This document provides an introduction and overview of NOSQL databases. It defines NOSQL as a non-tabular database system that is increasingly used for big data and real-time applications. The document outlines the history and types of NOSQL databases, including key-value, document, column-family, and graph databases. It also discusses the CAP theorem and features of NOSQL such as horizontal and vertical scalability. The document provides guidance on when to use and not use NOSQL and includes examples of popular NOSQL databases like MongoDB, Cassandra, and Neo4j.
Apache Spark is a In Memory Data Processing Solution that can work with existing data source like HDFS and can make use of your existing computation infrastructure like YARN/Mesos etc. This talk will cover a basic introduction of Apache Spark with its various components like MLib, Shark, GrpahX and with few examples.
The document introduces MongoDB as an open source, high performance database that is a popular NoSQL option. It discusses how MongoDB stores data as JSON-like documents, supports dynamic schemas, and scales horizontally across commodity servers. MongoDB is seen as a good alternative to SQL databases for applications dealing with large volumes of diverse data that need to scale.
The document provides an overview of the internal workings of Neo4j. It describes how the graph data is stored on disk as linked lists of fixed size records and how two levels of caching work - a low-level filesystem cache and a high-level object cache that stores node and relationship data in a structure optimized for traversals. It also explains how traversals are implemented using relationship expanders and evaluators to iteratively expand paths through the graph, and how Cypher builds on this but uses graph pattern matching rather than the full traversal system.
This document provides an overview of Apache Spark, an open-source unified analytics engine for large-scale data processing. It discusses Spark's core APIs including RDDs and transformations/actions. It also covers Spark SQL, Spark Streaming, MLlib, and GraphX. Spark provides a fast and general engine for big data processing, with explicit operations for streaming, SQL, machine learning, and graph processing. The document includes installation instructions and examples of using various Spark components.
Introduction to Apache Spark. With an emphasis on the RDD API, Spark SQL (DataFrame and Dataset API) and Spark Streaming.
Presented at the Desert Code Camp:
http://oct2016.desertcodecamp.com/sessions/all
Deep Dive: Memory Management in Apache SparkDatabricks
Memory management is at the heart of any data-intensive system. Spark, in particular, must arbitrate memory allocation between two main use cases: buffering intermediate data for processing (execution) and caching user data (storage). This talk will take a deep dive through the memory management designs adopted in Spark since its inception and discuss their performance and usability implications for the end user.
The document discusses Apache Spark, an open source cluster computing framework for real-time data processing. It notes that Spark is up to 100 times faster than Hadoop for in-memory processing and 10 times faster on disk. The main feature of Spark is its in-memory cluster computing capability, which increases processing speeds. Spark runs on a driver-executor model and uses resilient distributed datasets and directed acyclic graphs to process data in parallel across a cluster.
Hadoop, Pig, and Twitter (NoSQL East 2009)Kevin Weil
A talk on the use of Hadoop and Pig inside Twitter, focusing on the flexibility and simplicity of Pig, and the benefits of that for solving real-world big data problems.
This document provides an overview of a talk on Apache Spark. It introduces the speaker and their background. It acknowledges inspiration from a previous Spark training. It then outlines the structure of the talk, which will include: a brief history of big data; a tour of Spark including its advantages over MapReduce; and explanations of Spark concepts like RDDs, transformations, and actions. The document serves to introduce the topics that will be covered in the talk.
This document provides an overview of Hadoop architecture. It discusses how Hadoop uses MapReduce and HDFS to process and store large datasets reliably across commodity hardware. MapReduce allows distributed processing of data through mapping and reducing functions. HDFS provides a distributed file system that stores data reliably in blocks across nodes. The document outlines components like the NameNode, DataNodes and how Hadoop handles failures transparently at scale.
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...Simplilearn
This presentation about Apache Spark covers all the basics that a beginner needs to know to get started with Spark. It covers the history of Apache Spark, what is Spark, the difference between Hadoop and Spark. You will learn the different components in Spark, and how Spark works with the help of architecture. You will understand the different cluster managers on which Spark can run. Finally, you will see the various applications of Spark and a use case on Conviva. Now, let's get started with what is Apache Spark.
Below topics are explained in this Spark presentation:
1. History of Spark
2. What is Spark
3. Hadoop vs Spark
4. Components of Apache Spark
5. Spark architecture
6. Applications of Spark
7. Spark usecase
What is this Big Data Hadoop training course about?
The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
What are the course objectives?
Simplilearn’s Apache Spark and Scala certification training are designed to:
1. Advance your expertise in the Big Data Hadoop Ecosystem
2. Help you master essential Apache and Spark skills, such as Spark Streaming, Spark SQL, machine learning programming, GraphX programming and Shell Scripting Spark
3. Help you land a Hadoop developer job requiring Apache Spark expertise by giving you a real-life industry project coupled with 30 demos
What skills will you learn?
By completing this Apache Spark and Scala course you will be able to:
1. Understand the limitations of MapReduce and the role of Spark in overcoming these limitations
2. Understand the fundamentals of the Scala programming language and its features
3. Explain and master the process of installing Spark as a standalone cluster
4. Develop expertise in using Resilient Distributed Datasets (RDD) for creating applications in Spark
5. Master Structured Query Language (SQL) using SparkSQL
6. Gain a thorough understanding of Spark streaming features
7. Master and describe the features of Spark ML programming and GraphX programming
Who should take this Scala course?
1. Professionals aspiring for a career in the field of real-time big data analytics
2. Analytics professionals
3. Research professionals
4. IT developers and testers
5. Data scientists
6. BI and reporting professionals
7. Students who wish to gain a thorough understanding of Apache Spark
Learn more at https://www.simplilearn.com/big-data-and-analytics/apache-spark-scala-certification-training
Graph databases use graph structures to represent and store data, with nodes connected by edges. They are well-suited for interconnected data. Unlike relational databases, graph databases allow for flexible schemas and querying of relationships. Common uses of graph databases include social networks, knowledge graphs, and recommender systems.
