SlideShare a Scribd company logo
www.edureka.co/r-for-analytics
R and Visualization A Match Made in Heaven
Slide 2Slide 2Slide 2 www.edureka.co/r-for-analytics
Today we will know about :
 Have a basic understanding of Data Visualization as a field
 Create basic and advanced Graphs in R
 Change colors or use custom palettes
 Customize graphical parameters
 Learn basics of Grammar of Graphics
 Spatial analysis Visualization
Agenda
Slide 3Slide 3Slide 3 www.edureka.co/r-for-analytics
Part 1 : What is Data Visualization ?
 Study of the visual representation of data
 More than pretty graphs
 Gives insights
 Helps decision making
 Accurate and truthful
Why Data Visualization?
"Lies, damned lies, and statistics" is a phrase describing the persuasive power of numbers, particularly the use
of statistics to bolster weak argument
Cue to Anscombe-Case Study
Source- Anscombe (1973) http://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf
Data Visualization In R
Slide 4Slide 4Slide 4 www.edureka.co/r-for-analytics
> cor(mtcars)
Part 4 : Does This Make Sense?
Data Visualization In R
Slide 5Slide 5Slide 5 www.edureka.co/r-for-analytics
Part 4 : Does This Make Better Sense?
>library(corrgram)
> corrgram(mtcars)
RED is negative BLUE
is positive
Darker the color, more the correlation
Data Visualization In R
Slide 6Slide 6Slide 6 www.edureka.co/r-for-analytics
Part 2 : Stephen Few on Effective Data Visualization
Also - http://www.perceptualedge.com/
Stephen Few's
8 Core Priniciples
Effective Data Visualization
Slide 7Slide 7Slide 7 www.edureka.co/r-for-analytics
Part 2 : John Maeda on Laws of Simplicity
Data Visualization In R
Also - http://lawsofsimplicity.com/
Slide 8Slide 8Slide 8 www.edureka.co/r-for-analytics
Part 2 : Leland Wilkinson/Hadley Wickham on Grammar of Graphics
 When creating a plot we start with data
 We can create many different types of plots using this same basic specification.
 (Bars, lines, and points are all examples of geometric objects)
 We can scale the axes
 We can statistically transform the data (bins, aggregates)
 The concept of Layers
Plot = data 1 + scales and coordinate system 2 + plot annotations 3
 1 data plot type
 2 Axes and legends
 3 background and plot title
See - http://vita.had.co.nz/papers/layered-grammar.pdf
Grammar of Graphics
Slide 9Slide 9Slide 9 www.edureka.co/r-for-analytics
Part 2 : Leland Wilkinson/Hadley Wickham on Grammar of Graphics
The layered grammar defines the components of a plot as:
 A default dataset and set of mappings from variables to aesthetics,
 One or more layers, with each layer having one geometric object, one statistical transformation, one position adjustment,
and optionally, one dataset and set of aesthetic mappings,
 One scale for each aesthetic mapping used,
 A coordinate system,
 The facet specification
Grammar of Graphics
Slide 10Slide 10Slide 10 www.edureka.co/r-for-analytics
Part 3 : Basic graphs in R (and which one should we use when?)
 Pie Chart (never use them)
 Scatter Plot (always use them?)
 Line Graph (Linear Trend)
 Bar Graphs (When are they better than Line graphs?)
 Sunflower plot (overplotting)
 Rug Plot
 Density Plot
 Histograms (Give us a good break!)
 Box Plots
Basic graphs in R
Slide 11Slide 11Slide 11 www.edureka.co/r-for-analytics
Part 3 : Basic graphs in R
 plot(iris)
 Plot the entire object
 See how variables behave with each other
Basic graphs in R
Slide 12Slide 12Slide 12 www.edureka.co/r-for-analytics
Part 3 Basic graphs in R
 Plot(iris$Sepal.Length, iris$Species)
 Plot two variables at a time to closely examine relationship
Basic graphs in R
Slide 13Slide 13Slide 13 www.edureka.co/r-for-analytics
Part 3 Basic graphs in R
 plot(iris$Species, iris$Sepal.Length)
 Plot two variables at a time
 Order is important
Hint- Keep factor variables to X axis Box Plot- Five
Numbers! minimum, first quartile, median,
third quartile, maximum.
Basic graphs in R
Slide 14Slide 14Slide 14 www.edureka.co/r-for-analytics
Part 3 : Basic graphs in R
 plot(iris$Sepal.Length)
 Plot one variable
Scatterplot
Basic graphs in R
Slide 15Slide 15Slide 15 www.edureka.co/r-for-analytics
Part 3 : Basic graphs in R
 plot(iris$Sepal.Length, type='l')
 Plot with type='l'
 Used if you need trend (usually
with respect to time)
Line graph
Basic graphs in R
Slide 16Slide 16Slide 16 www.edureka.co/r-for-analytics
Part 3 : Basic graphs in R
 plot(iris$Sepal.Length, type='h')
Graph
Basic graphs in R
Slide 17Slide 17Slide 17 www.edureka.co/r-for-analytics
Part 3 Basic graphs in R
 barplot(iris$Sepal.Length) Bar graph
Basic graphs in R
Slide 18Slide 18Slide 18 www.edureka.co/r-for-analytics
Part 3 Basic graphs in R
 pie(table(iris$Species))
 Pie graph
 NOT Recommended
Basic graphs in R
Slide 19Slide 19Slide 19 www.edureka.co/r-for-analytics
Part 3 : Basic graphs in R
 hist(iris$Sepal.Length)
Basic graphs in R
Slide 20Slide 20Slide 20 www.edureka.co/r-for-analytics
Part 3 : Basic graphs in R
 hist(iris$Sepal.Length,breaks=20)
Basic graphs in R
Slide 21Slide 21Slide 21 www.edureka.co/r-for-analytics
Part 3 : Basic graphs in R
 plot(density(iris$Sepal.Length)
Basic graphs in R
Slide 22Slide 22Slide 22 www.edureka.co/r-for-analytics
Part 3 : Basic graphs in R
 boxplot(iris$Sepal.Length)
Boxplot
Basic graphs in R
Slide 23Slide 23Slide 23 www.edureka.co/r-for-analytics
Part 3 : Basic graphs in R
Boxplot with Rug
>boxplot(iris$Sepal.Length)
>rug(iris$Sepal.Length,side=2)
Adds a rug representation (1-d plot) of the data to the plot.
Basic graphs in R
Slide 24Slide 24Slide 24 www.edureka.co/r-for-analytics
Part 3 Customizing Graphs
 Multiple graphs on same screen
par(mfrow=c(3,2))
> sunflowerplot(iris$Sepal.Length)
> plot(iris$Sepal.Length)
> boxplot(iris$Sepal.Length)
> plot(iris$Sepal.Length,type="l")
> plot(density(iris$Sepal.Length))
> hist(iris$Sepal.Length)
Customizing Graphs
Slide 25Slide 25Slide 25 www.edureka.co/r-for-analytics
Part 3 : Customizing Graphs
 Multiple graphs on same screen
par(mfrow=c(3,2))
> sunflowerplot(iris$Sepal.Length)
> plot(iris$Sepal.Length)
> boxplot(iris$Sepal.Length)
> plot(iris$Sepal.Length,type="l")
> plot(density(iris$Sepal.Length))
> hist(iris$Sepal.Length)
???
Customizing Graphs
Slide 26Slide 26Slide 26 www.edureka.co/r-for-analytics
Part 3 : Customizing Graphs
 Multiple graphs on same screen
