SlideShare a Scribd company logo
PYTHON FOR
DATA SCIENCE
Gabriel Moreira
Machine Learning Engineer
@gspmoreira
PythonBrasil 2015
Why so much buzz?
https://hbr.org/2012/10/data-scientist-the-sexiest-job-of-the-21st-century
WHAT IS DATA SCIENCE
http://drewconway.com
TYPES OF ANALYTICS
Investigative Analytics Operational Analytics
Consumers: Humans Consumers: Machines
http://blog.cloudera.com/blog/2014/03/why-apache-spark-is-a-crossover-hit-for-data-scientists/
https://hbr.org/2014/08/the-question-to-ask-before-hiring-a-data-scientist/
[Hillary Mason, Data Scientist]
Inquire(
Obtain(
Scrub(
Explore(
Model(
iNterpret(
DATA SCIENCE IS IOSEMN
Inquire(
Obtain(
Scrub(
Explore(
Model(
iNterpret(
PYTHON IS IOSEMN
js
Outsider
ANALYTICS CASE

CORPORATE SOCIAL NETWORKS
Full Data Analysis demo available in IPython Notebook
bit.ly/python4ds_nb
Investigative Analytics
Consumers: Humans
Inquire(
Obtain(
Scrub(
Explore(
Model(
iNterpret(
INQUIRE
1. Which communities are more popular?
2. Is the user engagement increasing?
3. What is the distribution of user interactions?
4. Is there a relationship between publishing hour
and number of interactions?
Inquire(
Obtain(
Scrub(
Explore(
Model(
iNterpret(
OBTAIN
•Download data from another location (e.g., a web
page or server)
•Query data from a database (e.g., MySQL or Oracle)
•Extract data from an API (e.g.,Twitter, Facebook)
•Extract data from another file (e.g., an HTML file or
spreadsheet)
•Generate data yourself (e.g., reading sensors or
taking surveys)
READING INTERACTIONS FROM CVS
READING POSTS FROM JSON LINES
Inquire(
Obtain(
Scrub(
Explore(
Model(
iNterpret(
SCRUB
SCRUB
SCRUB
SCRUB
Dealing with nulls
SCRUB
Inquire(
Obtain(
Scrub(
Explore(
Model(
iNterpret(
1 - WHICH COMMUNITIES ARE MORE POPULAR?
1 - WHICH COMMUNITIES ARE MORE POPULAR?
2 - IS USER ENGAGEMENT INCREASING?
2 - IS USER ENGAGEMENT INCREASING?
3 - HOW ISTHE DISTRIBUTION OF USER INTERACTIONS?
3 - HOW ISTHE DISTRIBUTION OF USER INTERACTIONS?
3 - HOW ISTHE DISTRIBUTION OF USER INTERACTIONS?
4 - RELATIONSHIP BETWEEN PUBLISHINGTIME AND
NUMBER OF INTERACTIONS?
4 - RELATIONSHIP BETWEEN PUBLISHINGTIME AND
NUMBER OF INTERACTIONS?
4 - RELATIONSHIP BETWEEN PUBLISHINGTIME AND
NUMBER OF INTERACTIONS?
4 - RELATIONSHIP BETWEEN PUBLISHINGTIME AND
NUMBER OF INTERACTIONS?
http://viverdeblog.com/melhoresahorarios-para-postar-nas-redes-sociais/
Operational Analytics
Consumers: Machines
Inquire(
Obtain(
Scrub(
Explore(
Model(
iNterpret(
1. Discover the most relevant words in the posts
2. Find related posts, with similar content
Operational AnalyticsTasks example
Find Related Posts
1 - RELEVANT WORDS IN A POST
TF-IDF - More “relevant" terms in a document are frequent
terms in the document and rare in other documents
1 - RELEVANT WORDS IN A POST
1 - RELEVANT WORDS IN A POST
1 - RELEVANT WORDS IN A POST
BONUS - GLOBAL RELEVANTTERMS [ALL POSTS]
2 - SIMILAR POSTS
Cosine Similarity

Measure of similarity between two vectors 

being the cosine of the angle between them.
2 - SIMILAR POSTS
2 - SIMILAR POSTS
Original Post
Did you ever wonder how great it would be if you could write your jmeter
tests in ruby ?This projects aims to do so. If you use it on your project just
let me now. On the Architecture Academy you can read how jmeter can
be used to validate your Architecture. modulo 13 arch definition
architecture validation | academia de arquitetura



Most similar post (cosine similarity = 0.30)

Foram disponibilizados no site Enterprise Architecture, na parte de
Knowledge Base de performance, alguns how-tos relacionados a testes de
performance.Entre eles, como definir os requisitos (throughput, cálculo de
threads para o JMeter etc.), utilização do JMeter, geração de massa de
dados e monitoramento. planning and executing performance testing |
enterprise architecture - how to identify performance acceptance criteria |
enterprise architecture - how to geracao de massa de dados | enterprise
architecture - how to jmeter | enterprise architecture - how to
monitoramento | enterprise architecture
SIMILAR PEOPLE!
Inquire(
Obtain(
Scrub(
Explore(
Model(
iNterpret(
INTERPRET
•Drawing conclusions from your data
•Evaluating what your results mean
•Communicating your result
DATA PRODUCTS
“If information has context and the context is
interactive, insights are not predictable."
[Agile Data Science, O’Reilly, 2014]
SENTIMENT ANALYSIS
bit.ly/eleicoes2014debatesbt
Analytical Dashboard
SENTIMENT ANALYSIS
Analytical Dashboard
bit.ly/eleicoes2014debatesbt
NETWORK ANALYSIS
https://linkedjazz.org/network/
js
What about 