Spark is an open-source distributed computing framework used for processing large datasets. It allows for in-memory cluster computing, which enhances processing speed. Spark core components include Resilient Distributed Datasets (RDDs) and a directed acyclic graph (DAG) that represents the lineage of transformations and actions on RDDs. Spark Streaming is an extension that allows for processing of live data streams with low latency.
Resilient Distributed DataSets - Apache SPARKTaposh Roy
RDDs (Resilient Distributed Datasets) provide a fault-tolerant abstraction for data reuse across jobs in distributed applications. They allow data to be persisted in memory and manipulated using transformations like map and filter. This enables efficient processing of iterative algorithms. RDDs achieve fault tolerance by logging the transformations used to build a dataset rather than the actual data, enabling recovery of lost partitions through recomputation.
HBase and HDFS: Understanding FileSystem Usage in HBaseenissoz
This document discusses file system usage in HBase. It provides an overview of the three main file types in HBase: write-ahead logs (WALs), data files, and reference files. It describes durability semantics, IO fencing techniques for region server recovery, and how HBase leverages data locality through short circuit reads, checksums, and block placement hints. The document is intended help understand HBase's interactions with HDFS for tuning IO performance.
What is Apache Spark | Apache Spark Tutorial For Beginners | Apache Spark Tra...Edureka!
This Edureka "What is Spark" tutorial will introduce you to big data analytics framework - Apache Spark. This tutorial is ideal for both beginners as well as professionals who want to learn or brush up their Apache Spark concepts. Below are the topics covered in this tutorial:
1) Big Data Analytics
2) What is Apache Spark?
3) Why Apache Spark?
4) Using Spark with Hadoop
5) Apache Spark Features
6) Apache Spark Architecture
7) Apache Spark Ecosystem - Spark Core, Spark Streaming, Spark MLlib, Spark SQL, GraphX
8) Demo: Analyze Flight Data Using Apache Spark
This presentation is an introduction to Apache Spark. It covers the basic API, some advanced features and describes how Spark physically executes its jobs.
This presentation on Spark Architecture will give an idea of what is Apache Spark, the essential features in Spark, the different Spark components. Here, you will learn about Spark Core, Spark SQL, Spark Streaming, Spark MLlib, and Graphx. You will understand how Spark processes an application and runs it on a cluster with the help of its architecture. Finally, you will perform a demo on Apache Spark. So, let's get started with Apache Spark Architecture.
YouTube Video: https://www.youtube.com/watch?v=CF5Ewk0GxiQ
What is this Big Data Hadoop training course about?
The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
What are the course objectives?
Simplilearn’s Apache Spark and Scala certification training are designed to:
1. Advance your expertise in the Big Data Hadoop Ecosystem
2. Help you master essential Apache and Spark skills, such as Spark Streaming, Spark SQL, machine learning programming, GraphX programming and Shell Scripting Spark
3. Help you land a Hadoop developer job requiring Apache Spark expertise by giving you a real-life industry project coupled with 30 demos
What skills will you learn?
By completing this Apache Spark and Scala course you will be able to:
1. Understand the limitations of MapReduce and the role of Spark in overcoming these limitations
2. Understand the fundamentals of the Scala programming language and its features
3. Explain and master the process of installing Spark as a standalone cluster
4. Develop expertise in using Resilient Distributed Datasets (RDD) for creating applications in Spark
5. Master Structured Query Language (SQL) using SparkSQL
6. Gain a thorough understanding of Spark streaming features
7. Master and describe the features of Spark ML programming and GraphX programming
Who should take this Scala course?
1. Professionals aspiring for a career in the field of real-time big data analytics
2. Analytics professionals
3. Research professionals
4. IT developers and testers
5. Data scientists
6. BI and reporting professionals
7. Students who wish to gain a thorough understanding of Apache Spark
Learn more at https://www.simplilearn.com/big-data-and-analytics/apache-spark-scala-certification-training
This document provides an overview of Apache Spark, including how it compares to Hadoop, the Spark ecosystem, Resilient Distributed Datasets (RDDs), transformations and actions on RDDs, the directed acyclic graph (DAG) scheduler, Spark Streaming, and the DataFrames API. Key points covered include Spark's faster performance versus Hadoop through its use of memory instead of disk, the RDD abstraction for distributed collections, common RDD operations, and Spark's capabilities for real-time streaming data processing and SQL queries on structured data.
This is the presentation I made on JavaDay Kiev 2015 regarding the architecture of Apache Spark. It covers the memory model, the shuffle implementations, data frames and some other high-level staff and can be used as an introduction to Apache Spark
This document introduces HBase, an open-source, non-relational, distributed database modeled after Google's BigTable. It describes what HBase is, how it can be used, and when it is applicable. Key points include that HBase stores data in columns and rows accessed by row keys, integrates with Hadoop for MapReduce jobs, and is well-suited for large datasets, fast random access, and write-heavy applications. Common use cases involve log analytics, real-time analytics, and messages-centered systems.
Storm is a distributed and fault-tolerant realtime computation system. It was created at BackType/Twitter to analyze tweets, links, and users on Twitter in realtime. Storm provides scalability, reliability, and ease of programming. It uses components like Zookeeper, ØMQ, and Thrift. A Storm topology defines the flow of data between spouts that read data and bolts that process data. Storm guarantees processing of all data through its reliability APIs and guarantees no data loss even during failures.
Here is how you can solve this problem using MapReduce and Unix commands:
Map step:
grep -o 'Blue\|Green' input.txt | wc -l > output
This uses grep to search the input file for the strings "Blue" or "Green" and print only the matches. The matches are piped to wc which counts the lines (matches).
Reduce step:
cat output
This isn't really needed as there is only one mapper. Cat prints the contents of the output file which has the count of Blue and Green.