par(mfrow=c(3,2))
> sunflowerplot(iris$Sepal.Length)
> plot(iris$Sepal.Length)
> boxplot(iris$Sepal.Length)
> plot(iris$Sepal.Length,type="l")
> plot(density(iris$Sepal.Length))
> hist(iris$Sepal.Length)
Over-plotting
Customizing Graphs
Slide 27Slide 27Slide 27 www.edureka.co/r-for-analytics
Part 3 : Customizing Graphs
 X Axis, Y Axis, Title, Color
par(mfrow=c(1,2))
> plot(mtcars$mpg,mtcars$cyl,main="Example
Title",col="blue",xlab="Miles per Gallon", ylab="Number
of Cylinders")
> plot(mtcars$mpg,mtcars$cyl)
Customizing Graphs
Slide 28Slide 28Slide 28 www.edureka.co/r-for-analytics
Part 3 : Customizing Graphs
 Background
Try a variation of this yourself
par(bg="yellow")
boxplot(mtcars$mpg~mtcars$gear)
Customizing Graphs
Slide 29Slide 29Slide 29 www.edureka.co/r-for-analytics
Part 3 : Customizing Graphs
 Use Color Palettes
> par(mfrow=c(3,2))
>
hist(VADeaths,col=heat.colors(7),main="col=heat.colors(7)")
>
hist(VADeaths,col=terrain.colors(7),main="col=terrain.colors(
7)")
>
hist(VADeaths,col=topo.colors(8),main="col=topo.colors(8)")
> hist(VADeaths,col=cm.colors(8),main="col=cm.colors(8)")
>
hist(VADeaths,col=cm.colors(10),main="col=cm.colors(10)")
> hist(VADeaths,col=rainbow(8),main="col=rainbow(8)")
source- http://decisionstats.com/2011/04/21/using-color-palettes-in-r/
Customizing Graphs
Slide 30Slide 30Slide 30 www.edureka.co/r-for-analytics
Part 3 : Customizing Graphs
 Use Color Palettes in RColorBrewer
> library(RColorBrewer)
> par(mfrow=c(2,3))
> hist(VADeaths,col=brewer.pal(3,"Set3"),main="Set3 3 colors")
> hist(VADeaths,col=brewer.pal(3,"Set2"),main="Set2 3 colors")
> hist(VADeaths,col=brewer.pal(3,"Set1"),main="Set1 3 colors")
> hist(VADeaths,col=brewer.pal(8,"Set3"),main="Set3 8 colors")
> hist(VADeaths,col=brewer.pal(8,"Greys"),main="Greys 8 colors")
> hist(VADeaths,col=brewer.pal(8,"Greens"),main="Greens 8
colors") source- http://decisionstats.com/2012/04/08/color-palettes-in-r-using-rcolorbrewer-rstats/
Customizing Graphs
Slide 31Slide 31Slide 31 www.edureka.co/r-for-analytics
Part 4 Advanced Graphs
 Hexbin for over plotting
(many data points at same) library(hexbin)
plot(hexbin(iris$Species,iris$Sepal.Length))
Advanced Graphs
Slide 32Slide 32Slide 32 www.edureka.co/r-for-analytics
Part 4 Advanced Graphs
 Hexbin for over plotting
(many data points at same) library(hexbin)
plot(hexbin(mtcars$mpg,mtcars$cyl))
Advanced Graphs
Slide 33Slide 33Slide 33 www.edureka.co/r-for-analytics
Part 4 : Advanced Graphs
 Tabplot for visual summary of a dataset
library(tabplot)
tableplot(iris)
Advanced Graphs
Slide 34Slide 34Slide 34 www.edureka.co/r-for-analytics
Part 4 : Advanced Graphs
 Tabplot for visual summary of a dataset
library(tabplot)
tableplot(mtcars)
Advanced Graphs
Slide 35Slide 35Slide 35 www.edureka.co/r-for-analytics
Part 4 Advanced Graphs
 Tabplot for visual summary of a dataset
 Can summarize a lot of data relatively fast
library(tabplot)
library(ggplot)
tableplot(diamonds)
Advanced Graphs
Slide 36Slide 36Slide 36 www.edureka.co/r-for-analytics
Part 4 : Advanced Graphs
 vcd for categorical data
 mosaic
library(vcd)
mosaic(HairEyeColor)
Advanced Graphs
Slide 37Slide 37Slide 37 www.edureka.co/r-for-analytics
Part 4 : Advanced Graphs
• vcd for categorical data
• mosaic
library(vcd)
mosaic(Titanic)
Advanced Graphs
Slide 38Slide 38Slide 38 www.edureka.co/r-for-analytics
Part 4 : Lots of Graphs in R
heatmap(as.matrix(mtcars))
Advanced Graphs
Slide 39Slide 39Slide 39 www.edureka.co/r-for-analytics
Part 5 : Spatial Analysis
Base R includes many functions that can be used for reading, vizualising, and analysing spatial data.
The focus is on "geographical" spatial data, where observations can be identified with geographical locations
Sources –
 http://spatial.ly/r/
 http://cran.r-project.org/web/views/Spatial.html
 http://rspatial.r-forge.r-project.org/
Spatial Analysis
Slide 40Slide 40Slide 40 www.edureka.co/r-for-analytics
Part 5 : Spatial Analysis : Example
library(sp)
library(maptools)
nc <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1],
proj4string=CRS("+proj=longlat +datum=NAD27"))
names(nc)
# create two dummy factor variables, with equal labels:
set.seed(31)
nc$f = factor(sample(1:5,100,replace=T),labels=letters[1:5])
nc$g = factor(sample(1:5,100,replace=T),labels=letters[1:5])
library(RColorBrewer)
## Two (dummy) factor variables shown with qualitative colour ramp; degrees in axes
spplot(nc, c("f","g"), col.regions=brewer.pal(5, "Set3"), scales=list(draw = TRUE))
Spatial Analysis
Slide 41Slide 41Slide 41 www.edureka.co/r-for-analytics
Part 5 : Spatial Analysis : Example
library(sp)
library(maptools)
nc <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1],
proj4string=CRS("+proj=longlat +datum=NAD27"))
names(nc)
# create two dummy factor variables, with equal labels:
set.seed(31)
nc$f = factor(sample(1:5,100,replace=T),labels=letters[1:5])
nc$g = factor(sample(1:5,100,replace=T),labels=letters[1:5])
library(RColorBrewer)
## Two (dummy) factor variables shown with qualitative colour ramp; degrees in
axesspplot(nc, c("f","g"), col.regions=brewer.pal(5, "Set3"), scales=list(draw = TRUE))
Spatial Analysis
Slide 42Slide 42Slide 42 www.edureka.co/r-for-analytics
Part 5 : Spatial Analysis : Example
library(raster)
alt <- getData('alt', country = "IND")
plot(alt)
Spatial Analysis
Slide 43Slide 43Slide 43 www.edureka.co/r-for-analytics
Part 5 : Spatial Analysis : Example
library(raster)
gadm<- getData('GADM', country = "IND", level=3)
head(gadm)
table(gadm$NAME_1)
gadm_GUJ=subset(gadm,gadm$NAME_1=="Gujarat")
Spatial Analysis
Slide 44Slide 44Slide 44 www.edureka.co/r-for-analytics
Part 5 : Spatial Analysis : Example
library(raster)
gadm<- getData('GADM', country = "IND",
level=3) head(gadm)
table(gadm$NAME_1)
gadm_GUJ=subset(gadm,gadm$NAME_1=="
Gujarat")
Spatial Analysis
Slide 45Slide 45Slide 45 www.edureka.co/r-for-analytics
Part 5 : Spatial Analysis : Example
library(raster)
gadm<- getData('GADM', country = "IND",
level=3) head(gadm)
table(gadm$NAME_1)
gadm_GUJ=subset(gadm,gadm$NAME_1=="
Gujarat")
Spatial Analysis
Slide 46
Your feedback is vital for us, be it a compliment, a suggestion or a complaint. It helps us to make your
experience better!
Please spare few minutes to take the survey after the webinar.
Survey
R and Visualization: A match made in Heaven
Ad