Python for Big Data?
PYTHON FOR BIG DATA
Streaming
HADOOPY
Pig UDFs 

in Jython
DATA SCIENCE COURSES
• Introduction to Data Science (Univ. of Washington)
• Data Science specialization (Johns Hopkins)
• Intro to Hadoop and MapReduce (Cloudera)
• Machine Learning (Stanford)
• Statistical Learning (Stanford)
• Mining Massive Datasets (Stanford)
• Scalable Machine Learning (Berkeley)
http://workingsweng.com.br/2014/04/cursos-mooc-e-especializacoes-em-data-science/
BOOKS
Happy data geeking!
Gabriel Moreira
@gspmoreira
http://about.me/gspmoreira
Thank you!
PYTHON FOR DATA SCIENCE
Slides: http://bit.ly/python4ds_pybr11
PythonBrasil 2015
Ad

More Related Content

What's hot (20)

Machine Learning 101 | Essential Tools for Machine Learning
Machine Learning 101 | Essential Tools for Machine LearningMachine Learning 101 | Essential Tools for Machine Learning
Machine Learning 101 | Essential Tools for Machine Learning
Hafiz Muhammad Attaullah
 
Natural Language Search with Knowledge Graphs (Haystack 2019)
Natural Language Search with Knowledge Graphs (Haystack 2019)Natural Language Search with Knowledge Graphs (Haystack 2019)
Natural Language Search with Knowledge Graphs (Haystack 2019)
Trey Grainger
 
Primer to Machine Learning
Primer to Machine LearningPrimer to Machine Learning
Primer to Machine Learning
Jeff Tanner
 
Machine learning with Big Data power point presentation
Machine learning with Big Data power point presentationMachine learning with Big Data power point presentation
Machine learning with Big Data power point presentation
David Raj Kanthi
 
Meetup sthlm - introduction to Machine Learning with demo cases
Meetup sthlm - introduction to Machine Learning with demo casesMeetup sthlm - introduction to Machine Learning with demo cases
Meetup sthlm - introduction to Machine Learning with demo cases
Zenodia Charpy
 
The Next Generation of AI-powered Search
The Next Generation of AI-powered SearchThe Next Generation of AI-powered Search
The Next Generation of AI-powered Search
Trey Grainger
 
Data science | What is Data science
Data science | What is Data scienceData science | What is Data science
Data science | What is Data science
ShilpaKrishna6
 
Data Tactics Analytics Brown Bag (November 2013)
Data Tactics Analytics Brown Bag (November 2013)Data Tactics Analytics Brown Bag (November 2013)
Data Tactics Analytics Brown Bag (November 2013)
Rich Heimann
 
Tutorial@BDA 2017 -- Knowledge Graph Expansion and Enrichment
Tutorial@BDA 2017 -- Knowledge Graph Expansion and Enrichment Tutorial@BDA 2017 -- Knowledge Graph Expansion and Enrichment
Tutorial@BDA 2017 -- Knowledge Graph Expansion and Enrichment
Paris Sud University
 
Self Study Business Approach to DS_01022022.docx
Self Study Business Approach to DS_01022022.docxSelf Study Business Approach to DS_01022022.docx
Self Study Business Approach to DS_01022022.docx
Shanmugasundaram M
 
Thought Vectors and Knowledge Graphs in AI-powered Search
Thought Vectors and Knowledge Graphs in AI-powered SearchThought Vectors and Knowledge Graphs in AI-powered Search
Thought Vectors and Knowledge Graphs in AI-powered Search
Trey Grainger
 
Programming for data science in python
Programming for data science in pythonProgramming for data science in python
Programming for data science in python
UmmeSalmaM1
 
Reflected Intelligence: Real world AI in Digital Transformation
Reflected Intelligence: Real world AI in Digital TransformationReflected Intelligence: Real world AI in Digital Transformation
Reflected Intelligence: Real world AI in Digital Transformation
Trey Grainger
 
From SQL to Python - A Beginner's Guide to Making the Switch
From SQL to Python - A Beginner's Guide to Making the SwitchFrom SQL to Python - A Beginner's Guide to Making the Switch
From SQL to Python - A Beginner's Guide to Making the Switch
Rachel Berryman
 
Moving Your Machine Learning Models to Production with TensorFlow Extended
Moving Your Machine Learning Models to Production with TensorFlow ExtendedMoving Your Machine Learning Models to Production with TensorFlow Extended
Moving Your Machine Learning Models to Production with TensorFlow Extended
Jonathan Mugan
 
Key Lessons Learned Building Recommender Systems for Large-Scale Social Netw...
 Key Lessons Learned Building Recommender Systems for Large-Scale Social Netw... Key Lessons Learned Building Recommender Systems for Large-Scale Social Netw...
Key Lessons Learned Building Recommender Systems for Large-Scale Social Netw...
Christian Posse
 
GTU GeekDay Data Science and Applications
GTU GeekDay Data Science and ApplicationsGTU GeekDay Data Science and Applications
GTU GeekDay Data Science and Applications
Kürşat İNCE
 
Searching for Meaning
Searching for MeaningSearching for Meaning
Searching for Meaning
Trey Grainger
 
