SlideShare a Scribd company logo
PROBABILITY AND RANDOM PROCESS
Random Variables
A random variable is a function that assigns a real number X(s) to every elements s in
S, where S is the sample space corresponding to a random experiment.
Random variables
Discrete Random Variables Continuous Random variables
Dr. S. Kalyani PRP 2
Discrete Random variable:
If X is a random variable which can take a finite number or countably infinite
number of values, X is called a Discrete Random variable.
Eg:
1. The marks obtained by the student in an exam.
2. Number of students absent for a particular class.
Continuous Random variable:
If X is a random variable which can take all values in an interval, then is called
a Continuous Random variable.
Eg:
The length of time during which a vacuum tube installed in a circuit functions is
a continuous RV.
Dr. S. Kalyani PRP 3
Probability Mass Function (or) Probability Function:
If X is a discrete RV with distinct values x1 x2 x3 ,… xn…
then P ( X = xi) = pi, then the function p(x) is called the
Probability Mass Function.
Where p(i = 1, 2, 3, …) satisfy the following conditions:
1. for all i, and
2.
0,
pi
1
i
i
p 

Dr. S. Kalyani PRP 4
PROBABILITY DENSITY FUNCTION FOR CONTINUOUS CASE:
If X is a continuous r.v., then f(x) is defined the probability density
function of X.
Provided f(x) satisfies the following conditions,
1.
2.
3.
( ) 0
f x 
( ) 1
f x dx




( ) ( )
b
a
P a x b f x dx
   
Dr. S. Kalyani PRP 5
CUMULATIVE DISTRIBUTION FUNCTION OF C.R.V.:
The cumulative distribution function of a continuous r.v. X is
( ) ( ) ( ) ,
x
F x P X x f x dx for x

       

CUMULATIVE DISTRIBUTION FUNCTION OF D.R.V.:
The cumulative distribution function F(x) of a discrete r.v. X with
probability distribution p(x) is given by
( ) ( ) ( )
i
i
X x
F x P X x p x for x

      

6
Dr. S. Kalyani PRP
Dr. S. Kalyani PRP 7
Relationship between probability density function and distribution function
𝑖) 𝑓 𝑥 =
𝑑
𝑑𝑥
𝐹 𝑥
𝑖𝑖) 𝐹 𝑥 =
−∞
𝑥
𝑓 𝑥 𝑑𝑥
PROBLEM 1:
The number of telephone calls received in an office during lunch time has the
following probability function given below
No. of calls 0 1 2 3 4 5 6
Probability
p(x)
0.05 0.2 0.25 0.2 0.15 0.1 0.05
i) Verify that it is really a probability function.
ii) Find the probability that there will be 3 or more calls.
iii)Find the probability that there will be odd number of calls.
Dr. S. Kalyani PRP 8
ii) Let X denote the no. of telephone calls
P(X>=3) = P(X=3) + P(X=4) + P(X=5) +P(X=6)
= 0.2 + 0.15 + 0.1 + 0.05
= 0.5
iii) Let X denote the no. of telephone calls
P(X is odd) = P(X=1) + P(X=3) + P(X=5)
= 0.2 + 0.2 + 0.1
= 0.5
i) Probability function p(x) follows 2 properties
i) all probability values lies between 0 and 1
ii) total probability value is 1.
In the given data all probability values are between 0 and 1
And 0.05+0.2+0.25+0.15+0.1+0.05 = 1
So it is a probability function.
Solution:
Dr. S. Kalyani PRP 9
PROBLEM 2:
A r. v. X has the following probability functions
X 0 1 2 3 4 5 6 7
p(x) 0 k 2k 2k 3k k2 2k2 7k2 + k
Find (i) value of k
(ii) P(1.5 < X < 4.5 / X > 2)
(iii) if P(X ≤ a) > ½, find the minimum value of a.
Dr. S. Kalyani PRP 10
Solution:
7
0
2
( ) . . . ( ) 1
10 9 1
(10 1)( 1) 0
1
, 1
10
( ) cannot be negative,
1 is neglected.
1
10
x
i w k t p x
k k
k k
k
p x
k
k


  
   
  
 
 