So MapReduce has been simulated using grep for the map and cat for the reduce functionality. The key aspects are - grep extracts the relevant data (map
This presentation about HBase will help you understand what is HBase, what are the applications of HBase, how is HBase is different from RDBMS, what is HBase Storage, what are the architectural components of HBase and at the end, we will also look at some of the HBase commands using a demo. HBase is an essential part of the Hadoop ecosystem. It is a column-oriented database management system derived from Google’s NoSQL database Bigtable that runs on top of HDFS. After watching this video, you will know how to store and process large datasets using HBase. Now, let us get started and understand HBase and what it is used for.
Below topics are explained in this HBase presentation:
1. What is HBase?
2. HBase Use Case
3. Applications of HBase
4. HBase vs RDBMS
5. HBase Storage
6. HBase Architectural Components
What is this Big Data Hadoop training course about?
Simplilearn’s Big Data Hadoop training course lets you master the concepts of the Hadoop framework and prepares you for Cloudera’s CCA175 Big data certification. The Big Data Hadoop and Spark developer course have been designed to impart in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
What are the course objectives?
This course will enable you to:
1. Understand the different components of the Hadoop ecosystem such as Hadoop 2.7, Yarn, MapReduce, Pig, Hive, Impala, HBase, Sqoop, Flume, and Apache Spark
2. Understand Hadoop Distributed File System (HDFS) and YARN as well as their architecture, and learn how to work with them for storage and resource management
3. Understand MapReduce and its characteristics, and assimilate some advanced MapReduce concepts
4. Get an overview of Sqoop and Flume and describe how to ingest data using them
5. Create database and tables in Hive and Impala, understand HBase, and use Hive and Impala for partitioning
6. Understand different types of file formats, Avro Schema, using Arvo with Hive, and Sqoop and Schema evolution
7. Understand Flume, Flume architecture, sources, flume sinks, channels, and flume configurations
8. Understand HBase, its architecture, data storage, and working with HBase. You will also understand the difference between HBase and RDBMS
9. Gain a working knowledge of Pig and its components
10. Do functional programming in Spark
11. Understand resilient distribution datasets (RDD) in detail
12. Implement and build Spark applications
13. Gain an in-depth understanding of parallel processing in Spark and Spark RDD optimization techniques
14. Understand the common use-cases of Spark and the various interactive algorithms
15. Learn Spark SQL, creating, transforming, and querying Data frames
Learn more at https://www.simplilearn.com/big-data-and-analytics/big-data-and-hadoop-training
Hive Bucketing in Apache Spark with Tejas PatilDatabricks
Bucketing is a partitioning technique that can improve performance in certain data transformations by avoiding data shuffling and sorting. The general idea of bucketing is to partition, and optionally sort, the data based on a subset of columns while it is written out (a one-time cost), while making successive reads of the data more performant for downstream jobs if the SQL operators can make use of this property. Bucketing can enable faster joins (i.e. single stage sort merge join), the ability to short circuit in FILTER operation if the file is pre-sorted over the column in a filter predicate, and it supports quick data sampling.
In this session, you’ll learn how bucketing is implemented in both Hive and Spark. In particular, Patil will describe the changes in the Catalyst optimizer that enable these optimizations in Spark for various bucketing scenarios. Facebook’s performance tests have shown bucketing to improve Spark performance from 3-5x faster when the optimization is enabled. Many tables at Facebook are sorted and bucketed, and migrating these workloads to Spark have resulted in a 2-3x savings when compared to Hive. You’ll also hear about real-world applications of bucketing, like loading of cumulative tables with daily delta, and the characteristics that can help identify suitable candidate jobs that can benefit from bucketing.
The document provides a comparative analysis of Apache Hadoop and Apache Spark, two popular platforms for big data analytics. It discusses their key features, capabilities, strengths, limitations, use cases and provides a recommendation on selecting the right tool based on specific business needs and data processing requirements.
This document provides an overview and comparison of RDBMS, Hadoop, and Spark. It introduces RDBMS and describes its use cases such as online transaction processing and data warehouses. It then introduces Hadoop and describes its ecosystem including HDFS, YARN, MapReduce, and related sub-modules. Common use cases for Hadoop are also outlined. Spark is then introduced along with its modules like Spark Core, SQL, and MLlib. Use cases for Spark include data enrichment, trigger event detection, and machine learning. The document concludes by comparing RDBMS and Hadoop, as well as Hadoop and Spark, and addressing common misconceptions about Hadoop and Spark.
The document discusses Apache Spark, an open source cluster computing framework for real-time data processing. It notes that Spark is up to 100 times faster than Hadoop for in-memory processing and 10 times faster on disk. The main feature of Spark is its in-memory cluster computing capability, which increases processing speeds. Spark runs on a driver-executor model and uses resilient distributed datasets and directed acyclic graphs to process data in parallel across a cluster.
Hadoop, Pig, and Twitter (NoSQL East 2009)Kevin Weil
A talk on the use of Hadoop and Pig inside Twitter, focusing on the flexibility and simplicity of Pig, and the benefits of that for solving real-world big data problems.
This document provides an overview of a talk on Apache Spark. It introduces the speaker and their background. It acknowledges inspiration from a previous Spark training. It then outlines the structure of the talk, which will include: a brief history of big data; a tour of Spark including its advantages over MapReduce; and explanations of Spark concepts like RDDs, transformations, and actions. The document serves to introduce the topics that will be covered in the talk.
This document provides an overview of Hadoop architecture. It discusses how Hadoop uses MapReduce and HDFS to process and store large datasets reliably across commodity hardware. MapReduce allows distributed processing of data through mapping and reducing functions. HDFS provides a distributed file system that stores data reliably in blocks across nodes. The document outlines components like the NameNode, DataNodes and how Hadoop handles failures transparently at scale.
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...Simplilearn
This presentation about Apache Spark covers all the basics that a beginner needs to know to get started with Spark. It covers the history of Apache Spark, what is Spark, the difference between Hadoop and Spark. You will learn the different components in Spark, and how Spark works with the help of architecture. You will understand the different cluster managers on which Spark can run. Finally, you will see the various applications of Spark and a use case on Conviva. Now, let's get started with what is Apache Spark.
