SlideShare a Scribd company logo
REAL TIME BOM EXPLOSIONS
WITH APACHE SOLR AND SPARK
Andreas	Zitzelsberger
BILLS OF MATERIAL (BOMS) EXPLAINED
BOMS ARE NEEDED FOR…
Production	Planning Forecasting	Demand Scenario-Based	PlanningRunning	Simulations
Demand	Resolver
THE BIG PICTURE
Parts and 

abstract demands
Orders /
Independent
Demands
Production	
Planning
Analytics
BOMs /
Dependent
demands
ORDERS / INDEPENDENT DEMANDS
Order	Data Car	Configuration
Id,	Order	Time,	… TYPE VARIANT UPHOLSTERY PAINT OPTION_1,	OPTION_2,	…
… …
… …
Customer‘s	
orders
Predicted	
Orders
Stock	cars
Image:	Energy	Solutions	International	Inc
PARTS AND ABSTRACT DEMANDS
Id Description Attributes Terms
TR_1 Automatic	transmission,	supplier	A … TYPE_1	OR	
VAR_2	AND	NOT	OPT_2	
…
TR_2 Automatic	transmission,	supplier	B … TYPE_2	AND	VAR_1	OR	
OPT_5	OR	OPT_6
DT_1 150hp,	automatic	transmission	drive	train …
LI_1 Xenon	lights	 … OPT_3	OR	VAR_9	OR	…
BT_1 Small	Battery … 8	<=	OPT_3*200	+	VAR_9*5	+	
OPT_4*2	…	<=	12
The	constructive	approach	is	impossible	due	to	combinatory	explosion.	

The	rules	need	to	be	evaluated	during	demand	resolution.
Demand	Resolver
WE NEED TO OVERCOME THREE CORE PROBLEMS…
Parts and 

abstract demands
Orders /
Independent
Demands
Production	
Planning
Analytics
BOMs /
Dependent
demands
Demand	Resolver
1. HOW TO RESOLVE DEMANDS AS FAST AS POSSIBLE?
Parts and 

abstract demands
Orders /
Independent
Demands
BOMs /
Dependent
demands
2. HOW TO JOIN LARGE DATA SETS?
Parts and 

abstract demands
Analytics
BOMs /
Dependent
demands
Orders /
Independent
Demands
3. ANALYTICS ON LARGE DATA SETS?
Parts and 

abstract demands
Analytics
BOMs /
Dependent
demands
Orders /
Independent
Demands
Demand	Resolver
1. HOW TO RESOLVE DEMANDS AS FAST AS POSSIBLE?
Parts and 

abstract demands
Orders /
Independent
Demands
On	to	problem	#1…
BOMs /
Dependent
demands
THE SIMPLE SOLUTION…
A BETTER SOLUTION…
2	million	parts	
15	million	abstract	
demands
OR: ONLY CALCULATE WHAT IS STRICTLY NECESSARY
Step	2:	REFINE	
Refine	the	superset	by	
evaluating	the	usage	terms	in	
O(n).
Actual	demands
Post-
Filter
Pre-
Filter
Abstract	
Demands
Step	1:	FILTER		
Pre-filter	demands	with	a	fast	
index	in	O(log	n).	
Yields	a	superset	of	the	
required	parts.
~	6000	possible	
demands
~	3000	actual	demands
PRE-FILTER USING CANDIDATE AND A PROSCRIPTION SETS
■ Consider	((OPT_1)	OR	(OPT_2))	AND	NOT(OPT_3	OR	OPT_4)	
■ Candidate	set:		 C(t)	=	{OPT_1,	OPT_2}	
■ Proscription	set:	 P(t)	=	{OPT_3,	OPT_4}	
■ Preselect	by	the	criterium:	
■ At	least	one	condition	from	C(t)	is	satisfied	
■ None	of	the	conditions	from	P(t)	are	satisfied
EXAMPLE CANDIDATE AND PROSCRIPTION SETS
Candidate	set Proscription	set
A	part	can	only	be	used	together	with		
“white”	or	“blue”	paint.	
Entry:	PART_1,	C-PAINT:[white,	blue]	
Query:	C-PAINT=blue
A	part	cannot	be	used	with	“yellow”	
paint.					
Entry:	PART_2,	P-PAINT:[yellow]	
Query:	NOT	P-PAINT=yellow
Solr	Server
SOLR IMPLEMENTATION
PART_ID:	“…”	
//	Part	attributes	
//	….	
TERMS:	[…]	
TYPE_C:	[…]	
TYPE_P	:	[…]	
VARIANT_C	:	[…]	
VARIANT_P	:	[…]	
OPTIONS_C	:	[…]	
OPTIONS_P	:	[…]
Part
If	evaluate(TERMS)	
	 accept	
Else	
	 drop
Post	filter
Bulk	Solr	query	
for	N	orders
Bulk	export	of	
the	search	
results
Dependent	
Demands	
(Solr)
Demand	Resolver
WHY APACHE SOLR
■ Really	fast	
■ Powerful	faceting	
■ Solr	cloud	
■ Extensible	
■ Most	importantly,	it	just	works
BOMs /
Dependent
demands
Demand	Resolver
1. HOW TO RESOLVE DEMANDS AS FAST AS POSSIBLE?
Parts and 