Data Skills for Digital Era
Data Skills for Digital EraData Skills for Digital Era
Data Skills for Digital Era
Mohamadreza Mohtat
 
Natural Language Search with Knowledge Graphs (Activate 2019)
Natural Language Search with Knowledge Graphs (Activate 2019)Natural Language Search with Knowledge Graphs (Activate 2019)
Natural Language Search with Knowledge Graphs (Activate 2019)
Trey Grainger
 
Machine Learning 101 | Essential Tools for Machine Learning
Machine Learning 101 | Essential Tools for Machine LearningMachine Learning 101 | Essential Tools for Machine Learning
Machine Learning 101 | Essential Tools for Machine Learning
Hafiz Muhammad Attaullah
 
Natural Language Search with Knowledge Graphs (Haystack 2019)
Natural Language Search with Knowledge Graphs (Haystack 2019)Natural Language Search with Knowledge Graphs (Haystack 2019)
Natural Language Search with Knowledge Graphs (Haystack 2019)
Trey Grainger
 
Primer to Machine Learning
Primer to Machine LearningPrimer to Machine Learning
Primer to Machine Learning
Jeff Tanner
 
Machine learning with Big Data power point presentation
Machine learning with Big Data power point presentationMachine learning with Big Data power point presentation
Machine learning with Big Data power point presentation
David Raj Kanthi
 
Meetup sthlm - introduction to Machine Learning with demo cases
Meetup sthlm - introduction to Machine Learning with demo casesMeetup sthlm - introduction to Machine Learning with demo cases
Meetup sthlm - introduction to Machine Learning with demo cases
Zenodia Charpy
 
The Next Generation of AI-powered Search
The Next Generation of AI-powered SearchThe Next Generation of AI-powered Search
The Next Generation of AI-powered Search
Trey Grainger
 
Data science | What is Data science
Data science | What is Data scienceData science | What is Data science
Data science | What is Data science
ShilpaKrishna6
 
Data Tactics Analytics Brown Bag (November 2013)
Data Tactics Analytics Brown Bag (November 2013)Data Tactics Analytics Brown Bag (November 2013)
Data Tactics Analytics Brown Bag (November 2013)
Rich Heimann
 
Tutorial@BDA 2017 -- Knowledge Graph Expansion and Enrichment
Tutorial@BDA 2017 -- Knowledge Graph Expansion and Enrichment Tutorial@BDA 2017 -- Knowledge Graph Expansion and Enrichment
Tutorial@BDA 2017 -- Knowledge Graph Expansion and Enrichment
Paris Sud University
 
Self Study Business Approach to DS_01022022.docx
Self Study Business Approach to DS_01022022.docxSelf Study Business Approach to DS_01022022.docx
Self Study Business Approach to DS_01022022.docx
Shanmugasundaram M
 
Thought Vectors and Knowledge Graphs in AI-powered Search
Thought Vectors and Knowledge Graphs in AI-powered SearchThought Vectors and Knowledge Graphs in AI-powered Search
Thought Vectors and Knowledge Graphs in AI-powered Search
Trey Grainger
 
Programming for data science in python
Programming for data science in pythonProgramming for data science in python
Programming for data science in python
UmmeSalmaM1
 
Reflected Intelligence: Real world AI in Digital Transformation
Reflected Intelligence: Real world AI in Digital TransformationReflected Intelligence: Real world AI in Digital Transformation
Reflected Intelligence: Real world AI in Digital Transformation
Trey Grainger
 
From SQL to Python - A Beginner's Guide to Making the Switch
From SQL to Python - A Beginner's Guide to Making the SwitchFrom SQL to Python - A Beginner's Guide to Making the Switch
From SQL to Python - A Beginner's Guide to Making the Switch
Rachel Berryman
 
Moving Your Machine Learning Models to Production with TensorFlow Extended
Moving Your Machine Learning Models to Production with TensorFlow ExtendedMoving Your Machine Learning Models to Production with TensorFlow Extended
Moving Your Machine Learning Models to Production with TensorFlow Extended
Jonathan Mugan
 
Key Lessons Learned Building Recommender Systems for Large-Scale Social Netw...
 Key Lessons Learned Building Recommender Systems for Large-Scale Social Netw... Key Lessons Learned Building Recommender Systems for Large-Scale Social Netw...
Key Lessons Learned Building Recommender Systems for Large-Scale Social Netw...
Christian Posse
 
GTU GeekDay Data Science and Applications
GTU GeekDay Data Science and ApplicationsGTU GeekDay Data Science and Applications
GTU GeekDay Data Science and Applications
Kürşat İNCE
 
Searching for Meaning
Searching for MeaningSearching for Meaning
Searching for Meaning
Trey Grainger
 
Natural Language Search with Knowledge Graphs (Activate 2019)
Natural Language Search with Knowledge Graphs (Activate 2019)Natural Language Search with Knowledge Graphs (Activate 2019)
Natural Language Search with Knowledge Graphs (Activate 2019)
Trey Grainger
 

Viewers also liked (20)

Python for Data Science - TDC 2015
Python for Data Science - TDC 2015Python for Data Science - TDC 2015
Python for Data Science - TDC 2015
Gabriel Moreira
 
Python for Data Science
Python for Data SciencePython for Data Science
Python for Data Science
Harri Hämäläinen
 
Introduction to Python for Data Science
Introduction to Python for Data ScienceIntroduction to Python for Data Science
Introduction to Python for Data Science
Arc & Codementor
 