Dr. S. Kalyani PRP 11
7
3
( ) (1.5 4.5 / 2)
( )
( / )
( )
[(1.5 4.5) ( 2)]
(1.5 4.5 / 2)
( 2)
( 3) ( 4)
( )
5
5
10
=
7 7
10
r
ii P X x
P A B
P A B
P B
P X X
P X X
P X
P X P X
P X r

  


   
   

  




Dr. S. Kalyani PRP 12
0 1 2 3 4 5
( ) By trials,
( 0) 0
1
( 1)
10
3
( 2)
10
5
( 3)
10
8
( 4)
10
1
the minimum value of 'a' satisfying the condition ( ) 4
2
iii
P X
P X
P X
P X
P X
P X a is
 
 
 
 
 
  
X 0 1 2 3 4 5 6 7
p(x) 0 1/10 2/10 2/10 3/10 1/100 2/100 17/100
Dr. S. Kalyani PRP 13
PROBLEM 3
A random Variable X has the following probability distribution.
Find
(i) the value of k
(ii) Evaluate P[X<2] and P[-2<X<2]
(iii)Find the cumulative Distribution of X.
x -2 -1 0 1 2 3
p(x) 0.1 k 0.2 2k 0.3 3k
Dr. S. Kalyani PRP 14
Solution:
Dr. S. Kalyani PRP 15
6
0
( ) . . . ( ) 1
6 0.6 1
6 0.4
1
15
x
i w k t p x
k
k
k


  
 
 

 
     
   
2 2 1
0 1
1 2
0.1 0.2
15 15
3 1
0.3
15 2
ii
P X P X P X
P X P X
      
   
   
  
Dr. S. Kalyani PRP 16
Dr. S. Kalyani PRP 17
( )
[ ]
[ ] [ ] [ ]
2 2
1 0 1
1 2
0.2
15 15
3
= 0.2
15
2
5
ii
P X
P X P X P X
- < <
= = - + = + =
= + +
+
=
(iii) The Cumulative Distribution of X:
X F(x) = P(X ≤ x)
-2 F(-2)=P(X≤-2)=P(X=-2)=0.1=1/10
-1 F(-1)=P(X≤-1)=F(-2)+P(-1)=1/10+k=1/10+1/15=0.17
0 F(0)=P(X≤0)=F(-1)+P(0)=1/6+2/10=1/6+1/5=0.37
1 F(1)=P(X≤1)=F(0)+P(1)=11/30+2/15=15/30=1/2
2 F(2)=P(X≤2)=F(1)+P(2)=1/2+3/10=(5+3)/10=8/10=4/5
3 F(3)=P(X≤3)=F(2)+P(3)=4/5+3/15=(12+3)/15=1
Dr. S. Kalyani PRP 18
Dr. S. Kalyani PRP 19
Problem
If the random variable X takes the values 1,2,3 and 4 such that
2P(X=1) = 3P(X=2) = P(X=3) = 5P(X=4), find the probability distribution and
cumulative distribution function.
Let P(X=3) = k
So P(X=1) = k/2
P(X=2) = k/3
P(X=4) = k/5
By property, 𝑘 +
𝑘
2
+
𝑘
3
+
𝑘
5
= 1
So 𝑘 =
30
61
X 1 2 3 4
P(X) 15/61 10/61 30/61 6/61
Dr. S. Kalyani PRP 20
F(X)= 1
𝑥
𝑝(𝑋)
When X < 1 , F(X) = 0
X 1 2 3 4
F(X) 15/61 25/61 55/61 61/61 = 1
Problem 3:
The diameter, say X of an electric cable, is assumed to be a continuous r.v.
with p.d.f. :
f(x) = 6x(1-x), 0 ≤ x ≤ 1
(i) Check that the above is a p.d.f.
(ii) Compute P(X ≤ ½ / ⅓ ≤ X ≤ ⅔)
(iii) Determine the number k such that P(X< k) = P(X > k)
(iv) Find the cumulative distribution function.
Dr. S. Kalyani PRP 21
Solution:
1 1
0 0
1
2 3
0
( )
( ) 6 (1 )
6
2 3
1
i
f x dx x x dx
x x
 
 
 
 
 

 
Dr. S. Kalyani PRP 22
1
2
1
3
2
3
1
3
( )
1 1
( )
1 1 2 3 2
( | )
1 2
2 3 3 ( )
3 3
6 (1 )
=
6 (1 )
11
11
54
13 26
27
ii
P X
P X X
P X
x x dx
x x dx
 