More Related Content

What's hot (20)

Data analysis with R
Data analysis with RData analysis with R
Data analysis with R
ShareThis
 
Data visualization
Data visualizationData visualization
Data visualization
Sushil kasar
 
Data visualization
Data visualizationData visualization
Data visualization
Jan Willem Tulp
 
Crime Data Analysis, Visualization and Prediction using Data Mining
Crime Data Analysis, Visualization and Prediction using Data MiningCrime Data Analysis, Visualization and Prediction using Data Mining
Crime Data Analysis, Visualization and Prediction using Data Mining
Anavadya Shibu
 
Data Visualization
Data VisualizationData Visualization
Data Visualization
Tarek Amr
 
Graph Analytics
Graph AnalyticsGraph Analytics
Graph Analytics
Khalid Salama
 
Mean shift and Hierarchical clustering
Mean shift and Hierarchical clustering Mean shift and Hierarchical clustering
Mean shift and Hierarchical clustering
Yan Xu
 
Exploratory data analysis
Exploratory data analysis Exploratory data analysis
Exploratory data analysis
Peter Reimann
 
Tableau PPT.ppt
Tableau PPT.pptTableau PPT.ppt
Tableau PPT.ppt
eMMAY3
 
Exploratory Data Analysis using Python
Exploratory Data Analysis using PythonExploratory Data Analysis using Python
Exploratory Data Analysis using Python
Shirin Mojarad, Ph.D.
 
Data visualization using R
Data visualization using RData visualization using R
Data visualization using R
Ummiya Mohammedi
 
Data Mining: Concepts and Techniques (3rd ed.) — Chapter _04 olap
Data Mining:  Concepts and Techniques (3rd ed.)— Chapter _04 olapData Mining:  Concepts and Techniques (3rd ed.)— Chapter _04 olap
Data Mining: Concepts and Techniques (3rd ed.) — Chapter _04 olap
Salah Amean
 
Data Science and Big Data Analytics Book from EMC Education Services
Data Science and Big Data Analytics Book from EMC Education ServicesData Science and Big Data Analytics Book from EMC Education Services
Data Science and Big Data Analytics Book from EMC Education Services
EMC
 
Data visualization in Python
Data visualization in PythonData visualization in Python
Data visualization in Python
Marc Garcia
 
CRISP-DM: a data science project methodology
CRISP-DM: a data science project methodologyCRISP-DM: a data science project methodology
CRISP-DM: a data science project methodology
Sergey Shelpuk
 
The Data Science Process
The Data Science ProcessThe Data Science Process
The Data Science Process
Vishal Patel
 
Introduction to data pre-processing and cleaning
Introduction to data pre-processing and cleaning Introduction to data pre-processing and cleaning
Introduction to data pre-processing and cleaning
Matteo Manca
 
Data Visualization - What can you see? #baai17
Data Visualization - What can you see? #baai17Data Visualization - What can you see? #baai17
Data Visualization - What can you see? #baai17
Eugene O'Loughlin
 
Data Visualization
Data VisualizationData Visualization
Data Visualization
Marco Torchiano
 
Information visualization - introduction
Information visualization - introductionInformation visualization - introduction
Information visualization - introduction
Katrien Verbert
 
Data analysis with R
Data analysis with RData analysis with R
Data analysis with R
ShareThis
 
Data visualization
Data visualizationData visualization
Data visualization
Sushil kasar
 
Crime Data Analysis, Visualization and Prediction using Data Mining
Crime Data Analysis, Visualization and Prediction using Data MiningCrime Data Analysis, Visualization and Prediction using Data Mining
Crime Data Analysis, Visualization and Prediction using Data Mining
Anavadya Shibu
 
Data Visualization
Data VisualizationData Visualization
Data Visualization
Tarek Amr
 
Mean shift and Hierarchical clustering
Mean shift and Hierarchical clustering Mean shift and Hierarchical clustering
Mean shift and Hierarchical clustering
Yan Xu
 
Exploratory data analysis
Exploratory data analysis Exploratory data analysis
Exploratory data analysis
Peter Reimann
 
Tableau PPT.ppt
Tableau PPT.pptTableau PPT.ppt
Tableau PPT.ppt
eMMAY3
 
Exploratory Data Analysis using Python
Exploratory Data Analysis using PythonExploratory Data Analysis using Python
Exploratory Data Analysis using Python
Shirin Mojarad, Ph.D.
 