Why Python is better for Data Science
Why Python is better for Data ScienceWhy Python is better for Data Science
Why Python is better for Data Science
Ícaro Medeiros
 
Python for Data Science
Python for Data SciencePython for Data Science
Python for Data Science
Gabriel Moreira
 
Discovering User's Topics of Interest in Recommender Systems
Discovering User's Topics of Interest in Recommender SystemsDiscovering User's Topics of Interest in Recommender Systems
Discovering User's Topics of Interest in Recommender Systems
Gabriel Moreira
 
Predictive modelling
Predictive modellingPredictive modelling
Predictive modelling
Inchara Diwakar
 
Learning lines for geoSpatial thinking: GI Learner Project
Learning lines for geoSpatial thinking: GI Learner ProjectLearning lines for geoSpatial thinking: GI Learner Project
Learning lines for geoSpatial thinking: GI Learner Project
Karl Donert
 
CrowdANALTIX Data Competition Visualizing Deals
CrowdANALTIX Data Competition Visualizing DealsCrowdANALTIX Data Competition Visualizing Deals
CrowdANALTIX Data Competition Visualizing Deals
Sawinder Pal Kaur
 
Datastructures in python
Datastructures in pythonDatastructures in python
Datastructures in python
hydpy
 
Introduction to Python Language and Data Types
Introduction to Python Language and Data TypesIntroduction to Python Language and Data Types
Introduction to Python Language and Data Types
Ravi Shankar
 
Scikit-learn Cheatsheet-Python
Scikit-learn Cheatsheet-PythonScikit-learn Cheatsheet-Python
Scikit-learn Cheatsheet-Python
Dr. Volkan OBAN
 
Predictive Model
Predictive ModelPredictive Model
Predictive Model
ModakAnalytics
 
lsrs15_ciandt
lsrs15_ciandtlsrs15_ciandt
lsrs15_ciandt
Gabriel Moreira
 
Python Pandas for Data Science cheatsheet
Python Pandas for Data Science cheatsheet Python Pandas for Data Science cheatsheet
Python Pandas for Data Science cheatsheet
Dr. Volkan OBAN
 
Python Datatypes by SujithKumar
Python Datatypes by SujithKumarPython Datatypes by SujithKumar
Python Datatypes by SujithKumar
Sujith Kumar
 
Capturing Data and Improving Outcomes for Humans and Machines Using the Inter...
Capturing Data and Improving Outcomes for Humans and Machines Using the Inter...Capturing Data and Improving Outcomes for Humans and Machines Using the Inter...
Capturing Data and Improving Outcomes for Humans and Machines Using the Inter...
Altoros
 
Kathleen Breitman at the Hyperledger Meetup
Kathleen Breitman at the Hyperledger Meetup Kathleen Breitman at the Hyperledger Meetup
Kathleen Breitman at the Hyperledger Meetup
Altoros
 
Who Lives in Our Garden?
Who Lives in Our Garden?Who Lives in Our Garden?
Who Lives in Our Garden?
Altoros
 
Python For Data Science Cheat Sheet
Python For Data Science Cheat SheetPython For Data Science Cheat Sheet
Python For Data Science Cheat Sheet
Karlijn Willems
 
Python for Data Science - TDC 2015
Python for Data Science - TDC 2015Python for Data Science - TDC 2015
Python for Data Science - TDC 2015
Gabriel Moreira
 
Introduction to Python for Data Science
Introduction to Python for Data ScienceIntroduction to Python for Data Science
Introduction to Python for Data Science
Arc & Codementor
 
Why Python is better for Data Science
Why Python is better for Data ScienceWhy Python is better for Data Science
Why Python is better for Data Science
Ícaro Medeiros
 
Discovering User's Topics of Interest in Recommender Systems
Discovering User's Topics of Interest in Recommender SystemsDiscovering User's Topics of Interest in Recommender Systems
Discovering User's Topics of Interest in Recommender Systems
Gabriel Moreira
 
Learning lines for geoSpatial thinking: GI Learner Project
Learning lines for geoSpatial thinking: GI Learner ProjectLearning lines for geoSpatial thinking: GI Learner Project
Learning lines for geoSpatial thinking: GI Learner Project
Karl Donert
 
CrowdANALTIX Data Competition Visualizing Deals
CrowdANALTIX Data Competition Visualizing DealsCrowdANALTIX Data Competition Visualizing Deals
CrowdANALTIX Data Competition Visualizing Deals
Sawinder Pal Kaur
 
Datastructures in python
Datastructures in pythonDatastructures in python
Datastructures in python
hydpy
 
Introduction to Python Language and Data Types
Introduction to Python Language and Data TypesIntroduction to Python Language and Data Types
Introduction to Python Language and Data Types
Ravi Shankar
 
Scikit-learn Cheatsheet-Python
Scikit-learn Cheatsheet-PythonScikit-learn Cheatsheet-Python
Scikit-learn Cheatsheet-Python
Dr. Volkan OBAN
 
Python Pandas for Data Science cheatsheet
Python Pandas for Data Science cheatsheet Python Pandas for Data Science cheatsheet
Python Pandas for Data Science cheatsheet
Dr. Volkan OBAN
 
Python Datatypes by SujithKumar
Python Datatypes by SujithKumarPython Datatypes by SujithKumar
Python Datatypes by SujithKumar
Sujith Kumar
 