   
 


 


Dr. S. Kalyani PRP 23
1
0
2 3 2 3
3 2
( )
( ) ( )
6 (1 ) 6 (1 )
3 2 3(1 ) 2(1 )
4 6 1 0
1 1 3
,
2 2
1
The only possible value of k in the given range is .
2
1
2
k
k
iii
We have P X k P X k
x x dx x x dx
k k k k
k k
k
k
  
   
     
   

 
 
 
Dr. S. Kalyani PRP 24
Dr. S. Kalyani PRP 25
𝑖𝑣) 𝐹 𝑥 =
−∞
𝑥
𝑓 𝑥 𝑑𝑥
𝐹 𝑥 =
0
𝑥
6𝑥 1 − 𝑥 𝑑𝑥
=
0
𝑥
(6𝑥 − 6𝑥2
)𝑑𝑥
= 6
𝑥2
2
− 6
𝑥3
3 0
𝑥
𝐹(𝑥) = 3𝑥2
− 2𝑥3 is the cumulative distribution function
Dr. S. Kalyani PRP 26
Problem
The distribution function of a random variable X is given by 𝐹 𝑋 = 1 − 1 + 𝑥 𝑒−𝑥
, 𝑥 ≥ 0
Find the density function.
Solution:
We know that 𝑓 𝑥 =
𝑑
𝑑𝑥
𝐹 𝑥
=
𝑑
𝑑𝑥
{1 − 𝑒−𝑥 − 𝑥𝑒−𝑥}
= 0 − −𝑒−𝑥
− (−𝑥𝑒−𝑥
+ 𝑒−𝑥
)
= 𝑒−𝑥
+ 𝑥𝑒−𝑥
− 𝑒−𝑥
= 𝑥𝑒−𝑥, 𝑥 ≥ 0. is the density function

More Related Content

What's hot (20)

PPTX
Odepowerpointpresentation1
Pokarn Narkhede
 
PPTX
Exact Differential Equations
Prasad Enagandula
 
PPTX
Euler’s Theorem Homogeneous Function Of Two Variables
International Institute of Information Technology (I²IT)
 
PDF
Relation matrix & graphs in relations
Rachana Pathak
 
PPTX
APPLICATION OF PARTIAL DIFFERENTIATION
Dhrupal Patel
 
PPTX
Rank of Matrix_Normal Form .pptx
Prasad Enagandula
 
PPTX
Partial Derivatives
Aman Singh
 
PPTX
Logical and Conditional Operator In C language
Abdul Rehman
 
PDF
First order partial differential equations
Dr. Boddu Muralee Bala Krushna
 
PPT
Linear differential equation with constant coefficient
Sanjay Singh
 
PPTX
Partial differential equations
aman1894
 
PPTX
Cayley Hamilton Theorem
Umur Gümüşbaş
 
PPSX
Methods of solving ODE
kishor pokar
 
PPTX
Rank of a matrix
muthukrishnaveni anand
 
PPT
Partial Differentiation & Application
Yana Qlah
 
PPTX
Application of-differential-equation-in-real-life
Razwanul Ghani
 
PPT
Numerical Analysis (Solution of Non-Linear Equations) part 2
Asad Ali
 
PPTX
System of Homogeneous and Non-Homogeneous equations ppt nadi.pptx
VinayKp11
 
PPTX
sequential circuits
Unsa Shakir
 
PPTX
Ordinary differential equation
DnyaneshwarPardeshi1
 
Odepowerpointpresentation1
Pokarn Narkhede
 
Exact Differential Equations
Prasad Enagandula
 
Euler’s Theorem Homogeneous Function Of Two Variables
International Institute of Information Technology (I²IT)
 