Below topics are explained in this Spark presentation:
1. History of Spark
2. What is Spark
3. Hadoop vs Spark
4. Components of Apache Spark
5. Spark architecture
6. Applications of Spark
7. Spark usecase
What is this Big Data Hadoop training course about?
The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
What are the course objectives?
Simplilearn’s Apache Spark and Scala certification training are designed to:
1. Advance your expertise in the Big Data Hadoop Ecosystem
2. Help you master essential Apache and Spark skills, such as Spark Streaming, Spark SQL, machine learning programming, GraphX programming and Shell Scripting Spark
3. Help you land a Hadoop developer job requiring Apache Spark expertise by giving you a real-life industry project coupled with 30 demos
What skills will you learn?
By completing this Apache Spark and Scala course you will be able to:
1. Understand the limitations of MapReduce and the role of Spark in overcoming these limitations
2. Understand the fundamentals of the Scala programming language and its features
3. Explain and master the process of installing Spark as a standalone cluster
4. Develop expertise in using Resilient Distributed Datasets (RDD) for creating applications in Spark
5. Master Structured Query Language (SQL) using SparkSQL
6. Gain a thorough understanding of Spark streaming features
7. Master and describe the features of Spark ML programming and GraphX programming
Who should take this Scala course?
1. Professionals aspiring for a career in the field of real-time big data analytics
2. Analytics professionals
3. Research professionals
4. IT developers and testers
5. Data scientists
6. BI and reporting professionals
7. Students who wish to gain a thorough understanding of Apache Spark
Learn more at https://www.simplilearn.com/big-data-and-analytics/apache-spark-scala-certification-training
Graph databases use graph structures to represent and store data, with nodes connected by edges. They are well-suited for interconnected data. Unlike relational databases, graph databases allow for flexible schemas and querying of relationships. Common uses of graph databases include social networks, knowledge graphs, and recommender systems.
Spark is an open-source distributed computing framework used for processing large datasets. It allows for in-memory cluster computing, which enhances processing speed. Spark core components include Resilient Distributed Datasets (RDDs) and a directed acyclic graph (DAG) that represents the lineage of transformations and actions on RDDs. Spark Streaming is an extension that allows for processing of live data streams with low latency.
Resilient Distributed DataSets - Apache SPARKTaposh Roy
RDDs (Resilient Distributed Datasets) provide a fault-tolerant abstraction for data reuse across jobs in distributed applications. They allow data to be persisted in memory and manipulated using transformations like map and filter. This enables efficient processing of iterative algorithms. RDDs achieve fault tolerance by logging the transformations used to build a dataset rather than the actual data, enabling recovery of lost partitions through recomputation.
HBase and HDFS: Understanding FileSystem Usage in HBaseenissoz
This document discusses file system usage in HBase. It provides an overview of the three main file types in HBase: write-ahead logs (WALs), data files, and reference files. It describes durability semantics, IO fencing techniques for region server recovery, and how HBase leverages data locality through short circuit reads, checksums, and block placement hints. The document is intended help understand HBase's interactions with HDFS for tuning IO performance.
What is Apache Spark | Apache Spark Tutorial For Beginners | Apache Spark Tra...Edureka!
This Edureka "What is Spark" tutorial will introduce you to big data analytics framework - Apache Spark. This tutorial is ideal for both beginners as well as professionals who want to learn or brush up their Apache Spark concepts. Below are the topics covered in this tutorial:
1) Big Data Analytics
2) What is Apache Spark?
3) Why Apache Spark?
4) Using Spark with Hadoop
5) Apache Spark Features
6) Apache Spark Architecture
7) Apache Spark Ecosystem - Spark Core, Spark Streaming, Spark MLlib, Spark SQL, GraphX
8) Demo: Analyze Flight Data Using Apache Spark
This presentation is an introduction to Apache Spark. It covers the basic API, some advanced features and describes how Spark physically executes its jobs.
This presentation on Spark Architecture will give an idea of what is Apache Spark, the essential features in Spark, the different Spark components. Here, you will learn about Spark Core, Spark SQL, Spark Streaming, Spark MLlib, and Graphx. You will understand how Spark processes an application and runs it on a cluster with the help of its architecture. Finally, you will perform a demo on Apache Spark. So, let's get started with Apache Spark Architecture.
YouTube Video: https://www.youtube.com/watch?v=CF5Ewk0GxiQ
What is this Big Data Hadoop training course about?
The Big Data Hadoop and Spark developer course have been designed to impart an in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
What are the course objectives?
Simplilearn’s Apache Spark and Scala certification training are designed to:
1. Advance your expertise in the Big Data Hadoop Ecosystem
2. Help you master essential Apache and Spark skills, such as Spark Streaming, Spark SQL, machine learning programming, GraphX programming and Shell Scripting Spark
3. Help you land a Hadoop developer job requiring Apache Spark expertise by giving you a real-life industry project coupled with 30 demos
What skills will you learn?
By completing this Apache Spark and Scala course you will be able to:
1. Understand the limitations of MapReduce and the role of Spark in overcoming these limitations
2. Understand the fundamentals of the Scala programming language and its features
3. Explain and master the process of installing Spark as a standalone cluster
4. Develop expertise in using Resilient Distributed Datasets (RDD) for creating applications in Spark
5. Master Structured Query Language (SQL) using SparkSQL
6. Gain a thorough understanding of Spark streaming features
7. Master and describe the features of Spark ML programming and GraphX programming
Who should take this Scala course?
