Tree = fail("Empty tree.") def right: Tree = fail("Empty tree.") def isEmpty: Boolean = true } case class Branch(value: Int, left: Tree = Leaf, right: Tree = Leaf) extends Tree { def isEmpty: Boolean = false } 5 Branch Leaf
  • 18. BST: analysis 18 A = Branch(5) = 5 B = Branch(7, A, Branch(9)) = 7 9 C = Branch(1, Leaf, B) = 1 structural sharing
  • 19. BST: insert 19 5 2 7 1 3 86 path copying 7 5 /** * Time - O(log n) * Space - O(log n) */ def add(x: Int): Tree = if (isEmpty) Branch(x) else if (x < value) Branch(value, left.add(x), right) else if (x > value) Branch(value, left, right.add(x)) else this
  • 20. BST: remove (cases) 20 5 2 7 1 3 8 5 2 7 1 3 8 5 2 7 1 3 8
  • 21. BST: remove (code) 21 /** * Time - O(log n) * Space - O(log n) */ def remove(x: Int): Tree = if (isEmpty) fail("Can't find " + x + " in this tree.") else if (x < value) Branch(value, left.remove(x), right) else if (x > value) Branch(value, left, right.remove(x)) else { if (left.isEmpty && right.isEmpty) Leaf // case 1 else if (left.isEmpty) right // case 2 else if (right.isEmpty) left // case 2 else { // case 3 val succ = right.min // case 3 Branch(succ, left, right.remove(succ)) // case 3 } }
  • 22. /** * Time - O(log n) * Space - O(log n) */ def min: Int = { @tailrec def loop(t: Tree, m: Int): Int = if (t.isEmpty) m else loop(t.left, t.value) if (isEmpty) fail("Empty tree.") else loop(left, value) } /** * Time - O(log n) * Space - O(log n) */ def max: Int = { @tailrec def loop(t: Tree[Int], m: Int): Int = if (t.isEmpty) m else loop(t.right, t.value) if (isEmpty) fail("Empty tree.") else loop(right, value) } BST: min & max 22 5 2 7 1 3 8 5 2 7 1 3 8
  • 23. BST: apply 23 5 2 7 1 3 6 8 n - 1 /** * Time - O(log n) * Space - O(log n) */ def apply(n: Int): A = if (isEmpty) fail("Tree doesn't contain a " + n + "th element.") else if (n < left.size) left(n) else if (n > left.size) right(n - size - 1) else value
  • 24. BST: DFS (pre-order traversal) 24 /** * Time - O(n) * Space - O(log n) */ def valuesByDepth: List[Int] = { def loop(s: List[Tree]): List[Int] = if (s.isEmpty) Nil else if (s.head.isEmpty) loop(s.tail) else s.head.value :: loop(s.head.right :: s.head.left :: s.tail) loop(List(this)) } 5 2 7 1 3 8
  • 25. BST: BFS (level-order traversal) 25 /** * Time - O(n) * Space - O(log n) */ def valuesByBreadth: List[Int] = { import scala.collection.immutable.Queue def loop(q: Queue[Tree]): List[Int] = if (q.isEmpty) Nil else if (q.head.isEmpty) loop(q.tail) else q.head.value :: loop(q.tail :+ q.head.left :+ q.head.right) loop(Queue(this)) } 5 2 7 1 3 8
  • 26. BST: inverse (problem) 26 -5 -7 -2 -8 -3 -1 5 2 7 1 3 8 invert
  • 27. BST: inverse (solution) 27 /** * Time - O(n) * Space - O(log n) */ def invert: Tree = if (isEmpty) Leaf else Branch(-value, right.invert, left.invert)
  • 29. How fast BST? 29 Itโ€™s extremely fast if itโ€™s balanced
  • 30. Balanced BST: Red-Black Tree โ€ข Red invariant: No red node has red parent โ€ข Black invariant: Every root-to-leaf path contains the same number of black nodes โ€ข Suggested by Chris Okasaki in his paper โ€œRed-Black Trees in a Functional Settingsโ€ โ€ข Asymptotically optimal implementation โ€ข Easy to understand and implement 30
  • 31. R-B Tree chart sheet 31 z y x x y z z y x z x y x z y Double Rotation Double Rotation Single Rotation Single Rotation
  • 32. R-B Tree: balanced insert 32 def balancedAdd(x: Int): Tree = if (isEmpty) RedBranch(x) else if (x < value) balance(isBlack, value, left.balancedAdd(x), right) else if (x > value) balance(isBlack, value, left, right.balancedAdd(x)) else this def balance(b: Boolean, x: Int, left: Tree, right: Tree): Tree = (b, left, right) match { case (true, RedBranch(y, RedBranch(z, a, b), c), d) => BlackBranch(y, RedBranch(z, a, b), RedBranch(x, c, d)) case (true, a, RedBranch(y, b, RedBranch(z, c, d))) => BlackBranch(y, RedBranch(x, a, b), RedBranch(z, c, d)) case (true, RedBranch(z, a, RedBranch(y, b, c)), d) => BlackBranch(y, RedBranch(z, a, b), RedBranch(x, c, d)) case (true, a, RedBranch(z, RedBranch(y, b, c), d)) => BlackBranch(y, RedBranch(x, a, b), RedBranch(z, c, d)) case (true, _, _) => BlackBranch(x, left, right) case (false, _, _) => RedBranch(x, left, right) }
  • 33. What about Scala? โ€ข Scala has Singly-Linked List โ€“ scala.collection.immutable.List โ€ข Scala has Bankerโ€™s Queue โ€“ scala.collection.immutable.Queue โ€ข Scala has Balanced BST (R-B Tree) โ€“ scala.collection.immutable.TreeSet โ€“ scala.collection.immutable.TreeMap โ€ข And a bit more โ€ฆ 33
  • 35. Binary Trie analysis 35 { 1 -> โ€œoneโ€, 4 -> โ€œfourโ€, 5 -> โ€œfiveโ€ } 0 1 00 10 1101 100 four 001 101 one five
  • 36. Patricia Trie analysis 36 { 1 -> โ€œoneโ€, 4 -> โ€œfourโ€, 5 -> โ€œfiveโ€ } 1 44 -> four 1 -> one 5 -> five Branching Bit = 0x001 = 0x100
  • 37. Hash Array Mapped Trie 37
  • 38. HMAT analysis 38 โ— ... โ— โ— ... โ— โ— ... โ— 1 2 ... 32 993 994 ... 1024 31755 31756 ... 31786 32737 32736 ... 32768
  • 39. Bedtime Reading โ€ข Okasakiโ€™s Purely Functional Data Structures โ€ข http://okasaki.blogspot.com/ โ€ข https://github.com/vkostyukov/scalacaster โ€ข http://www.codecommit.com/blog/ โ€ข http://cstheory.stackexchange.com/questions/1539/whats-new-in- purely-functional-data-structures-since-okasaki 39