Data visualization using R
Data visualization using RData visualization using R
Data visualization using R
Ummiya Mohammedi
 
Data Mining: Concepts and Techniques (3rd ed.) — Chapter _04 olap
Data Mining:  Concepts and Techniques (3rd ed.)— Chapter _04 olapData Mining:  Concepts and Techniques (3rd ed.)— Chapter _04 olap
Data Mining: Concepts and Techniques (3rd ed.) — Chapter _04 olap
Salah Amean
 
Data Science and Big Data Analytics Book from EMC Education Services
Data Science and Big Data Analytics Book from EMC Education ServicesData Science and Big Data Analytics Book from EMC Education Services
Data Science and Big Data Analytics Book from EMC Education Services
EMC
 
Data visualization in Python
Data visualization in PythonData visualization in Python
Data visualization in Python
Marc Garcia
 
CRISP-DM: a data science project methodology
CRISP-DM: a data science project methodologyCRISP-DM: a data science project methodology
CRISP-DM: a data science project methodology
Sergey Shelpuk
 
The Data Science Process
The Data Science ProcessThe Data Science Process
The Data Science Process
Vishal Patel
 
Introduction to data pre-processing and cleaning
Introduction to data pre-processing and cleaning Introduction to data pre-processing and cleaning
Introduction to data pre-processing and cleaning
Matteo Manca
 
Data Visualization - What can you see? #baai17
Data Visualization - What can you see? #baai17Data Visualization - What can you see? #baai17
Data Visualization - What can you see? #baai17
Eugene O'Loughlin
 
Information visualization - introduction
Information visualization - introductionInformation visualization - introduction
Information visualization - introduction
Katrien Verbert
 

Viewers also liked (20)

DATA VISUALIZATION WITH R PACKAGES
DATA VISUALIZATION WITH R PACKAGESDATA VISUALIZATION WITH R PACKAGES
DATA VISUALIZATION WITH R PACKAGES
Fatma ÇINAR
 
Data Visualization in R
Data Visualization in RData Visualization in R
Data Visualization in R
Sophia Banton
 
R-ggplot2 package Examples
R-ggplot2 package ExamplesR-ggplot2 package Examples
R-ggplot2 package Examples
Dr. Volkan OBAN
 
Data Visualization with R.ggplot2 and its extensions examples.
Data Visualization with R.ggplot2 and its extensions examples.Data Visualization with R.ggplot2 and its extensions examples.
Data Visualization with R.ggplot2 and its extensions examples.
Dr. Volkan OBAN
 
Mini Innovation Lab: Community Foundations and Shared Data
Mini Innovation Lab:  Community Foundations and Shared DataMini Innovation Lab:  Community Foundations and Shared Data
Mini Innovation Lab: Community Foundations and Shared Data
Beth Kanter
 
Derek Walker web_resume
Derek Walker web_resumeDerek Walker web_resume
Derek Walker web_resume
Derek Walker
 
Blue Ocean Strategy - Case Seats2meet.com
Blue Ocean Strategy - Case Seats2meet.comBlue Ocean Strategy - Case Seats2meet.com
Blue Ocean Strategy - Case Seats2meet.com
Jeroen van der Schenk
 
Tugas ekonomi islam
Tugas ekonomi islamTugas ekonomi islam
Tugas ekonomi islam
Ana Tamara
 
Impacto de las TICs en la cultura de la mediación a distancia para la educaci...
Impacto de las TICs en la cultura de la mediación a distancia para la educaci...Impacto de las TICs en la cultura de la mediación a distancia para la educaci...
Impacto de las TICs en la cultura de la mediación a distancia para la educaci...
pamela
 
Anatomiadelosgrandesvasos 140512182826-phpapp01
Anatomiadelosgrandesvasos 140512182826-phpapp01Anatomiadelosgrandesvasos 140512182826-phpapp01
Anatomiadelosgrandesvasos 140512182826-phpapp01
DaniJesus Anillo Quintana
 
Componente electronicos2
Componente electronicos2Componente electronicos2
Componente electronicos2
MARIAJOSE-ARKANGEL
 
Rhona Hutton
Rhona HuttonRhona Hutton
Rhona Hutton
Rhona Hutton
 
How sales operations can double your sales team's productivity
How sales operations can double your sales team's productivityHow sales operations can double your sales team's productivity
How sales operations can double your sales team's productivity
Heinz Marketing Inc
 
Designing Online Engagement to Collaborate with Your Community
Designing Online Engagement to Collaborate with Your CommunityDesigning Online Engagement to Collaborate with Your Community
Designing Online Engagement to Collaborate with Your Community
NTEN
 
インタビュー記事
インタビュー記事インタビュー記事
インタビュー記事
Nakayasu
 
Karen Rojas
Karen RojasKaren Rojas
Karen Rojas
Karen Rojas_
 
Adv 420 vogue Megan Dacey
Adv 420 vogue Megan Dacey Adv 420 vogue Megan Dacey
Adv 420 vogue Megan Dacey
Megan Dacey
 
Letter for internship (1)
Letter for internship (1)Letter for internship (1)
Letter for internship (1)
badiuzaman
 
UCD overview
UCD overviewUCD overview
UCD overview
Ravi Shyam
 
DATA VISUALIZATION WITH R PACKAGES
DATA VISUALIZATION WITH R PACKAGESDATA VISUALIZATION WITH R PACKAGES
DATA VISUALIZATION WITH R PACKAGES
Fatma ÇINAR
 
Data Visualization in R
Data Visualization in RData Visualization in R
Data Visualization in R
Sophia Banton
 
R-ggplot2 package Examples
R-ggplot2 package ExamplesR-ggplot2 package Examples
R-ggplot2 package Examples
Dr. Volkan OBAN
 
Data Visualization with R.ggplot2 and its extensions examples.
Data Visualization with R.ggplot2 and its extensions examples.Data Visualization with R.ggplot2 and its extensions examples.
Data Visualization with R.ggplot2 and its extensions examples.
Dr. Volkan OBAN
 
Mini Innovation Lab: Community Foundations and Shared Data
Mini Innovation Lab:  Community Foundations and Shared DataMini Innovation Lab:  Community Foundations and Shared Data
Mini Innovation Lab: Community Foundations and Shared Data
Beth Kanter
 
Derek Walker web_resume
Derek Walker web_resumeDerek Walker web_resume
Derek Walker web_resume
Derek Walker
 
Blue Ocean Strategy - Case Seats2meet.com
Blue Ocean Strategy - Case Seats2meet.comBlue Ocean Strategy - Case Seats2meet.com
Blue Ocean Strategy - Case Seats2meet.com
Jeroen van der Schenk
 
Tugas ekonomi islam
Tugas ekonomi islamTugas ekonomi islam
Tugas ekonomi islam
Ana Tamara
 
Impacto de las TICs en la cultura de la mediación a distancia para la educaci...
Impacto de las TICs en la cultura de la mediación a distancia para la educaci...Impacto de las TICs en la cultura de la mediación a distancia para la educaci...
Impacto de las TICs en la cultura de la mediación a distancia para la educaci...
pamela
 
Anatomiadelosgrandesvasos 140512182826-phpapp01
Anatomiadelosgrandesvasos 140512182826-phpapp01Anatomiadelosgrandesvasos 140512182826-phpapp01
Anatomiadelosgrandesvasos 140512182826-phpapp01
DaniJesus Anillo Quintana
 
How sales operations can double your sales team's productivity
How sales operations can double your sales team's productivityHow sales operations can double your sales team's productivity
How sales operations can double your sales team's productivity
Heinz Marketing Inc
 
Designing Online Engagement to Collaborate with Your Community
Designing Online Engagement to Collaborate with Your CommunityDesigning Online Engagement to Collaborate with Your Community
Designing Online Engagement to Collaborate with Your Community
NTEN
 
インタビュー記事
インタビュー記事インタビュー記事
インタビュー記事
Nakayasu
 
Adv 420 vogue Megan Dacey
Adv 420 vogue Megan Dacey Adv 420 vogue Megan Dacey
Adv 420 vogue Megan Dacey
Megan Dacey
 
Letter for internship (1)
Letter for internship (1)Letter for internship (1)
Letter for internship (1)
badiuzaman
 
Ad

Similar to R and Visualization: A match made in Heaven (20)

R and Visualization: A match made in Heaven
R and Visualization: A match made in HeavenR and Visualization: A match made in Heaven
R and Visualization: A match made in Heaven
Edureka!
 