1. Professionals aspiring for a career in the field of real-time big data analytics
2. Analytics professionals
3. Research professionals
4. IT developers and testers
5. Data scientists
6. BI and reporting professionals
7. Students who wish to gain a thorough understanding of Apache Spark
Learn more at https://www.simplilearn.com/big-data-and-analytics/apache-spark-scala-certification-training
This document provides an overview of Apache Spark, including how it compares to Hadoop, the Spark ecosystem, Resilient Distributed Datasets (RDDs), transformations and actions on RDDs, the directed acyclic graph (DAG) scheduler, Spark Streaming, and the DataFrames API. Key points covered include Spark's faster performance versus Hadoop through its use of memory instead of disk, the RDD abstraction for distributed collections, common RDD operations, and Spark's capabilities for real-time streaming data processing and SQL queries on structured data.
This is the presentation I made on JavaDay Kiev 2015 regarding the architecture of Apache Spark. It covers the memory model, the shuffle implementations, data frames and some other high-level staff and can be used as an introduction to Apache Spark
This document introduces HBase, an open-source, non-relational, distributed database modeled after Google's BigTable. It describes what HBase is, how it can be used, and when it is applicable. Key points include that HBase stores data in columns and rows accessed by row keys, integrates with Hadoop for MapReduce jobs, and is well-suited for large datasets, fast random access, and write-heavy applications. Common use cases involve log analytics, real-time analytics, and messages-centered systems.
Storm is a distributed and fault-tolerant realtime computation system. It was created at BackType/Twitter to analyze tweets, links, and users on Twitter in realtime. Storm provides scalability, reliability, and ease of programming. It uses components like Zookeeper, ØMQ, and Thrift. A Storm topology defines the flow of data between spouts that read data and bolts that process data. Storm guarantees processing of all data through its reliability APIs and guarantees no data loss even during failures.
Here is how you can solve this problem using MapReduce and Unix commands:
Map step:
grep -o 'Blue\|Green' input.txt | wc -l > output
This uses grep to search the input file for the strings "Blue" or "Green" and print only the matches. The matches are piped to wc which counts the lines (matches).
Reduce step:
cat output
This isn't really needed as there is only one mapper. Cat prints the contents of the output file which has the count of Blue and Green.
So MapReduce has been simulated using grep for the map and cat for the reduce functionality. The key aspects are - grep extracts the relevant data (map
This presentation about HBase will help you understand what is HBase, what are the applications of HBase, how is HBase is different from RDBMS, what is HBase Storage, what are the architectural components of HBase and at the end, we will also look at some of the HBase commands using a demo. HBase is an essential part of the Hadoop ecosystem. It is a column-oriented database management system derived from Google’s NoSQL database Bigtable that runs on top of HDFS. After watching this video, you will know how to store and process large datasets using HBase. Now, let us get started and understand HBase and what it is used for.
Below topics are explained in this HBase presentation:
1. What is HBase?
2. HBase Use Case
3. Applications of HBase
4. HBase vs RDBMS
5. HBase Storage
6. HBase Architectural Components
What is this Big Data Hadoop training course about?
Simplilearn’s Big Data Hadoop training course lets you master the concepts of the Hadoop framework and prepares you for Cloudera’s CCA175 Big data certification. The Big Data Hadoop and Spark developer course have been designed to impart in-depth knowledge of Big Data processing using Hadoop and Spark. The course is packed with real-life projects and case studies to be executed in the CloudLab.
What are the course objectives?
This course will enable you to:
1. Understand the different components of the Hadoop ecosystem such as Hadoop 2.7, Yarn, MapReduce, Pig, Hive, Impala, HBase, Sqoop, Flume, and Apache Spark
2. Understand Hadoop Distributed File System (HDFS) and YARN as well as their architecture, and learn how to work with them for storage and resource management
3. Understand MapReduce and its characteristics, and assimilate some advanced MapReduce concepts
4. Get an overview of Sqoop and Flume and describe how to ingest data using them
5. Create database and tables in Hive and Impala, understand HBase, and use Hive and Impala for partitioning
6. Understand different types of file formats, Avro Schema, using Arvo with Hive, and Sqoop and Schema evolution
7. Understand Flume, Flume architecture, sources, flume sinks, channels, and flume configurations
8. Understand HBase, its architecture, data storage, and working with HBase. You will also understand the difference between HBase and RDBMS
9. Gain a working knowledge of Pig and its components
10. Do functional programming in Spark
11. Understand resilient distribution datasets (RDD) in detail
12. Implement and build Spark applications
13. Gain an in-depth understanding of parallel processing in Spark and Spark RDD optimization techniques
14. Understand the common use-cases of Spark and the various interactive algorithms
15. Learn Spark SQL, creating, transforming, and querying Data frames
Learn more at https://www.simplilearn.com/big-data-and-analytics/big-data-and-hadoop-training
Hive Bucketing in Apache Spark with Tejas PatilDatabricks
Bucketing is a partitioning technique that can improve performance in certain data transformations by avoiding data shuffling and sorting. The general idea of bucketing is to partition, and optionally sort, the data based on a subset of columns while it is written out (a one-time cost), while making successive reads of the data more performant for downstream jobs if the SQL operators can make use of this property. Bucketing can enable faster joins (i.e. single stage sort merge join), the ability to short circuit in FILTER operation if the file is pre-sorted over the column in a filter predicate, and it supports quick data sampling.
In this session, you’ll learn how bucketing is implemented in both Hive and Spark. In particular, Patil will describe the changes in the Catalyst optimizer that enable these optimizations in Spark for various bucketing scenarios. Facebook’s performance tests have shown bucketing to improve Spark performance from 3-5x faster when the optimization is enabled. Many tables at Facebook are sorted and bucketed, and migrating these workloads to Spark have resulted in a 2-3x savings when compared to Hive. You’ll also hear about real-world applications of bucketing, like loading of cumulative tables with daily delta, and the characteristics that can help identify suitable candidate jobs that can benefit from bucketing.
The document provides a comparative analysis of Apache Hadoop and Apache Spark, two popular platforms for big data analytics. It discusses their key features, capabilities, strengths, limitations, use cases and provides a recommendation on selecting the right tool based on specific business needs and data processing requirements.