Relation matrix & graphs in relations
Rachana Pathak
 
APPLICATION OF PARTIAL DIFFERENTIATION
Dhrupal Patel
 
Rank of Matrix_Normal Form .pptx
Prasad Enagandula
 
Partial Derivatives
Aman Singh
 
Logical and Conditional Operator In C language
Abdul Rehman
 
First order partial differential equations
Dr. Boddu Muralee Bala Krushna
 
Linear differential equation with constant coefficient
Sanjay Singh
 
Partial differential equations
aman1894
 
Cayley Hamilton Theorem
Umur Gümüşbaş
 
Methods of solving ODE
kishor pokar
 
Rank of a matrix
muthukrishnaveni anand
 
Partial Differentiation & Application
Yana Qlah
 
Application of-differential-equation-in-real-life
Razwanul Ghani
 
Numerical Analysis (Solution of Non-Linear Equations) part 2
Asad Ali
 
System of Homogeneous and Non-Homogeneous equations ppt nadi.pptx
VinayKp11
 
sequential circuits
Unsa Shakir
 
Ordinary differential equation
DnyaneshwarPardeshi1
 

Similar to Random variables.pptx (20)

PDF
Exam1 101
MuhannadSaleh
 
PDF
Section1 stochastic
cairo university
 
PPT
Chapter 3 – Random Variables and Probability Distributions
JasonTagapanGulla
 
PPTX
Lesson5 chapterfive Random Variable.pptx
hebaelkouly
 
PPTX
Discussion about random variable ad its characterization
Geeta Arora
 
PDF
2. Random Variables.pdf
SurajRajTripathy
 
PPTX
Module ii sp
Vijaya79
 
PPT
02-Random Variables.ppt
AkliluAyele3
 
PPTX
ECON 2222 Econometrics Lecture 5 Slides.pptx
Jasmine724221
 
PDF
Probability and Statistics
Malik Sb
 
PDF
2 random variables notes 2p3
MuhannadSaleh
 
PDF
MA3355-RANDOM PROCESSES AND LINEAR ALGEBRA-739353433-ECE-MA3355(RPLA) QUESTIO...
JayaPrakash167124
 
PDF
Statistics lecture 6 (ch5)
jillmitchell8778
 
PDF
U unit7 ssb
Akhilesh Deshpande
 
PDF
Random Variable
Abhishek652999
 
PPTX
Probability Proficiency.pptx
HarshGupta137011
 
PDF
ENGINEERING MATERIALS CHAPTER THREE.pdf
Berento
 
PDF
Lecture 4-Discrete Random Variables .pdf
SThyNguyn
 
PDF
Chapter 3 2022.pdf
Mohamed Ali
 
Exam1 101
MuhannadSaleh
 
Section1 stochastic
cairo university
 
Chapter 3 – Random Variables and Probability Distributions
JasonTagapanGulla
 
Lesson5 chapterfive Random Variable.pptx
hebaelkouly
 
Discussion about random variable ad its characterization
Geeta Arora
 
2. Random Variables.pdf
SurajRajTripathy
 
Module ii sp
Vijaya79
 
02-Random Variables.ppt
AkliluAyele3
 
ECON 2222 Econometrics Lecture 5 Slides.pptx
Jasmine724221
 
Probability and Statistics
Malik Sb
 
2 random variables notes 2p3
MuhannadSaleh
 
MA3355-RANDOM PROCESSES AND LINEAR ALGEBRA-739353433-ECE-MA3355(RPLA) QUESTIO...
JayaPrakash167124
 
Statistics lecture 6 (ch5)
jillmitchell8778
 
U unit7 ssb
Akhilesh Deshpande
 
Random Variable
Abhishek652999
 
Probability Proficiency.pptx
HarshGupta137011
 
ENGINEERING MATERIALS CHAPTER THREE.pdf
Berento
 
Lecture 4-Discrete Random Variables .pdf
SThyNguyn
 
Chapter 3 2022.pdf
Mohamed Ali
 
Ad

Recently uploaded (20)

PPTX
Online Cab Booking and Management System.pptx
diptipaneri80
 
PPT
IISM Presentation.ppt Construction safety
lovingrkn
 
PDF
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
PPTX
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 
PDF
4 Tier Teamcenter Installation part1.pdf
VnyKumar1
 
PDF
Zero carbon Building Design Guidelines V4
BassemOsman1
 
PPTX
sunil mishra pptmmmmmmmmmmmmmmmmmmmmmmmmm
singhamit111
 
PDF
7.2 Physical Layer.pdf123456789101112123
MinaMolky
 
PDF
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 
PPTX
MULTI LEVEL DATA TRACKING USING COOJA.pptx
dollysharma12ab
 