Capturing Data and Improving Outcomes for Humans and Machines Using the Inter...
Capturing Data and Improving Outcomes for Humans and Machines Using the Inter...Capturing Data and Improving Outcomes for Humans and Machines Using the Inter...
Capturing Data and Improving Outcomes for Humans and Machines Using the Inter...
Altoros
 
Kathleen Breitman at the Hyperledger Meetup
Kathleen Breitman at the Hyperledger Meetup Kathleen Breitman at the Hyperledger Meetup
Kathleen Breitman at the Hyperledger Meetup
Altoros
 
Who Lives in Our Garden?
Who Lives in Our Garden?Who Lives in Our Garden?
Who Lives in Our Garden?
Altoros
 
Python For Data Science Cheat Sheet
Python For Data Science Cheat SheetPython For Data Science Cheat Sheet
Python For Data Science Cheat Sheet
Karlijn Willems
 
Ad

Similar to Python for Data Science - Python Brasil 11 (2015) (20)

Secrets of Enterprise Data Mining: SQL Saturday 328 Birmingham AL
Secrets of Enterprise Data Mining: SQL Saturday 328 Birmingham ALSecrets of Enterprise Data Mining: SQL Saturday 328 Birmingham AL
Secrets of Enterprise Data Mining: SQL Saturday 328 Birmingham AL
Mark Tabladillo
 
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - TrivadisTechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
Trivadis
 
Building Enterprise Mashups - Web 2.0 conference
Building Enterprise Mashups - Web 2.0 conferenceBuilding Enterprise Mashups - Web 2.0 conference
Building Enterprise Mashups - Web 2.0 conference
mogrinz
 
ALT-F1 Techtalk 3 - Google AppEngine
ALT-F1 Techtalk 3 - Google AppEngineALT-F1 Techtalk 3 - Google AppEngine
ALT-F1 Techtalk 3 - Google AppEngine
Abdelkrim Boujraf
 
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
Codemotion
 
R, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
R, Spark, Tensorflow, H20.ai Applied to Streaming AnalyticsR, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
R, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
Kai Wähner
 
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
Codemotion Tel Aviv
 
Build Machine Learning Models with Amazon SageMaker (April 2019)
Build Machine Learning Models with Amazon SageMaker (April 2019)Build Machine Learning Models with Amazon SageMaker (April 2019)
Build Machine Learning Models with Amazon SageMaker (April 2019)
Julien SIMON
 
AI for Software Engineering
AI for Software EngineeringAI for Software Engineering
AI for Software Engineering
Miroslaw Staron
 
Azure Functions, AI & Xamarin - How to use the Cloud to Your Advantage
Azure Functions, AI & Xamarin - How to use the Cloud to Your AdvantageAzure Functions, AI & Xamarin - How to use the Cloud to Your Advantage
Azure Functions, AI & Xamarin - How to use the Cloud to Your Advantage
Mark Arteaga
 
Documenting serverless architectures could we do it better - o'reily sa con...
Documenting serverless architectures  could we do it better  - o'reily sa con...Documenting serverless architectures  could we do it better  - o'reily sa con...
Documenting serverless architectures could we do it better - o'reily sa con...
Asher Sterkin
 
Pacename
PacenamePacename
Pacename
EvoArtsLLC
 
Power BI dataflows と Power Platform Data Integration の使いどころ
Power BI dataflows と Power Platform Data Integration の使いどころPower BI dataflows と Power Platform Data Integration の使いどころ
Power BI dataflows と Power Platform Data Integration の使いどころ
Yugo Shimizu
 
Where ml ai_heavy
Where ml ai_heavyWhere ml ai_heavy
Where ml ai_heavy
Randall Hunt
 
AzureML Welcome to the future of Predictive Analytics
AzureML Welcome to the future of Predictive Analytics AzureML Welcome to the future of Predictive Analytics
AzureML Welcome to the future of Predictive Analytics
Ruben Pertusa Lopez
 
Data Science as a Service: Intersection of Cloud Computing and Data Science
Data Science as a Service: Intersection of Cloud Computing and Data ScienceData Science as a Service: Intersection of Cloud Computing and Data Science
Data Science as a Service: Intersection of Cloud Computing and Data Science
Pouria Amirian
 
Data Science as a Service: Intersection of Cloud Computing and Data Science
Data Science as a Service: Intersection of Cloud Computing and Data ScienceData Science as a Service: Intersection of Cloud Computing and Data Science
Data Science as a Service: Intersection of Cloud Computing and Data Science
Pouria Amirian
 
Data and Business Team Collaboration
Data and Business Team CollaborationData and Business Team Collaboration
Data and Business Team Collaboration
Apple
 
ChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps Productivity
VictorSzoltysek
 
Learning Azure Synapse Analytics (Third Early Release) Paul Andrew
Learning Azure Synapse Analytics (Third Early Release) Paul AndrewLearning Azure Synapse Analytics (Third Early Release) Paul Andrew
Learning Azure Synapse Analytics (Third Early Release) Paul Andrew
alabodzeema
 
Secrets of Enterprise Data Mining: SQL Saturday 328 Birmingham AL
Secrets of Enterprise Data Mining: SQL Saturday 328 Birmingham ALSecrets of Enterprise Data Mining: SQL Saturday 328 Birmingham AL
Secrets of Enterprise Data Mining: SQL Saturday 328 Birmingham AL
Mark Tabladillo
 