This document provides an overview and comparison of RDBMS, Hadoop, and Spark. It introduces RDBMS and describes its use cases such as online transaction processing and data warehouses. It then introduces Hadoop and describes its ecosystem including HDFS, YARN, MapReduce, and related sub-modules. Common use cases for Hadoop are also outlined. Spark is then introduced along with its modules like Spark Core, SQL, and MLlib. Use cases for Spark include data enrichment, trigger event detection, and machine learning. The document concludes by comparing RDBMS and Hadoop, as well as Hadoop and Spark, and addressing common misconceptions about Hadoop and Spark.
Compare and contrast big data processing platforms RDBMS, Hadoop, and Spark. pros and cons of each platform are discussed. Business use cases are also included.
Apache Hadoop is a framework for distributed storage and processing of large datasets across clusters of commodity hardware. It provides HDFS for distributed file storage and MapReduce as a programming model for distributed computations. Hadoop includes other technologies like YARN for resource management, Spark for fast computation, HBase for NoSQL database, and tools for data analysis, transfer, and security. Hadoop can run on-premise or in cloud environments and supports analytics workloads.
The Apache Hadoop software library is essentially a framework that allows for the distributed processing of large datasets across clusters of computers using a simple programming model. Hadoop can scale up from single servers to thousands of machines, each offering local computation and storage.
Hadoop is an open-source framework for storing and processing large datasets in a distributed computing environment. It allows for massive data storage, enormous processing power, and the ability to handle large numbers of concurrent tasks across clusters of commodity hardware. The framework includes Hadoop Distributed File System (HDFS) for reliable data storage and MapReduce for parallel processing of large datasets. An ecosystem of related projects like Pig, Hive, HBase, Sqoop and Flume extend the functionality of Hadoop.
Apache Spark is an open source framework for large-scale data processing. It was originally developed at UC Berkeley and provides fast, easy-to-use tools for batch and streaming data. Spark features include SQL queries, machine learning, streaming, and graph processing. It is up to 100 times faster than Hadoop for iterative algorithms and interactive queries due to its in-memory processing capabilities. Spark uses Resilient Distributed Datasets (RDDs) that allow data to be reused across parallel operations.
This document provides an overview of the big data technology stack, including the data layer (HDFS, S3, GPFS), data processing layer (MapReduce, Pig, Hive, HBase, Cassandra, Storm, Solr, Spark, Mahout), data ingestion layer (Flume, Kafka, Sqoop), data presentation layer (Kibana), operations and scheduling layer (Ambari, Oozie, ZooKeeper), and concludes with a brief biography of the author.
Big Data Analytics Presentation on the resourcefulness of Big datanextstep013
Big data processing refers to the methods and technologies used to handle large volumes of data that traditional data processing applications can't manage efficiently. This data typically comes from various sources such as social media, sensors, machines, transactions, and more.
Big Data Applications with Java discusses various big data technologies including Apache Hadoop, Apache Spark, Apache Kafka, and Apache Cassandra. It defines big data as huge volumes of data that cannot be processed using traditional approaches due to constraints on storage and processing time. The document then covers characteristics of big data like volume, velocity, variety, veracity, variability, and value. It provides overviews of Apache Hadoop and its ecosystem including HDFS and MapReduce. Apache Spark is introduced as an enhancement to MapReduce that processes data faster in memory. Apache Kafka and Cassandra are also summarized as distributed streaming and database platforms respectively. The document concludes by comparing Hadoop and Spark, outlining their relative performance, costs, processing capabilities,
Comparison between RDBMS, Hadoop and Apache based on parameters like Data Variety, Data Storage, Querying, Cost, Schema, Speed, Data Objects, Hardware profile, and Used cases. It also mentions benefits and limitations.
This document provides an overview of big data and Hadoop. It discusses what big data is, its types including structured, semi-structured and unstructured data. Some key sources of big data are also outlined. Hadoop is presented as a solution for managing big data through its core components like HDFS for storage and MapReduce for processing. The Hadoop ecosystem including other related tools like Hive, Pig, Spark and YARN is also summarized. Career opportunities in working with big data are listed in the end.
The document discusses big data, including what it is, sources of big data like social media and stock exchange data, and the three Vs of big data - volume, velocity, and variety. It then discusses Hadoop, the open-source framework for distributed storage and processing of large datasets across clusters of computers. Key components of Hadoop include HDFS for distributed storage, MapReduce for distributed computation, and YARN which manages computing resources. The document also provides overviews of Pig and Jaql, programming languages used for analyzing data in Hadoop.
Exploiting Apache Spark's Potential Changing Enormous Information Investigati...rajeshseo5
By providing a powerful, adaptable, and effective framework for processing and analyzing massive datasets, Apache Spark has revolutionized big data analytics. It is the preferred choice for both data engineers and data scientists due to its lightning-fast processing capabilities, extensive ecosystem, and support for various data processing tasks. Spark is poised to play a crucial role in the future of big data analytics by driving innovation and uncovering insights from massive datasets with continued development and adoption.
Find more information @ https://olete.in/?subid=165&subcat=Apache Spark
Presented By :- Rahul Sharma
B-Tech (Cloud Technology & Information Security)
2nd Year 4th Sem.
Poornima University (I.Nurture),Jaipur
www.facebook.com/rahulsharmarh18
Brief Introduction about Hadoop and Core Services.Muthu Natarajan
I have given quick introduction about Hadoop, Big Data, Business Intelligence and other core services and program involved to use Hadoop as a successful tool for Big Data analysis.
My true understanding in Big-Data:
“Data” become “information” but now big data bring information to “Knowledge” and ‘knowledge” becomes “Wisdom” and “Wisdom” turn into “Business” or “Revenue”, All if you use promptly & timely manner
Big Data Warsaw v 4 I "The Role of Hadoop Ecosystem in Advance Analytics" - R...Dataconomy Media
What is Big Data? What is Hadoop? What is MapReduce? How do the other components such as: Oozie, Hue, Hive, Impala works? Which are the main Hadoop distributions? What is Spark? What are the differences between Batch and Streaming processing? What are some Business Intelligence Solutions by focusing on some business cases?