Background This course is all about data visualization. However, we.docx
Background This course is all about data visualization. However, we.docxBackground This course is all about data visualization. However, we.docx
Background This course is all about data visualization. However, we.docx
rosemaryralphs52525
 
M4_DAR_part1. module part 4 analystics with r
M4_DAR_part1. module part 4 analystics with rM4_DAR_part1. module part 4 analystics with r
M4_DAR_part1. module part 4 analystics with r
LalithauLali
 
Data visualization with R and ggplot2.docx
Data visualization with R and ggplot2.docxData visualization with R and ggplot2.docx
Data visualization with R and ggplot2.docx
kassaye4
 
Introduction to Data Visualization for Agriculture and Allied Sciences using ...
Introduction to Data Visualization for Agriculture and Allied Sciences using ...Introduction to Data Visualization for Agriculture and Allied Sciences using ...
Introduction to Data Visualization for Agriculture and Allied Sciences using ...
Shubham Shah
 
R Programming: Numeric Functions In R
R Programming: Numeric Functions In RR Programming: Numeric Functions In R
R Programming: Numeric Functions In R
Rsquared Academy
 
RDataMining slides-regression-classification
RDataMining slides-regression-classificationRDataMining slides-regression-classification
RDataMining slides-regression-classification
Yanchang Zhao
 
visual representation with BOX PLOT,BAR PLOTS
visual representation with BOX PLOT,BAR PLOTSvisual representation with BOX PLOT,BAR PLOTS
visual representation with BOX PLOT,BAR PLOTS
anjanasharma77573
 
Generalized Notions of Data Depth
Generalized Notions of Data DepthGeneralized Notions of Data Depth
Generalized Notions of Data Depth
Mukund Raj
 
R programming & Machine Learning
R programming & Machine LearningR programming & Machine Learning
R programming & Machine Learning
AmanBhalla14
 
R programming intro with examples
R programming intro with examplesR programming intro with examples
R programming intro with examples
Dennis
 
Data visualization
Data visualizationData visualization
Data visualization
Vivian S. Zhang
 
R Language Introduction
R Language IntroductionR Language Introduction
R Language Introduction
Khaled Al-Shamaa
 
Data Compression in Data mining and Business Intelligencs
Data Compression in Data mining and Business Intelligencs Data Compression in Data mining and Business Intelligencs
Data Compression in Data mining and Business Intelligencs
ShahDhruv21
 
Broom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data FramesBroom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data Frames
Work-Bench
 
R Programming: Learn To Manipulate Strings In R
R Programming: Learn To Manipulate Strings In RR Programming: Learn To Manipulate Strings In R
R Programming: Learn To Manipulate Strings In R
Rsquared Academy
 
Scaling up data science applications
Scaling up data science applicationsScaling up data science applications
Scaling up data science applications
Salesforce Engineering
 
Application of Graph Theory in Computer science using Data Structure.pdf
Application of Graph Theory in Computer science using Data Structure.pdfApplication of Graph Theory in Computer science using Data Structure.pdf
Application of Graph Theory in Computer science using Data Structure.pdf
Nancy Ideker
 
Preparation Data Structures 11 graphs
Preparation Data Structures 11 graphsPreparation Data Structures 11 graphs
Preparation Data Structures 11 graphs
Andres Mendez-Vazquez
 
Week-3 – System RSupplemental material1Recap •.docx
Week-3 – System RSupplemental material1Recap •.docxWeek-3 – System RSupplemental material1Recap •.docx
Week-3 – System RSupplemental material1Recap •.docx
helzerpatrina
 
R and Visualization: A match made in Heaven
R and Visualization: A match made in HeavenR and Visualization: A match made in Heaven
R and Visualization: A match made in Heaven
Edureka!
 
Background This course is all about data visualization. However, we.docx
Background This course is all about data visualization. However, we.docxBackground This course is all about data visualization. However, we.docx
Background This course is all about data visualization. However, we.docx
rosemaryralphs52525
 
M4_DAR_part1. module part 4 analystics with r
M4_DAR_part1. module part 4 analystics with rM4_DAR_part1. module part 4 analystics with r
M4_DAR_part1. module part 4 analystics with r
LalithauLali
 
Data visualization with R and ggplot2.docx
Data visualization with R and ggplot2.docxData visualization with R and ggplot2.docx
Data visualization with R and ggplot2.docx
kassaye4
 
Introduction to Data Visualization for Agriculture and Allied Sciences using ...
Introduction to Data Visualization for Agriculture and Allied Sciences using ...Introduction to Data Visualization for Agriculture and Allied Sciences using ...
Introduction to Data Visualization for Agriculture and Allied Sciences using ...
Shubham Shah
 
R Programming: Numeric Functions In R
R Programming: Numeric Functions In RR Programming: Numeric Functions In R
R Programming: Numeric Functions In R
Rsquared Academy
 
RDataMining slides-regression-classification
RDataMining slides-regression-classificationRDataMining slides-regression-classification
RDataMining slides-regression-classification
Yanchang Zhao
 
visual representation with BOX PLOT,BAR PLOTS
visual representation with BOX PLOT,BAR PLOTSvisual representation with BOX PLOT,BAR PLOTS
visual representation with BOX PLOT,BAR PLOTS
anjanasharma77573
 
Generalized Notions of Data Depth
Generalized Notions of Data DepthGeneralized Notions of Data Depth
Generalized Notions of Data Depth
Mukund Raj
 
R programming & Machine Learning
R programming & Machine LearningR programming & Machine Learning
R programming & Machine Learning
AmanBhalla14
 
R programming intro with examples
R programming intro with examplesR programming intro with examples
R programming intro with examples
Dennis
 
Data Compression in Data mining and Business Intelligencs
Data Compression in Data mining and Business Intelligencs Data Compression in Data mining and Business Intelligencs
Data Compression in Data mining and Business Intelligencs
ShahDhruv21
 
Broom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data FramesBroom: Converting Statistical Models to Tidy Data Frames
Broom: Converting Statistical Models to Tidy Data Frames
Work-Bench
 
R Programming: Learn To Manipulate Strings In R
R Programming: Learn To Manipulate Strings In RR Programming: Learn To Manipulate Strings In R
R Programming: Learn To Manipulate Strings In R
Rsquared Academy
 
Application of Graph Theory in Computer science using Data Structure.pdf
Application of Graph Theory in Computer science using Data Structure.pdfApplication of Graph Theory in Computer science using Data Structure.pdf
Application of Graph Theory in Computer science using Data Structure.pdf
Nancy Ideker
 
Preparation Data Structures 11 graphs
Preparation Data Structures 11 graphsPreparation Data Structures 11 graphs
Preparation Data Structures 11 graphs
Andres Mendez-Vazquez
 
Week-3 – System RSupplemental material1Recap •.docx
Week-3 – System RSupplemental material1Recap •.docxWeek-3 – System RSupplemental material1Recap •.docx
Week-3 – System RSupplemental material1Recap •.docx
helzerpatrina
 
Ad

More from Edureka! (20)

What to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | EdurekaWhat to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | Edureka
Edureka!
 