PPTX
Basics of Auto Computer Aided Drafting .pptx
Krunal Thanki
 
PDF
Irrigation Project Report, CTEVT, Diploma in Civil engineering
civilhack22
 
PDF
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
PPTX
Sensor IC System Design Using COMSOL Multiphysics 2025-July.pptx
James D.B. Wang, PhD
 
PPTX
Inventory management chapter in automation and robotics.
atisht0104
 
PDF
Machine Learning All topics Covers In This Single Slides
AmritTiwari19
 
PPTX
Introduction to Fluid and Thermal Engineering
Avesahemad Husainy
 
PDF
IEEE EMBC 2025 「Improving electrolaryngeal speech enhancement via a represent...
NU_I_TODALAB
 
PDF
CFM 56-7B - Engine General Familiarization. PDF
Gianluca Foro
 
PDF
Introduction to Robotics Mechanics and Control 4th Edition by John J. Craig S...
solutionsmanual3
 
Online Cab Booking and Management System.pptx
diptipaneri80
 
IISM Presentation.ppt Construction safety
lovingrkn
 
67243-Cooling and Heating & Calculation.pdf
DHAKA POLYTECHNIC
 
MT Chapter 1.pptx- Magnetic particle testing
ABCAnyBodyCanRelax
 
4 Tier Teamcenter Installation part1.pdf
VnyKumar1
 
Zero carbon Building Design Guidelines V4
BassemOsman1
 
sunil mishra pptmmmmmmmmmmmmmmmmmmmmmmmmm
singhamit111
 
7.2 Physical Layer.pdf123456789101112123
MinaMolky
 
Natural_Language_processing_Unit_I_notes.pdf
sanguleumeshit
 
MULTI LEVEL DATA TRACKING USING COOJA.pptx
dollysharma12ab
 
Basics of Auto Computer Aided Drafting .pptx
Krunal Thanki
 
Irrigation Project Report, CTEVT, Diploma in Civil engineering
civilhack22
 
20ME702-Mechatronics-UNIT-1,UNIT-2,UNIT-3,UNIT-4,UNIT-5, 2025-2026
Mohanumar S
 
Sensor IC System Design Using COMSOL Multiphysics 2025-July.pptx
James D.B. Wang, PhD
 
Inventory management chapter in automation and robotics.
atisht0104
 
Machine Learning All topics Covers In This Single Slides
AmritTiwari19
 
Introduction to Fluid and Thermal Engineering
Avesahemad Husainy
 
IEEE EMBC 2025 「Improving electrolaryngeal speech enhancement via a represent...
NU_I_TODALAB
 
CFM 56-7B - Engine General Familiarization. PDF
Gianluca Foro
 
Introduction to Robotics Mechanics and Control 4th Edition by John J. Craig S...
solutionsmanual3
 