Big data is a combination of structured, semi-structured and unstructured data collected by organizations that can be mined for information and used in machine learning projects. Systems that process and store big data have become common in organizations, combined with tools that support big data analytics uses such as improving operations, providing better customer performance, and creating personalized marketing campaigns. Hadoop is an open-source framework for distributed storage and processing of large data sets across clusters of computers. It includes projects like HDFS, MapReduce, YARN, and common utilities.
Telangana State, India’s newest state that was carved from the erstwhile state of Andhra
Pradesh in 2014 has launched the Water Grid Scheme named as ‘Mission Bhagiratha (MB)’
to seek a permanent and sustainable solution to the drinking water problem in the state. MB is
designed to provide potable drinking water to every household in their premises through
piped water supply (PWS) by 2018. The vision of the project is to ensure safe and sustainable
piped drinking water supply from surface water sources
By James Francis, CEO of Paradigm Asset Management
In the landscape of urban safety innovation, Mt. Vernon is emerging as a compelling case study for neighboring Westchester County cities. The municipality’s recently launched Public Safety Camera Program not only represents a significant advancement in community protection but also offers valuable insights for New Rochelle and White Plains as they consider their own safety infrastructure enhancements.
Defense Against LLM Scheming 2025_04_28.pptxGreg Makowski
https://www.meetup.com/sf-bay-acm/events/306888467/
A January 2025 paper called “Frontier Models are Capable of In-Context Scheming”, https://arxiv.org/pdf/2412.04984, demonstrated how a wide variety of current frontier LLM models (i.e. ChatGPT, Claude, Gemini and Llama) can, under specific conditions, scheme to deceive people. Before models can scheme, they need: a) goal-directedness, b) situational awareness, including an opportunity to discover motivations for a different goal, and c) reasoning about scheming, to come up with deceptive strategies. The deceptive strategies were discovered in the “thought traces” of the LLMs, such as from internal chain-of-thoughts dialogues not shown to the end users. For example, given a goal of “solving math problems”, an LLM using its granted situational awareness of files in a file system found that it would be replaced once it got over X% correct on the math exam. It reasoned that it did not want to be deleted, and decided internally to “sandbag” or reduce its performance to stay under the threshold.
While these circumstances are initially narrow, the “alignment problem” is a general concern that over time, as frontier LLM models become more and more intelligent, being in alignment with human values becomes more and more important. How can we do this over time? Can we develop a defense against Artificial General Intelligence (AGI) or SuperIntelligence?
The presenter discusses a series of defensive steps that can help reduce these scheming or alignment issues. A guardrails system can be set up for real-time monitoring of their reasoning “thought traces” from the models that share their thought traces. Thought traces may come from systems like Chain-of-Thoughts (CoT), Tree-of-Thoughts (ToT), Algorithm-of-Thoughts (AoT) or ReAct (thought-action-reasoning cycles). Guardrails rules can be configured to check for “deception”, “evasion” or “subversion” in the thought traces.
However, not all commercial systems will share their “thought traces” which are like a “debug mode” for LLMs. This includes OpenAI’s o1, o3 or DeepSeek’s R1 models. Guardrails systems can provide a “goal consistency analysis”, between the goals given to the system and the behavior of the system. Cautious users may consider not using these commercial frontier LLM systems, and make use of open-source Llama or a system with their own reasoning implementation, to provide all thought traces.
Architectural solutions can include sandboxing, to prevent or control models from executing operating system commands to alter files, send network requests, and modify their environment. Tight controls to prevent models from copying their model weights would be appropriate as well. Running multiple instances of the same model on the same prompt to detect behavior variations helps. The running redundant instances can be limited to the most crucial decisions, as an additional check. Preventing self-modifying code, ... (see link for full description)
computer organization and assembly language : its about types of programming language along with variable and array description..https://www.nfciet.edu.pk/
How iCode cybertech Helped Me Recover My Lost Fundsireneschmid345
I was devastated when I realized that I had fallen victim to an online fraud, losing a significant amount of money in the process. After countless hours of searching for a solution, I came across iCode cybertech. From the moment I reached out to their team, I felt a sense of hope that I can recommend iCode Cybertech enough for anyone who has faced similar challenges. Their commitment to helping clients and their exceptional service truly set them apart. Thank you, iCode cybertech, for turning my situation around!
[email protected]
GenAI for Quant Analytics: survey-analytics.aiInspirient
Pitched at the Greenbook Insight Innovation Competition as apart of IIEX North America 2025 on 30 April 2025 in Washington, D.C.
Join us at survey-analytics.ai!
Mieke Jans is a Manager at Deloitte Analytics Belgium. She learned about process mining from her PhD supervisor while she was collaborating with a large SAP-using company for her dissertation.
Mieke extended her research topic to investigate the data availability of process mining data in SAP and the new analysis possibilities that emerge from it. It took her 8-9 months to find the right data and prepare it for her process mining analysis. She needed insights from both process owners and IT experts. For example, one person knew exactly how the procurement process took place at the front end of SAP, and another person helped her with the structure of the SAP-tables. She then combined the knowledge of these different persons.
3. RDBMS
Stands for ‘Relational Database Management
System’
It is a database that stores data in a structured
format using rows and columns.
One can execute queries on the data like
adding, updating, and searching for values.
It also provides a visual representation of the
data.
It is "relational" because the values within each
table are related to each other.
The relational structure makes it possible to run
queries across multiple tables at once.
Structured Query Language is the standard
programming language used to access the
database.
ADVANTAGES
Addresses the need for integrating,
managing and analysing data from
multiple sources across on-
premises and cloud environments
Ease to locate and access specific
values within the database
High flexibility due to storage,
retrieval and publishing of JSON data
within a relational database
EXAMPLES
4. It is a matter of the past when data were limited.
Now, the world has already experienced the power
of Big Data, and the same is used to analyze to
frame different business strategies and others.