Top 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | EdurekaTop 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | Edureka
Edureka!
 
Top 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | EdurekaTop 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | Edureka
Edureka!
 
Tableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | EdurekaTableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | Edureka
Edureka!
 
Python Programming Tutorial | Edureka
Python Programming Tutorial | EdurekaPython Programming Tutorial | Edureka
Python Programming Tutorial | Edureka
Edureka!
 
Top 5 PMP Certifications | Edureka
Top 5 PMP Certifications | EdurekaTop 5 PMP Certifications | Edureka
Top 5 PMP Certifications | Edureka
Edureka!
 
Top Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | EdurekaTop Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | Edureka
Edureka!
 
Linux Mint Tutorial | Edureka
Linux Mint Tutorial | EdurekaLinux Mint Tutorial | Edureka
Linux Mint Tutorial | Edureka
Edureka!
 
How to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| EdurekaHow to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| Edureka
Edureka!
 
Importance of Digital Marketing | Edureka
Importance of Digital Marketing | EdurekaImportance of Digital Marketing | Edureka
Importance of Digital Marketing | Edureka
Edureka!
 
RPA in 2020 | Edureka
RPA in 2020 | EdurekaRPA in 2020 | Edureka
RPA in 2020 | Edureka
Edureka!
 
Email Notifications in Jenkins | Edureka
Email Notifications in Jenkins | EdurekaEmail Notifications in Jenkins | Edureka
Email Notifications in Jenkins | Edureka
Edureka!
 
EA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | EdurekaEA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | Edureka
Edureka!
 
Cognitive AI Tutorial | Edureka
Cognitive AI Tutorial | EdurekaCognitive AI Tutorial | Edureka
Cognitive AI Tutorial | Edureka
Edureka!
 
AWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | EdurekaAWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | Edureka
Edureka!
 
Blue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | EdurekaBlue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | Edureka
Edureka!
 
Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka
Edureka!
 
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | EdurekaA star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
Edureka!
 
Kubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | EdurekaKubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | Edureka
Edureka!
 
Introduction to DevOps | Edureka
Introduction to DevOps | EdurekaIntroduction to DevOps | Edureka
Introduction to DevOps | Edureka
Edureka!
 
What to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | EdurekaWhat to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | Edureka
Edureka!
 
Top 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | EdurekaTop 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | Edureka
Edureka!
 
Top 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | EdurekaTop 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | Edureka
Edureka!
 
Tableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | EdurekaTableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | Edureka
Edureka!
 
Python Programming Tutorial | Edureka
Python Programming Tutorial | EdurekaPython Programming Tutorial | Edureka
Python Programming Tutorial | Edureka
Edureka!
 
Top 5 PMP Certifications | Edureka
Top 5 PMP Certifications | EdurekaTop 5 PMP Certifications | Edureka
Top 5 PMP Certifications | Edureka
Edureka!
 
Top Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | EdurekaTop Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | Edureka
Edureka!
 
Linux Mint Tutorial | Edureka
Linux Mint Tutorial | EdurekaLinux Mint Tutorial | Edureka
Linux Mint Tutorial | Edureka
Edureka!
 
How to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| EdurekaHow to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| Edureka
Edureka!
 
Importance of Digital Marketing | Edureka
Importance of Digital Marketing | EdurekaImportance of Digital Marketing | Edureka
Importance of Digital Marketing | Edureka
Edureka!
 
RPA in 2020 | Edureka
RPA in 2020 | EdurekaRPA in 2020 | Edureka
RPA in 2020 | Edureka
Edureka!
 
Email Notifications in Jenkins | Edureka
Email Notifications in Jenkins | EdurekaEmail Notifications in Jenkins | Edureka
Email Notifications in Jenkins | Edureka
Edureka!
 
EA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | EdurekaEA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | Edureka
Edureka!
 
Cognitive AI Tutorial | Edureka
Cognitive AI Tutorial | EdurekaCognitive AI Tutorial | Edureka
Cognitive AI Tutorial | Edureka
Edureka!
 
AWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | EdurekaAWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | Edureka
Edureka!
 
Blue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | EdurekaBlue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | Edureka
Edureka!
 
Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka
Edureka!
 
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | EdurekaA star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
Edureka!
 
Kubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | EdurekaKubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | Edureka
Edureka!
 
Introduction to DevOps | Edureka
Introduction to DevOps | EdurekaIntroduction to DevOps | Edureka
Introduction to DevOps | Edureka
Edureka!
 

Recently uploaded (20)

ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Mobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi ArabiaMobile App Development Company in Saudi Arabia
Mobile App Development Company in Saudi Arabia
Steve Jonas
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 