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - TrivadisTechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
TechEvent 2019: Artificial Intelligence in Dev & Ops; Martin Luckow - Trivadis
Trivadis
 
Building Enterprise Mashups - Web 2.0 conference
Building Enterprise Mashups - Web 2.0 conferenceBuilding Enterprise Mashups - Web 2.0 conference
Building Enterprise Mashups - Web 2.0 conference
mogrinz
 
ALT-F1 Techtalk 3 - Google AppEngine
ALT-F1 Techtalk 3 - Google AppEngineALT-F1 Techtalk 3 - Google AppEngine
ALT-F1 Techtalk 3 - Google AppEngine
Abdelkrim Boujraf
 
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
Codemotion
 
R, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
R, Spark, Tensorflow, H20.ai Applied to Streaming AnalyticsR, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
R, Spark, Tensorflow, H20.ai Applied to Streaming Analytics
Kai Wähner
 
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
How to Leverage Machine Learning (R, Hadoop, Spark, H2O) for Real Time Proces...
Codemotion Tel Aviv
 
Build Machine Learning Models with Amazon SageMaker (April 2019)
Build Machine Learning Models with Amazon SageMaker (April 2019)Build Machine Learning Models with Amazon SageMaker (April 2019)
Build Machine Learning Models with Amazon SageMaker (April 2019)
Julien SIMON
 
AI for Software Engineering
AI for Software EngineeringAI for Software Engineering
AI for Software Engineering
Miroslaw Staron
 
Azure Functions, AI & Xamarin - How to use the Cloud to Your Advantage
Azure Functions, AI & Xamarin - How to use the Cloud to Your AdvantageAzure Functions, AI & Xamarin - How to use the Cloud to Your Advantage
Azure Functions, AI & Xamarin - How to use the Cloud to Your Advantage
Mark Arteaga
 
Documenting serverless architectures could we do it better - o'reily sa con...
Documenting serverless architectures  could we do it better  - o'reily sa con...Documenting serverless architectures  could we do it better  - o'reily sa con...
Documenting serverless architectures could we do it better - o'reily sa con...
Asher Sterkin
 
Power BI dataflows と Power Platform Data Integration の使いどころ
Power BI dataflows と Power Platform Data Integration の使いどころPower BI dataflows と Power Platform Data Integration の使いどころ
Power BI dataflows と Power Platform Data Integration の使いどころ
Yugo Shimizu
 
AzureML Welcome to the future of Predictive Analytics
AzureML Welcome to the future of Predictive Analytics AzureML Welcome to the future of Predictive Analytics
AzureML Welcome to the future of Predictive Analytics
Ruben Pertusa Lopez
 
Data Science as a Service: Intersection of Cloud Computing and Data Science
Data Science as a Service: Intersection of Cloud Computing and Data ScienceData Science as a Service: Intersection of Cloud Computing and Data Science
Data Science as a Service: Intersection of Cloud Computing and Data Science
Pouria Amirian
 
Data Science as a Service: Intersection of Cloud Computing and Data Science
Data Science as a Service: Intersection of Cloud Computing and Data ScienceData Science as a Service: Intersection of Cloud Computing and Data Science
Data Science as a Service: Intersection of Cloud Computing and Data Science
Pouria Amirian
 
Data and Business Team Collaboration
Data and Business Team CollaborationData and Business Team Collaboration
Data and Business Team Collaboration
Apple
 
ChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps ProductivityChatGPT and Beyond - Elevating DevOps Productivity
ChatGPT and Beyond - Elevating DevOps Productivity
VictorSzoltysek
 
Learning Azure Synapse Analytics (Third Early Release) Paul Andrew
Learning Azure Synapse Analytics (Third Early Release) Paul AndrewLearning Azure Synapse Analytics (Third Early Release) Paul Andrew
Learning Azure Synapse Analytics (Third Early Release) Paul Andrew
alabodzeema
 
Ad

More from Gabriel Moreira (19)

[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
Gabriel Moreira
 
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
Gabriel Moreira
 
Deep Learning for Recommender Systems @ TDC SP 2019
Deep Learning for Recommender Systems @ TDC SP 2019Deep Learning for Recommender Systems @ TDC SP 2019
Deep Learning for Recommender Systems @ TDC SP 2019
Gabriel Moreira
 
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
Gabriel Moreira
 
Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação
Gabriel Moreira
 
CI&T Tech Summit 2017 - Machine Learning para Sistemas de Recomendação
CI&T Tech Summit 2017 - Machine Learning para Sistemas de RecomendaçãoCI&T Tech Summit 2017 - Machine Learning para Sistemas de Recomendação
CI&T Tech Summit 2017 - Machine Learning para Sistemas de Recomendação
Gabriel Moreira
 
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Gabriel Moreira
 
Feature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive modelsFeature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive models
Gabriel Moreira
 
Discovering User's Topics of Interest in Recommender Systems @ Meetup Machine...
Discovering User's Topics of Interest in Recommender Systems @ Meetup Machine...Discovering User's Topics of Interest in Recommender Systems @ Meetup Machine...
Discovering User's Topics of Interest in Recommender Systems @ Meetup Machine...
Gabriel Moreira
 
Using Neural Networks and 3D sensors data to model LIBRAS gestures recognitio...
Using Neural Networks and 3D sensors data to model LIBRAS gestures recognitio...Using Neural Networks and 3D sensors data to model LIBRAS gestures recognitio...
Using Neural Networks and 3D sensors data to model LIBRAS gestures recognitio...
Gabriel Moreira
 