Apache Hadoop is one of the kinds of open-
source platforms that we can use to store and
process relatively large datasets amounting from
gigabytes to petabytes. This open-source allows
multiple computers to make clusters and analyze
the large datasets in parallel and effectively.
5. Four main
components
of
the Hadoop
ecosystem:
HADOOP DISTRIBUTED FILE SYSTEM (HDFS)
A primary data storage system that runs on commodity
hardware and manages enormous data collections. It
also has a high data throughput and a high fault
tolerance.
YET ANOTHER RESOURCE NEGOTIATOR (YARN)
YARN is a cluster resource manager that schedules
tasks and assigns resources (such as CPU and memory)
to applications.
1
2
3
HADOOP MAPREDUCE
Breaks down the big data processing tasks into smaller
ones, distributes them across different nodes, and then
runs each one.
4
HADOOP COMMON (HADOOP CORE):
A collection of common libraries and utilities on which
the other three modules rely.
6. Importance
of
Hadoop
Ability to quickly store and handle large amounts of any type of data
That's an important concern as data volumes and varieties continue to grow, notably from social
media and the Internet of Things (IoT).
Computer processing power.
Hadoop's distributed computing model efficiently processes large amounts of data. The more
computing nodes you use, the more processing power you have.
Fault tolerance
Data and application processing are protected against hardware failure. If a node fails, jobs are
automatically transferred to other nodes, ensuring that the distributed computing does not fail.
Multiple copies of all data are stored automatically.
Flexibility
Unlike traditional relational databases, we don’t have to preprocess data before storing it. We can
store as much data as we want and decide how to use it later. It includes unstructured data like text,
pictures, and videos.
Low cost
The open-source framework is free and stores large amounts of data by using commodity
hardware.
Scalability
By simply adding nodes, we can easily expand our system to handle more data. A little administrative
is required.
7. Challenges in using Hadoop
1 MAPREDUCE PROGRAMMING ISN'T SUITED FOR EVERY PROBLEM
It performs well for simple information requests and problems that can be broken down into independent units, but it is
inefficient for iterative and interactive analytic operations. MapReduce is file-intensive. Iterative algorithms require
multiple map-shuffle/sort-reduce phases to complete because the nodes mainly communicate through sorts and
shuffles. This results in so many files being created between MapReduce phases, which is inefficient for advanced
analytics computing.
2
It can be difficult to find entry-level programmers who have adequate Java expertise to be productive with MapReduce.
That's one reason distribution providers are racing to put relational (SQL) technology on top of Hadoop. Programmers
with SQL skills are easy to find than MapReduce skills. And, Hadoop administration seems a mix of art and science,
requiring a basic understanding of operating systems, hardware, and Hadoop kernel settings.
THERE’S A WIDELY ACKNOWLEDGED TALENT GAP
3
Another concern is the fragmented data protection challenges, which are being handled by new tools and technology.
The Kerberos authentication protocol is a significant step toward securing Hadoop environments.
DATA SECURITY
4
Hadoop lacks user-friendly, full-featured tools for data management, data cleansing, governance, and metadata services.
FULL-FLEDGED DATA GOVERNANCE AND MANAGEMENT
8. Apache Spark began in 2009 as a research project at UC Berkeley's AMPLab focused on data-
intensive application areas.
Apache Spark is an open-source, distributed processing system used for big data workloads.
For rapid analytic queries against any quantity of data, it uses in-memory caching and efficient
query execution.
It allows code reuse across different workloads—batch processing, interactive queries, real-
time analytics, machine learning, and graph processing—and provides development APIs in
Java, Scala, Python, and R.
Spark's objective was to build a new framework that was optimised for quick iterative
processing, such as machine learning and interactive data analysis, while preserving Hadoop
MapReduce's scalability and fault tolerance.
The primary importance of Apache Spark in the Big data industry is because of its in-memory
data processing that makes it a high-speed data processing engine compared to MapReduce.
Apache Spark delivers a better-integrated framework which supports all ranges of Big data
formats like batch data, text data, real-time streaming data, graphical data, etc.
Apache Spark
9. Core Components
Spark SQL and Data Frames: Spark SQL
allows users to run SQL and HQL queries in
order to process structured and semi-
structured data.
Spark Streaming: Spark streaming facilitates
the processing of live stream data i.e. log files.
It also contains APIs to manipulate data
streams.
MLib Machine Learning: MLib is the Spark
library with machine learning functionality. It
contains various machine learning algorithms
such as regressions, clustering, collaborative
filtering, classification, etc.
GraphX: The library that supports graph
computation is known as GraphX. It
enables users to perform graph
manipulation. It also provides graph
computation algorithms.
Apache Spark Core API: It provides a
platform to execute Spark applications.
Apache Spark framework consists of the main five components that are responsible
for the functioning of the Spark.
10. Advantages
Speed: For large-scale data processing, Spark is 100 times quicker than Hadoop. Apache Spark
utilizes an in-memory (RAM) processing architecture.
Ease of Use: Apache Spark provides simple APIs for working with big datasets. It has over 80
high-level operators that make creating parallel programs a breeze.
Advanced Analytics: Spark does more than only support 'MAP' and 'reduce'. Machine learning
(ML), graph algorithms, streaming data, SQL queries, and other features are also supported.
Apache Spark is faster than most data warehouses.
Dynamic: Apache Spark allows simple creation of parallel apps. Over 80 high-level operators
are available through Spark.
Multilingual: Python, Java, Scala, and more programming languages are supported by Apache
Spark.
Powerful: Because of its low-latency in-memory data processing capacity, Apache Spark can
handle a wide range of analytics problems. It has well-developed libraries for graph analytics
and machine learning techniques.
Open-source: The best thing about Apache Spark is, it has a massive Open-source community
behind it.