R and Visualization: A match made in Heaven

  • 2. Slide 2Slide 2Slide 2 www.edureka.co/r-for-analytics Today we will know about :  Have a basic understanding of Data Visualization as a field  Create basic and advanced Graphs in R  Change colors or use custom palettes  Customize graphical parameters  Learn basics of Grammar of Graphics  Spatial analysis Visualization Agenda
  • 3. Slide 3Slide 3Slide 3 www.edureka.co/r-for-analytics Part 1 : What is Data Visualization ?  Study of the visual representation of data  More than pretty graphs  Gives insights  Helps decision making  Accurate and truthful Why Data Visualization? "Lies, damned lies, and statistics" is a phrase describing the persuasive power of numbers, particularly the use of statistics to bolster weak argument Cue to Anscombe-Case Study Source- Anscombe (1973) http://www.sjsu.edu/faculty/gerstman/StatPrimer/anscombe1973.pdf Data Visualization In R
  • 4. Slide 4Slide 4Slide 4 www.edureka.co/r-for-analytics > cor(mtcars) Part 4 : Does This Make Sense? Data Visualization In R
  • 5. Slide 5Slide 5Slide 5 www.edureka.co/r-for-analytics Part 4 : Does This Make Better Sense? >library(corrgram) > corrgram(mtcars) RED is negative BLUE is positive Darker the color, more the correlation Data Visualization In R
  • 6. Slide 6Slide 6Slide 6 www.edureka.co/r-for-analytics Part 2 : Stephen Few on Effective Data Visualization Also - http://www.perceptualedge.com/ Stephen Few's 8 Core Priniciples Effective Data Visualization
  • 7. Slide 7Slide 7Slide 7 www.edureka.co/r-for-analytics Part 2 : John Maeda on Laws of Simplicity Data Visualization In R Also - http://lawsofsimplicity.com/
  • 8. Slide 8Slide 8Slide 8 www.edureka.co/r-for-analytics Part 2 : Leland Wilkinson/Hadley Wickham on Grammar of Graphics  When creating a plot we start with data  We can create many different types of plots using this same basic specification.  (Bars, lines, and points are all examples of geometric objects)  We can scale the axes  We can statistically transform the data (bins, aggregates)  The concept of Layers Plot = data 1 + scales and coordinate system 2 + plot annotations 3  1 data plot type  2 Axes and legends  3 background and plot title See - http://vita.had.co.nz/papers/layered-grammar.pdf Grammar of Graphics
  • 9. Slide 9Slide 9Slide 9 www.edureka.co/r-for-analytics Part 2 : Leland Wilkinson/Hadley Wickham on Grammar of Graphics The layered grammar defines the components of a plot as:  A default dataset and set of mappings from variables to aesthetics,  One or more layers, with each layer having one geometric object, one statistical transformation, one position adjustment, and optionally, one dataset and set of aesthetic mappings,  One scale for each aesthetic mapping used,  A coordinate system,  The facet specification Grammar of Graphics
  • 10. Slide 10Slide 10Slide 10 www.edureka.co/r-for-analytics Part 3 : Basic graphs in R (and which one should we use when?)  Pie Chart (never use them)  Scatter Plot (always use them?)  Line Graph (Linear Trend)  Bar Graphs (When are they better than Line graphs?)  Sunflower plot (overplotting)  Rug Plot  Density Plot  Histograms (Give us a good break!)  Box Plots Basic graphs in R
  • 11. Slide 11Slide 11Slide 11 www.edureka.co/r-for-analytics Part 3 : Basic graphs in R  plot(iris)  Plot the entire object  See how variables behave with each other Basic graphs in R
  • 12. Slide 12Slide 12Slide 12 www.edureka.co/r-for-analytics Part 3 Basic graphs in R  Plot(iris$Sepal.Length, iris$Species)  Plot two variables at a time to closely examine relationship Basic graphs in R
  • 13. Slide 13Slide 13Slide 13 www.edureka.co/r-for-analytics Part 3 Basic graphs in R  plot(iris$Species, iris$Sepal.Length)  Plot two variables at a time  Order is important Hint- Keep factor variables to X axis Box Plot- Five Numbers! minimum, first quartile, median, third quartile, maximum. Basic graphs in R
  • 14. Slide 14Slide 14Slide 14 www.edureka.co/r-for-analytics Part 3 : Basic graphs in R  plot(iris$Sepal.Length)  Plot one variable Scatterplot Basic graphs in R
  • 15. Slide 15Slide 15Slide 15 www.edureka.co/r-for-analytics Part 3 : Basic graphs in R  plot(iris$Sepal.Length, type='l')  Plot with type='l'  Used if you need trend (usually with respect to time) Line graph Basic graphs in R
  • 16. Slide 16Slide 16Slide 16 www.edureka.co/r-for-analytics Part 3 : Basic graphs in R  plot(iris$Sepal.Length, type='h') Graph Basic graphs in R
  • 17. Slide 17Slide 17Slide 17 www.edureka.co/r-for-analytics Part 3 Basic graphs in R  barplot(iris$Sepal.Length) Bar graph Basic graphs in R
  • 18. Slide 18Slide 18Slide 18 www.edureka.co/r-for-analytics Part 3 Basic graphs in R  pie(table(iris$Species))  Pie graph  NOT Recommended Basic graphs in R
  • 19. Slide 19Slide 19Slide 19 www.edureka.co/r-for-analytics Part 3 : Basic graphs in R  hist(iris$Sepal.Length) Basic graphs in R
  • 20. Slide 20Slide 20Slide 20 www.edureka.co/r-for-analytics Part 3 : Basic graphs in R  hist(iris$Sepal.Length,breaks=20) Basic graphs in R
  • 21. Slide 21Slide 21Slide 21 www.edureka.co/r-for-analytics Part 3 : Basic graphs in R  plot(density(iris$Sepal.Length) Basic graphs in R
  • 22. Slide 22Slide 22Slide 22 www.edureka.co/r-for-analytics Part 3 : Basic graphs in R  boxplot(iris$Sepal.Length) Boxplot Basic graphs in R
  • 23. Slide 23Slide 23Slide 23 www.edureka.co/r-for-analytics Part 3 : Basic graphs in R Boxplot with Rug >boxplot(iris$Sepal.Length) >rug(iris$Sepal.Length,side=2) Adds a rug representation (1-d plot) of the data to the plot. Basic graphs in R
  • 24. Slide 24Slide 24Slide 24 www.edureka.co/r-for-analytics Part 3 Customizing Graphs  Multiple graphs on same screen par(mfrow=c(3,2)) > sunflowerplot(iris$Sepal.Length) > plot(iris$Sepal.Length) > boxplot(iris$Sepal.Length) > plot(iris$Sepal.Length,type="l") > plot(density(iris$Sepal.Length)) > hist(iris$Sepal.Length) Customizing Graphs
  • 25. Slide 25Slide 25Slide 25 www.edureka.co/r-for-analytics Part 3 : Customizing Graphs  Multiple graphs on same screen par(mfrow=c(3,2)) > sunflowerplot(iris$Sepal.Length) > plot(iris$Sepal.Length) > boxplot(iris$Sepal.Length) > plot(iris$Sepal.Length,type="l") > plot(density(iris$Sepal.Length)) > hist(iris$Sepal.Length) ??? Customizing Graphs