Developing GeoGames for Education with Kinect and Android for ArcGIS Runtime
Developing GeoGames for Education with Kinect and Android for ArcGIS RuntimeDeveloping GeoGames for Education with Kinect and Android for ArcGIS Runtime
Developing GeoGames for Education with Kinect and Android for ArcGIS Runtime
Gabriel Moreira
 
Dojo Imagem de Android - 19/06/2012
Dojo Imagem de Android - 19/06/2012Dojo Imagem de Android - 19/06/2012
Dojo Imagem de Android - 19/06/2012
Gabriel Moreira
 
Agile Testing e outros amendoins
Agile Testing e outros amendoinsAgile Testing e outros amendoins
Agile Testing e outros amendoins
Gabriel Moreira
 
ArcGIS Runtime For Android
ArcGIS Runtime For AndroidArcGIS Runtime For Android
ArcGIS Runtime For Android
Gabriel Moreira
 
EARLY-FIX: Um Framework para Predição de Manutenção Corretiva de Software uti...
EARLY-FIX: Um Framework para Predição de Manutenção Corretiva de Software uti...EARLY-FIX: Um Framework para Predição de Manutenção Corretiva de Software uti...
EARLY-FIX: Um Framework para Predição de Manutenção Corretiva de Software uti...
Gabriel Moreira
 
Continuous Inspection - An effective approch towards Software Quality Product...
Continuous Inspection - An effective approch towards Software Quality Product...Continuous Inspection - An effective approch towards Software Quality Product...
Continuous Inspection - An effective approch towards Software Quality Product...
Gabriel Moreira
 
An Investigation Of EXtreme Programming Practices
An Investigation Of EXtreme Programming PracticesAn Investigation Of EXtreme Programming Practices
An Investigation Of EXtreme Programming Practices
Gabriel Moreira
 
METACOM – Uma análise de correlação entre métricas de produto e propensão à m...
METACOM – Uma análise de correlação entre métricas de produto e propensão à m...METACOM – Uma análise de correlação entre métricas de produto e propensão à m...
METACOM – Uma análise de correlação entre métricas de produto e propensão à m...
Gabriel Moreira
 
Software Product Measurement and Analysis in a Continuous Integration Environ...
Software Product Measurement and Analysis in a Continuous Integration Environ...Software Product Measurement and Analysis in a Continuous Integration Environ...
Software Product Measurement and Analysis in a Continuous Integration Environ...
Gabriel Moreira
 
[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
Gabriel Moreira
 
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
Gabriel Moreira
 
Deep Learning for Recommender Systems @ TDC SP 2019
Deep Learning for Recommender Systems @ TDC SP 2019Deep Learning for Recommender Systems @ TDC SP 2019
Deep Learning for Recommender Systems @ TDC SP 2019
Gabriel Moreira
 
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
PAPIs LATAM 2019 - Training and deploying ML models with Kubeflow and TensorF...
Gabriel Moreira
 
Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação
Gabriel Moreira
 
CI&T Tech Summit 2017 - Machine Learning para Sistemas de Recomendação
CI&T Tech Summit 2017 - Machine Learning para Sistemas de RecomendaçãoCI&T Tech Summit 2017 - Machine Learning para Sistemas de Recomendação
CI&T Tech Summit 2017 - Machine Learning para Sistemas de Recomendação
Gabriel Moreira
 
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017Feature Engineering - Getting most out of data for predictive models - TDC 2017
Feature Engineering - Getting most out of data for predictive models - TDC 2017
Gabriel Moreira
 
Feature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive modelsFeature Engineering - Getting most out of data for predictive models
Feature Engineering - Getting most out of data for predictive models
Gabriel Moreira
 
Discovering User's Topics of Interest in Recommender Systems @ Meetup Machine...
Discovering User's Topics of Interest in Recommender Systems @ Meetup Machine...Discovering User's Topics of Interest in Recommender Systems @ Meetup Machine...
Discovering User's Topics of Interest in Recommender Systems @ Meetup Machine...
Gabriel Moreira
 
Using Neural Networks and 3D sensors data to model LIBRAS gestures recognitio...
Using Neural Networks and 3D sensors data to model LIBRAS gestures recognitio...Using Neural Networks and 3D sensors data to model LIBRAS gestures recognitio...
Using Neural Networks and 3D sensors data to model LIBRAS gestures recognitio...
Gabriel Moreira
 
Developing GeoGames for Education with Kinect and Android for ArcGIS Runtime
Developing GeoGames for Education with Kinect and Android for ArcGIS RuntimeDeveloping GeoGames for Education with Kinect and Android for ArcGIS Runtime
Developing GeoGames for Education with Kinect and Android for ArcGIS Runtime
Gabriel Moreira
 
Dojo Imagem de Android - 19/06/2012
Dojo Imagem de Android - 19/06/2012Dojo Imagem de Android - 19/06/2012
Dojo Imagem de Android - 19/06/2012
Gabriel Moreira
 
Agile Testing e outros amendoins
Agile Testing e outros amendoinsAgile Testing e outros amendoins
Agile Testing e outros amendoins
Gabriel Moreira
 
ArcGIS Runtime For Android
ArcGIS Runtime For AndroidArcGIS Runtime For Android
ArcGIS Runtime For Android
Gabriel Moreira
 