abstract demands
Orders /
Independent
Demands
2. HOW TO JOIN TWO LARGE DATA SETS?
Parts and 

abstract demands
Analytics
BOMs /
Dependend
demands
Orders /
Independent
Demands
let‘s	continue	with	
problem	#2…
FORWARD AND BACKWARD JOINS ON PARTS
Orders	/		
Independent	Demands
Part	Usages	/

Dependend	Demands
Parts	/		
Abstract	Demands
Given:			 Order	criteria	(TYPE=	XY12)	

	 	 	 and	parts	criteria	(PART_ID	=	4711	OR	4712)	
Task:	 	 Find	all	orders	that	satisfy	the	order	criteria

	 	 	 AND	contain	at	least	one	part,	that	satisifies	the	part	criteria	
	 	 	 Return	all	orders	and	the	parts	for	each	order	that	satisfy	the	part	criteria.
Id … Id …Order	Id Part	Id
7.000.000
2.000.000
21.000.000.000
■ Nobody	wants	to	join	7	million	x	21	billion	x	2	million	records.
THIS IS ACTUALLY HARD
■ Nobody	wants	to	store	21	billion	records.
PARTIAL DENORMALIZATION TO THE RESCUE
Orders
<10	Mio.	records	instead	of	21	billion
Ids Attributes Part	Ids
1 … 1,	3,	786,…
2 … 2,	6,	786,…
3 .. 3,	75,	95,	..
Ids Attributes Order	Ids
1 … 54,	23321,	..
2 … 1,	4,	8652,	..
3 … 864,	23452,	…
Parts
SIMPLE, BUT NOT EASY: CUSTOM JOIN LOGIC IN SOLR
Step	1	
Pre-filter	the	parts	
using	an	index	search
Step	2	
Pre-filter	the	orders	
using	an	index	
search
Step	3	
Compute	the	
intersection	of	both	
supersets
All	parts
Searched	parts	with	
attribute	A=	XY
All	orders
Orders	to	be	built	in	Q4	with	
attribute	A
Intersect	records	
based	on	technical	idsOrders	to	be	built	in	
Q4
Final		
Result
• Custom	Search	Components	
• Solr	Search	Components
WE ONLY EXECUTE THE JOIN IF WE MUST
No	filter Filter	by	order	attributes Filter	by	part	attributes	 Filter	by	order	and	part	
attributes
Facets	on	parts Index JOIN Index JOIN
Facects	on	orders	 Index Index JOIN JOIN
List	parts JOIN JOIN JOIN JOIN
List	orders Index Index JOIN JOIN
Result	sets	may	be	unwieldingly	large.		
Early	termination	for	interactive	queries		
if	the	result	grows	too	large.
Orders /
Independent
Demands
BOMs /
Dependend
demands
2. HOW TO JOIN TWO LARGE DATA SETS?
Parts and 