  • 26. Slide 26Slide 26Slide 26 www.edureka.co/r-for-analytics Part 3 : Customizing Graphs  Multiple graphs on same screen par(mfrow=c(3,2)) > sunflowerplot(iris$Sepal.Length) > plot(iris$Sepal.Length) > boxplot(iris$Sepal.Length) > plot(iris$Sepal.Length,type="l") > plot(density(iris$Sepal.Length)) > hist(iris$Sepal.Length) Over-plotting Customizing Graphs
  • 27. Slide 27Slide 27Slide 27 www.edureka.co/r-for-analytics Part 3 : Customizing Graphs  X Axis, Y Axis, Title, Color par(mfrow=c(1,2)) > plot(mtcars$mpg,mtcars$cyl,main="Example Title",col="blue",xlab="Miles per Gallon", ylab="Number of Cylinders") > plot(mtcars$mpg,mtcars$cyl) Customizing Graphs
  • 28. Slide 28Slide 28Slide 28 www.edureka.co/r-for-analytics Part 3 : Customizing Graphs  Background Try a variation of this yourself par(bg="yellow") boxplot(mtcars$mpg~mtcars$gear) Customizing Graphs
  • 29. Slide 29Slide 29Slide 29 www.edureka.co/r-for-analytics Part 3 : Customizing Graphs  Use Color Palettes > par(mfrow=c(3,2)) > hist(VADeaths,col=heat.colors(7),main="col=heat.colors(7)") > hist(VADeaths,col=terrain.colors(7),main="col=terrain.colors( 7)") > hist(VADeaths,col=topo.colors(8),main="col=topo.colors(8)") > hist(VADeaths,col=cm.colors(8),main="col=cm.colors(8)") > hist(VADeaths,col=cm.colors(10),main="col=cm.colors(10)") > hist(VADeaths,col=rainbow(8),main="col=rainbow(8)") source- http://decisionstats.com/2011/04/21/using-color-palettes-in-r/ Customizing Graphs
  • 30. Slide 30Slide 30Slide 30 www.edureka.co/r-for-analytics Part 3 : Customizing Graphs  Use Color Palettes in RColorBrewer > library(RColorBrewer) > par(mfrow=c(2,3)) > hist(VADeaths,col=brewer.pal(3,"Set3"),main="Set3 3 colors") > hist(VADeaths,col=brewer.pal(3,"Set2"),main="Set2 3 colors") > hist(VADeaths,col=brewer.pal(3,"Set1"),main="Set1 3 colors") > hist(VADeaths,col=brewer.pal(8,"Set3"),main="Set3 8 colors") > hist(VADeaths,col=brewer.pal(8,"Greys"),main="Greys 8 colors") > hist(VADeaths,col=brewer.pal(8,"Greens"),main="Greens 8 colors") source- http://decisionstats.com/2012/04/08/color-palettes-in-r-using-rcolorbrewer-rstats/ Customizing Graphs
  • 31. Slide 31Slide 31Slide 31 www.edureka.co/r-for-analytics Part 4 Advanced Graphs  Hexbin for over plotting (many data points at same) library(hexbin) plot(hexbin(iris$Species,iris$Sepal.Length)) Advanced Graphs
  • 32. Slide 32Slide 32Slide 32 www.edureka.co/r-for-analytics Part 4 Advanced Graphs  Hexbin for over plotting (many data points at same) library(hexbin) plot(hexbin(mtcars$mpg,mtcars$cyl)) Advanced Graphs
  • 33. Slide 33Slide 33Slide 33 www.edureka.co/r-for-analytics Part 4 : Advanced Graphs  Tabplot for visual summary of a dataset library(tabplot) tableplot(iris) Advanced Graphs
  • 34. Slide 34Slide 34Slide 34 www.edureka.co/r-for-analytics Part 4 : Advanced Graphs  Tabplot for visual summary of a dataset library(tabplot) tableplot(mtcars) Advanced Graphs
  • 35. Slide 35Slide 35Slide 35 www.edureka.co/r-for-analytics Part 4 Advanced Graphs  Tabplot for visual summary of a dataset  Can summarize a lot of data relatively fast library(tabplot) library(ggplot) tableplot(diamonds) Advanced Graphs
  • 36. Slide 36Slide 36Slide 36 www.edureka.co/r-for-analytics Part 4 : Advanced Graphs  vcd for categorical data  mosaic library(vcd) mosaic(HairEyeColor) Advanced Graphs
  • 37. Slide 37Slide 37Slide 37 www.edureka.co/r-for-analytics Part 4 : Advanced Graphs • vcd for categorical data • mosaic library(vcd) mosaic(Titanic) Advanced Graphs
  • 38. Slide 38Slide 38Slide 38 www.edureka.co/r-for-analytics Part 4 : Lots of Graphs in R heatmap(as.matrix(mtcars)) Advanced Graphs
  • 39. Slide 39Slide 39Slide 39 www.edureka.co/r-for-analytics Part 5 : Spatial Analysis Base R includes many functions that can be used for reading, vizualising, and analysing spatial data. The focus is on "geographical" spatial data, where observations can be identified with geographical locations Sources –  http://spatial.ly/r/  http://cran.r-project.org/web/views/Spatial.html  http://rspatial.r-forge.r-project.org/ Spatial Analysis
  • 40. Slide 40Slide 40Slide 40 www.edureka.co/r-for-analytics Part 5 : Spatial Analysis : Example library(sp) library(maptools) nc <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1], proj4string=CRS("+proj=longlat +datum=NAD27")) names(nc) # create two dummy factor variables, with equal labels: set.seed(31) nc$f = factor(sample(1:5,100,replace=T),labels=letters[1:5]) nc$g = factor(sample(1:5,100,replace=T),labels=letters[1:5]) library(RColorBrewer) ## Two (dummy) factor variables shown with qualitative colour ramp; degrees in axes spplot(nc, c("f","g"), col.regions=brewer.pal(5, "Set3"), scales=list(draw = TRUE)) Spatial Analysis
  • 41. Slide 41Slide 41Slide 41 www.edureka.co/r-for-analytics Part 5 : Spatial Analysis : Example library(sp) library(maptools) nc <- readShapePoly(system.file("shapes/sids.shp", package="maptools")[1], proj4string=CRS("+proj=longlat +datum=NAD27")) names(nc) # create two dummy factor variables, with equal labels: set.seed(31) nc$f = factor(sample(1:5,100,replace=T),labels=letters[1:5]) nc$g = factor(sample(1:5,100,replace=T),labels=letters[1:5]) library(RColorBrewer) ## Two (dummy) factor variables shown with qualitative colour ramp; degrees in axesspplot(nc, c("f","g"), col.regions=brewer.pal(5, "Set3"), scales=list(draw = TRUE)) Spatial Analysis
  • 42. Slide 42Slide 42Slide 42 www.edureka.co/r-for-analytics Part 5 : Spatial Analysis : Example library(raster) alt <- getData('alt', country = "IND") plot(alt) Spatial Analysis
  • 43. Slide 43Slide 43Slide 43 www.edureka.co/r-for-analytics Part 5 : Spatial Analysis : Example library(raster) gadm<- getData('GADM', country = "IND", level=3) head(gadm) table(gadm$NAME_1) gadm_GUJ=subset(gadm,gadm$NAME_1=="Gujarat") Spatial Analysis
  • 44. Slide 44Slide 44Slide 44 www.edureka.co/r-for-analytics Part 5 : Spatial Analysis : Example library(raster) gadm<- getData('GADM', country = "IND", level=3) head(gadm) table(gadm$NAME_1) gadm_GUJ=subset(gadm,gadm$NAME_1==" Gujarat") Spatial Analysis
  • 45. Slide 45Slide 45Slide 45 www.edureka.co/r-for-analytics Part 5 : Spatial Analysis : Example library(raster) gadm<- getData('GADM', country = "IND", level=3) head(gadm) table(gadm$NAME_1) gadm_GUJ=subset(gadm,gadm$NAME_1==" Gujarat") Spatial Analysis
  • 46. Slide 46 Your feedback is vital for us, be it a compliment, a suggestion or a complaint. It helps us to make your experience better! Please spare few minutes to take the survey after the webinar. Survey