Ad

Random variables.pptx

  • 2. Random Variables A random variable is a function that assigns a real number X(s) to every elements s in S, where S is the sample space corresponding to a random experiment. Random variables Discrete Random Variables Continuous Random variables Dr. S. Kalyani PRP 2
  • 3. Discrete Random variable: If X is a random variable which can take a finite number or countably infinite number of values, X is called a Discrete Random variable. Eg: 1. The marks obtained by the student in an exam. 2. Number of students absent for a particular class. Continuous Random variable: If X is a random variable which can take all values in an interval, then is called a Continuous Random variable. Eg: The length of time during which a vacuum tube installed in a circuit functions is a continuous RV. Dr. S. Kalyani PRP 3
  • 4. Probability Mass Function (or) Probability Function: If X is a discrete RV with distinct values x1 x2 x3 ,… xn… then P ( X = xi) = pi, then the function p(x) is called the Probability Mass Function. Where p(i = 1, 2, 3, …) satisfy the following conditions: 1. for all i, and 2. 0, pi 1 i i p   Dr. S. Kalyani PRP 4
  • 5. PROBABILITY DENSITY FUNCTION FOR CONTINUOUS CASE: If X is a continuous r.v., then f(x) is defined the probability density function of X. Provided f(x) satisfies the following conditions, 1. 2. 3. ( ) 0 f x  ( ) 1 f x dx     ( ) ( ) b a P a x b f x dx     Dr. S. Kalyani PRP 5
  • 6. CUMULATIVE DISTRIBUTION FUNCTION OF C.R.V.: The cumulative distribution function of a continuous r.v. X is ( ) ( ) ( ) , x F x P X x f x dx for x           CUMULATIVE DISTRIBUTION FUNCTION OF D.R.V.: The cumulative distribution function F(x) of a discrete r.v. X with probability distribution p(x) is given by ( ) ( ) ( ) i i X x F x P X x p x for x          6 Dr. S. Kalyani PRP
  • 7. Dr. S. Kalyani PRP 7 Relationship between probability density function and distribution function 𝑖) 𝑓 𝑥 = 𝑑 𝑑𝑥 𝐹 𝑥 𝑖𝑖) 𝐹 𝑥 = −∞ 𝑥 𝑓 𝑥 𝑑𝑥
  • 8. PROBLEM 1: The number of telephone calls received in an office during lunch time has the following probability function given below No. of calls 0 1 2 3 4 5 6 Probability p(x) 0.05 0.2 0.25 0.2 0.15 0.1 0.05 i) Verify that it is really a probability function. ii) Find the probability that there will be 3 or more calls. iii)Find the probability that there will be odd number of calls. Dr. S. Kalyani PRP 8
  • 9. ii) Let X denote the no. of telephone calls P(X>=3) = P(X=3) + P(X=4) + P(X=5) +P(X=6) = 0.2 + 0.15 + 0.1 + 0.05 = 0.5 iii) Let X denote the no. of telephone calls P(X is odd) = P(X=1) + P(X=3) + P(X=5) = 0.2 + 0.2 + 0.1 = 0.5 i) Probability function p(x) follows 2 properties i) all probability values lies between 0 and 1 ii) total probability value is 1. In the given data all probability values are between 0 and 1 And 0.05+0.2+0.25+0.15+0.1+0.05 = 1 So it is a probability function. Solution: Dr. S. Kalyani PRP 9
  • 10. PROBLEM 2: A r. v. X has the following probability functions X 0 1 2 3 4 5 6 7 p(x) 0 k 2k 2k 3k k2 2k2 7k2 + k Find (i) value of k (ii) P(1.5 < X < 4.5 / X > 2) (iii) if P(X ≤ a) > ½, find the minimum value of a. Dr. S. Kalyani PRP 10
  • 11. Solution: 7 0 2 ( ) . . . ( ) 1 10 9 1 (10 1)( 1) 0 1 , 1 10 ( ) cannot be negative, 1 is neglected. 1 10 x i w k t p x k k k k k p x k k                  Dr. S. Kalyani PRP 11