abstract demands
Analytics
3. ANALYTICS ON VERY LARGE DATA SETS?
Parts and 

abstract demands
Analytics
BOMs /
Dependend
demands
Orders /
Independent
Demands
What	about	problem	
#3?
Real Time BOM Explosions with Apache Solr and Spark
WHY APACHE SPARK
■ Fast	
■ High-Level	functional	API	
■ Well	integrated	
■ Batch	semantics	
■ Works	well	with	Solr	(If	you	use	
your	own	connector…)
TECHNICAL ARCHITECTURE
Apache	Solr
Apache	Spark
Demand	Resolver
API	Facade
Loader
Source	Systems
Hardware	Node	1
Solr	Instance
Shard	20
Hardware	Node	2
Solr	Instance
Shard	30
Spark	Worker Spark	Worker
Shard	21Shard	11
Spark	Master
ZooKeeper
.	.	. .	.	.
Spark	Master
ZooKeeper	(Leader)
API	FacadeAPI	Facade
Load-Balancer
Jenkins	+	Loader	(Leader)Jenkins	+	Loader	(Backup)
Hardware	Node	n
Solr	Instance	
Shard	n
Shard	n
.	.	.
Spark	Worker
Add	nodes	as	required
OPERATIONS ARCHITECTURE
API	Facade
BULK EXPORT WITH A SHARED OFF-HEAP CACHE
Lucene	Segment
Lucene	Segment
Lucene	Segment
Shared Off-Heap
Cache
1
DocId	Order	
DocId	Part
Web
interface
2
3
Business	Facade	Object
data
4
http://chronicle.software/products/chronicle-map/
Orders /
Independent
Demands
BOMs /
Dependend
demands
3. ANALYTICS ON VERY LARGE DATA SETS?
Parts and 

abstract demands
Analytics
LESSONS LEARNED
https://en.wikipedia.org/wiki/Melk_Abbey
OPTIMIZE LATE, BUT DO OPTIMIZE
©	2015	Max	Siedentopf
SOME OF OUR OPTIMIZATIONS
Bulk RequestHandler
Binary DocValue support
Boolean interpreter as postfilter
Mass data binary response format
Search components with 

custom JOIN algorithm
Solving thousands of
orders with one request
Be able to store data
effective using our own
JOIN implementation.
Speed up the access to
persisted data dramatically
using binary doc values.
0111 0111
Use the standard Solr cinary
codec with an optimized data-
model that reduce the amount 

of data by a factor of 8.
Computing
BOM
explosions
Enable Solr with custom post filters
to filter documents using stored bool
expessions .
LOW LEVEL OPTIMIZATIONS CAN YIELD GREAT RETURNS
October 14 January 15 May 15 October 15
4,9 ms
0,28 ms
24 ms
TimetocalculatetheBoMforoneorder
0,08 ms
Scoring (-8%)
Solr–Query Parser (-25%)
Stat-Cache (-8%)
Using String DocValues (-28%)
Development of the processing time Demand Calulation Service PoC Profiling result and the some improvements to reduce the query time.
DON’T TRUST PAPER, DO POCS
IN CONCLUSION
THANK YOU
@andreasz82
andreas.zitzelsberger@qaware.de
Ad

More Related Content

Viewers also liked (17)

Manufacturing and materials management
Manufacturing and materials managementManufacturing and materials management
Manufacturing and materials management
Akbar Setiadi
 
Hands-on K8s: Deployments, Pods and Fun
Hands-on K8s: Deployments, Pods and FunHands-on K8s: Deployments, Pods and Fun
Hands-on K8s: Deployments, Pods and Fun
QAware GmbH
 
Kubernetes 101 and Fun
Kubernetes 101 and FunKubernetes 101 and Fun
Kubernetes 101 and Fun
QAware GmbH
 
Microservices @ Work - A Practice Report of Developing Microservices
Microservices @ Work - A Practice Report of Developing MicroservicesMicroservices @ Work - A Practice Report of Developing Microservices
Microservices @ Work - A Practice Report of Developing Microservices
QAware GmbH
 
Lightweight developer provisioning with gradle and seu as-code
Lightweight developer provisioning with gradle and seu as-codeLightweight developer provisioning with gradle and seu as-code
Lightweight developer provisioning with gradle and seu as-code
QAware GmbH
 
JEE on DC/OS - MesosCon Europe
JEE on DC/OS - MesosCon EuropeJEE on DC/OS - MesosCon Europe
JEE on DC/OS - MesosCon Europe
QAware GmbH
 
Cloud Native Unleashed
Cloud Native UnleashedCloud Native Unleashed
Cloud Native Unleashed
QAware GmbH
 
Everything as-code. Polyglotte Entwicklung in der Praxis. #oop2017
Everything as-code. Polyglotte Entwicklung in der Praxis. #oop2017Everything as-code. Polyglotte Entwicklung in der Praxis. #oop2017
Everything as-code. Polyglotte Entwicklung in der Praxis. #oop2017
Mario-Leander Reimer
 