EARLY-FIX: Um Framework para Predição de Manutenção Corretiva de Software uti...
EARLY-FIX: Um Framework para Predição de Manutenção Corretiva de Software uti...EARLY-FIX: Um Framework para Predição de Manutenção Corretiva de Software uti...
EARLY-FIX: Um Framework para Predição de Manutenção Corretiva de Software uti...
Gabriel Moreira
 
Continuous Inspection - An effective approch towards Software Quality Product...
Continuous Inspection - An effective approch towards Software Quality Product...Continuous Inspection - An effective approch towards Software Quality Product...
Continuous Inspection - An effective approch towards Software Quality Product...
Gabriel Moreira
 
An Investigation Of EXtreme Programming Practices
An Investigation Of EXtreme Programming PracticesAn Investigation Of EXtreme Programming Practices
An Investigation Of EXtreme Programming Practices
Gabriel Moreira
 
METACOM – Uma análise de correlação entre métricas de produto e propensão à m...
METACOM – Uma análise de correlação entre métricas de produto e propensão à m...METACOM – Uma análise de correlação entre métricas de produto e propensão à m...
METACOM – Uma análise de correlação entre métricas de produto e propensão à m...
Gabriel Moreira
 
Software Product Measurement and Analysis in a Continuous Integration Environ...
Software Product Measurement and Analysis in a Continuous Integration Environ...Software Product Measurement and Analysis in a Continuous Integration Environ...
Software Product Measurement and Analysis in a Continuous Integration Environ...
Gabriel Moreira
 

Recently uploaded (20)

Collibra DQ Installation setup and debug
Collibra DQ Installation setup and debugCollibra DQ Installation setup and debug
Collibra DQ Installation setup and debug
karthikprince20
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhhChapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
ChrisjohnAlfiler
 
RAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit FrameworkRAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit Framework
apanneer
 
How to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process miningHow to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process mining
Process mining Evangelist
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
OlhaTatokhina1
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
Process Mining at AE - Key success factors
Process Mining at AE - Key success factorsProcess Mining at AE - Key success factors
Process Mining at AE - Key success factors
Process mining Evangelist
 
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
Taqyea
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
vMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free DownloadvMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free Download
eyeskye547
 
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahahE-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
RyanRahardjo2
 
Process Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBSProcess Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBS
Process mining Evangelist
 
L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
real illuminati Uganda agent 0782561496/0756664682
real illuminati Uganda agent 0782561496/0756664682real illuminati Uganda agent 0782561496/0756664682
real illuminati Uganda agent 0782561496/0756664682
way to join real illuminati Agent In Kampala Call/WhatsApp+256782561496/0756664682
 
50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd
emir73065
 
spssworksho9035530-lva1-app6891 (1).pptx
spssworksho9035530-lva1-app6891 (1).pptxspssworksho9035530-lva1-app6891 (1).pptx
spssworksho9035530-lva1-app6891 (1).pptx
clarkraal
 
Collibra DQ Installation setup and debug
Collibra DQ Installation setup and debugCollibra DQ Installation setup and debug
Collibra DQ Installation setup and debug
karthikprince20
 
FPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptxFPET_Implementation_2_MA to 360 Engage Direct.pptx
FPET_Implementation_2_MA to 360 Engage Direct.pptx
ssuser4ef83d
 
Customer Segmentation using K-Means clustering
Customer Segmentation using K-Means clusteringCustomer Segmentation using K-Means clustering
Customer Segmentation using K-Means clustering
Ingrid Nyakerario
 
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhhChapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
Chapter-3-PROBLEM-SOLVING.pdf hhhhhhhhhh
ChrisjohnAlfiler
 
RAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit FrameworkRAG Chatbot using AWS Bedrock and Streamlit Framework
RAG Chatbot using AWS Bedrock and Streamlit Framework
apanneer
 
How to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process miningHow to regulate and control your it-outsourcing provider with process mining
How to regulate and control your it-outsourcing provider with process mining
Process mining Evangelist
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
chapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptxchapter 4 Variability statistical research .pptx
chapter 4 Variability statistical research .pptx
justinebandajbn
 
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
2024-Media-Literacy-Index-Of-Ukrainians-ENG-SHORT.pdf
OlhaTatokhina1
 
hersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distributionhersh's midterm project.pdf music retail and distribution
hersh's midterm project.pdf music retail and distribution
hershtara1
 
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
定制(意大利Rimini毕业证)布鲁诺马代尔纳嘉雷迪米音乐学院学历认证
Taqyea
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
vMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free DownloadvMix Pro Crack + Serial Number Torrent free Download
vMix Pro Crack + Serial Number Torrent free Download
eyeskye547
 
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahahE-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
E-Book-TOEFL-Masuk-PTN.pdf hahahahaahahahah
RyanRahardjo2
 
Process Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBSProcess Mining and Official Statistics - CBS
Process Mining and Official Statistics - CBS
Process mining Evangelist
 
L1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptxL1_Slides_Foundational Concepts_508.pptx
L1_Slides_Foundational Concepts_508.pptx
38NoopurPatel
 
50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd50_questions_full.pptxdddddddddddddddddd
50_questions_full.pptxdddddddddddddddddd
emir73065
 
spssworksho9035530-lva1-app6891 (1).pptx
spssworksho9035530-lva1-app6891 (1).pptxspssworksho9035530-lva1-app6891 (1).pptx
spssworksho9035530-lva1-app6891 (1).pptx
clarkraal
 

Python for Data Science - Python Brasil 11 (2015)