  • 12. 7 3 ( ) (1.5 4.5 / 2) ( ) ( / ) ( ) [(1.5 4.5) ( 2)] (1.5 4.5 / 2) ( 2) ( 3) ( 4) ( ) 5 5 10 = 7 7 10 r ii P X x P A B P A B P B P X X P X X P X P X P X P X r                       Dr. S. Kalyani PRP 12 0 1 2 3 4 5
  • 13. ( ) By trials, ( 0) 0 1 ( 1) 10 3 ( 2) 10 5 ( 3) 10 8 ( 4) 10 1 the minimum value of 'a' satisfying the condition ( ) 4 2 iii P X P X P X P X P X P X a is              X 0 1 2 3 4 5 6 7 p(x) 0 1/10 2/10 2/10 3/10 1/100 2/100 17/100 Dr. S. Kalyani PRP 13
  • 14. PROBLEM 3 A random Variable X has the following probability distribution. Find (i) the value of k (ii) Evaluate P[X<2] and P[-2<X<2] (iii)Find the cumulative Distribution of X. x -2 -1 0 1 2 3 p(x) 0.1 k 0.2 2k 0.3 3k Dr. S. Kalyani PRP 14
  • 15. Solution: Dr. S. Kalyani PRP 15 6 0 ( ) . . . ( ) 1 6 0.6 1 6 0.4 1 15 x i w k t p x k k k          
  • 16.             2 2 1 0 1 1 2 0.1 0.2 15 15 3 1 0.3 15 2 ii P X P X P X P X P X                   Dr. S. Kalyani PRP 16
  • 17. Dr. S. Kalyani PRP 17 ( ) [ ] [ ] [ ] [ ] 2 2 1 0 1 1 2 0.2 15 15 3 = 0.2 15 2 5 ii P X P X P X P X - < < = = - + = + = = + + + =
  • 18. (iii) The Cumulative Distribution of X: X F(x) = P(X ≤ x) -2 F(-2)=P(X≤-2)=P(X=-2)=0.1=1/10 -1 F(-1)=P(X≤-1)=F(-2)+P(-1)=1/10+k=1/10+1/15=0.17 0 F(0)=P(X≤0)=F(-1)+P(0)=1/6+2/10=1/6+1/5=0.37 1 F(1)=P(X≤1)=F(0)+P(1)=11/30+2/15=15/30=1/2 2 F(2)=P(X≤2)=F(1)+P(2)=1/2+3/10=(5+3)/10=8/10=4/5 3 F(3)=P(X≤3)=F(2)+P(3)=4/5+3/15=(12+3)/15=1 Dr. S. Kalyani PRP 18
  • 19. Dr. S. Kalyani PRP 19 Problem If the random variable X takes the values 1,2,3 and 4 such that 2P(X=1) = 3P(X=2) = P(X=3) = 5P(X=4), find the probability distribution and cumulative distribution function. Let P(X=3) = k So P(X=1) = k/2 P(X=2) = k/3 P(X=4) = k/5 By property, 𝑘 + 𝑘 2 + 𝑘 3 + 𝑘 5 = 1 So 𝑘 = 30 61
  • 20. X 1 2 3 4 P(X) 15/61 10/61 30/61 6/61 Dr. S. Kalyani PRP 20 F(X)= 1 𝑥 𝑝(𝑋) When X < 1 , F(X) = 0 X 1 2 3 4 F(X) 15/61 25/61 55/61 61/61 = 1
  • 21. Problem 3: The diameter, say X of an electric cable, is assumed to be a continuous r.v. with p.d.f. : f(x) = 6x(1-x), 0 ≤ x ≤ 1 (i) Check that the above is a p.d.f. (ii) Compute P(X ≤ ½ / ⅓ ≤ X ≤ ⅔) (iii) Determine the number k such that P(X< k) = P(X > k) (iv) Find the cumulative distribution function. Dr. S. Kalyani PRP 21
  • 22. Solution: 1 1 0 0 1 2 3 0 ( ) ( ) 6 (1 ) 6 2 3 1 i f x dx x x dx x x              Dr. S. Kalyani PRP 22
  • 23. 1 2 1 3 2 3 1 3 ( ) 1 1 ( ) 1 1 2 3 2 ( | ) 1 2 2 3 3 ( ) 3 3 6 (1 ) = 6 (1 ) 11 11 54 13 26 27 ii P X P X X P X x x dx x x dx               Dr. S. Kalyani PRP 23
  • 24. 1 0 2 3 2 3 3 2 ( ) ( ) ( ) 6 (1 ) 6 (1 ) 3 2 3(1 ) 2(1 ) 4 6 1 0 1 1 3 , 2 2 1 The only possible value of k in the given range is . 2 1 2 k k iii We have P X k P X k x x dx x x dx k k k k k k k k                         Dr. S. Kalyani PRP 24
  • 25. Dr. S. Kalyani PRP 25 𝑖𝑣) 𝐹 𝑥 = −∞ 𝑥 𝑓 𝑥 𝑑𝑥 𝐹 𝑥 = 0 𝑥 6𝑥 1 − 𝑥 𝑑𝑥 = 0 𝑥 (6𝑥 − 6𝑥2 )𝑑𝑥 = 6 𝑥2 2 − 6 𝑥3 3 0 𝑥 𝐹(𝑥) = 3𝑥2 − 2𝑥3 is the cumulative distribution function
  • 26. Dr. S. Kalyani PRP 26 Problem The distribution function of a random variable X is given by 𝐹 𝑋 = 1 − 1 + 𝑥 𝑒−𝑥 , 𝑥 ≥ 0 Find the density function. Solution: We know that 𝑓 𝑥 = 𝑑 𝑑𝑥 𝐹 𝑥 = 𝑑 𝑑𝑥 {1 − 𝑒−𝑥 − 𝑥𝑒−𝑥} = 0 − −𝑒−𝑥 − (−𝑥𝑒−𝑥 + 𝑒−𝑥 ) = 𝑒−𝑥 + 𝑥𝑒−𝑥 − 𝑒−𝑥 = 𝑥𝑒−𝑥, 𝑥 ≥ 0. is the density function