Automotive Information Research driven by Apache Solr
Automotive Information Research driven by Apache SolrAutomotive Information Research driven by Apache Solr
Automotive Information Research driven by Apache Solr
QAware GmbH
 
Leveraging the Power of Solr with Spark
Leveraging the Power of Solr with SparkLeveraging the Power of Solr with Spark
Leveraging the Power of Solr with Spark
QAware GmbH
 
Die Leichtigkeit des Seins: Bindings für Eclipse SmartHome entwickeln
Die Leichtigkeit des Seins: Bindings für Eclipse SmartHome entwickelnDie Leichtigkeit des Seins: Bindings für Eclipse SmartHome entwickeln
Die Leichtigkeit des Seins: Bindings für Eclipse SmartHome entwickeln
QAware GmbH
 
Secure Architecture and Programming 101
Secure Architecture and Programming 101Secure Architecture and Programming 101
Secure Architecture and Programming 101
QAware GmbH
 
Der Cloud Native Stack in a Nutshell
Der Cloud Native Stack in a NutshellDer Cloud Native Stack in a Nutshell
Der Cloud Native Stack in a Nutshell
QAware GmbH
 
Enterprise Search Using Apache Solr
Enterprise Search Using Apache SolrEnterprise Search Using Apache Solr
Enterprise Search Using Apache Solr
sagar chaturvedi
 
Apache solr소개 20120629
Apache solr소개 20120629Apache solr소개 20120629
Apache solr소개 20120629
Dosang Yoon
 
Clickstream Analysis with Spark - Understanding Visitors in Real Time
Clickstream Analysis with Spark - Understanding Visitors in Real TimeClickstream Analysis with Spark - Understanding Visitors in Real Time
Clickstream Analysis with Spark - Understanding Visitors in Real Time
QAware GmbH
 
Apache Spark Use case for Education Industry
Apache Spark Use case for Education IndustryApache Spark Use case for Education Industry
Apache Spark Use case for Education Industry
Vinayak Agrawal
 
Manufacturing and materials management
Manufacturing and materials managementManufacturing and materials management
Manufacturing and materials management
Akbar Setiadi
 
Hands-on K8s: Deployments, Pods and Fun
Hands-on K8s: Deployments, Pods and FunHands-on K8s: Deployments, Pods and Fun
Hands-on K8s: Deployments, Pods and Fun
QAware GmbH
 
Kubernetes 101 and Fun
Kubernetes 101 and FunKubernetes 101 and Fun
Kubernetes 101 and Fun
QAware GmbH
 
Microservices @ Work - A Practice Report of Developing Microservices
Microservices @ Work - A Practice Report of Developing MicroservicesMicroservices @ Work - A Practice Report of Developing Microservices
Microservices @ Work - A Practice Report of Developing Microservices
QAware GmbH
 
Lightweight developer provisioning with gradle and seu as-code
Lightweight developer provisioning with gradle and seu as-codeLightweight developer provisioning with gradle and seu as-code
Lightweight developer provisioning with gradle and seu as-code
QAware GmbH
 
JEE on DC/OS - MesosCon Europe
JEE on DC/OS - MesosCon EuropeJEE on DC/OS - MesosCon Europe
JEE on DC/OS - MesosCon Europe
QAware GmbH
 
Cloud Native Unleashed
Cloud Native UnleashedCloud Native Unleashed
Cloud Native Unleashed
QAware GmbH
 
Everything as-code. Polyglotte Entwicklung in der Praxis. #oop2017
Everything as-code. Polyglotte Entwicklung in der Praxis. #oop2017Everything as-code. Polyglotte Entwicklung in der Praxis. #oop2017
Everything as-code. Polyglotte Entwicklung in der Praxis. #oop2017
Mario-Leander Reimer
 
Automotive Information Research driven by Apache Solr
Automotive Information Research driven by Apache SolrAutomotive Information Research driven by Apache Solr
Automotive Information Research driven by Apache Solr
QAware GmbH
 
Leveraging the Power of Solr with Spark
Leveraging the Power of Solr with SparkLeveraging the Power of Solr with Spark
Leveraging the Power of Solr with Spark
QAware GmbH
 
Die Leichtigkeit des Seins: Bindings für Eclipse SmartHome entwickeln
Die Leichtigkeit des Seins: Bindings für Eclipse SmartHome entwickelnDie Leichtigkeit des Seins: Bindings für Eclipse SmartHome entwickeln
Die Leichtigkeit des Seins: Bindings für Eclipse SmartHome entwickeln
QAware GmbH
 
Secure Architecture and Programming 101
Secure Architecture and Programming 101Secure Architecture and Programming 101
Secure Architecture and Programming 101
QAware GmbH
 
Der Cloud Native Stack in a Nutshell
Der Cloud Native Stack in a NutshellDer Cloud Native Stack in a Nutshell
Der Cloud Native Stack in a Nutshell
QAware GmbH
 
Enterprise Search Using Apache Solr
Enterprise Search Using Apache SolrEnterprise Search Using Apache Solr
Enterprise Search Using Apache Solr
sagar chaturvedi
 
Apache solr소개 20120629
Apache solr소개 20120629Apache solr소개 20120629
Apache solr소개 20120629
Dosang Yoon
 
Clickstream Analysis with Spark - Understanding Visitors in Real Time
Clickstream Analysis with Spark - Understanding Visitors in Real TimeClickstream Analysis with Spark - Understanding Visitors in Real Time
Clickstream Analysis with Spark - Understanding Visitors in Real Time
QAware GmbH
 
Apache Spark Use case for Education Industry
Apache Spark Use case for Education IndustryApache Spark Use case for Education Industry
Apache Spark Use case for Education Industry
Vinayak Agrawal
 

Similar to Real Time BOM Explosions with Apache Solr and Spark (20)

II-PIC 2017: Case of Classification Codes
II-PIC 2017: Case of Classification CodesII-PIC 2017: Case of Classification Codes
II-PIC 2017: Case of Classification Codes
Dr. Haxel Consult
 
Understanding the architecture of MariaDB ColumnStore
Understanding the architecture of MariaDB ColumnStoreUnderstanding the architecture of MariaDB ColumnStore
Understanding the architecture of MariaDB ColumnStore
MariaDB plc
 
MDRM(Master Data Record Manager)
MDRM(Master Data Record Manager)MDRM(Master Data Record Manager)
MDRM(Master Data Record Manager)
Shadab akram Khan
 
What’s New in Imply 3.3 & Apache Druid 0.18
What’s New in Imply 3.3 & Apache Druid 0.18What’s New in Imply 3.3 & Apache Druid 0.18
What’s New in Imply 3.3 & Apache Druid 0.18
Imply
 
Database Design and Development 2022 00185501.docx
Database Design and Development 2022 00185501.docxDatabase Design and Development 2022 00185501.docx
Database Design and Development 2022 00185501.docx
kiokosoft
 
Case ih lb434 xl square baler service repair manual
Case ih lb434 xl square baler service repair manualCase ih lb434 xl square baler service repair manual
Case ih lb434 xl square baler service repair manual
fjsekkdkmem
 
Case ih lb424 xl square baler service repair manual
Case ih lb424 xl square baler service repair manualCase ih lb424 xl square baler service repair manual
Case ih lb424 xl square baler service repair manual
ufjsjekjkeme
 
Case ih lb424 xl square baler service repair manual
Case ih lb424 xl square baler service repair manualCase ih lb424 xl square baler service repair manual
Case ih lb424 xl square baler service repair manual
fjsekkdkmem
 
Case ih lb434 xl square baler service repair manual
Case ih lb434 xl square baler service repair manualCase ih lb434 xl square baler service repair manual
Case ih lb434 xl square baler service repair manual
ufjsjekjkeme
 
Portfolio
PortfolioPortfolio
Portfolio
Kedarsr
 
Cortana Analytics Workshop: Predictive Maintenance in the IoT Era
Cortana Analytics Workshop: Predictive Maintenance in the IoT EraCortana Analytics Workshop: Predictive Maintenance in the IoT Era
Cortana Analytics Workshop: Predictive Maintenance in the IoT Era
MSAdvAnalytics
 
Vendor Selection for Manufacturing Companies
Vendor Selection for Manufacturing Companies Vendor Selection for Manufacturing Companies
Vendor Selection for Manufacturing Companies
Melody Ucros
 
Vlfm2014 cims-4 group technology
Vlfm2014 cims-4 group technologyVlfm2014 cims-4 group technology
Vlfm2014 cims-4 group technology
shivaniradhu
 
ALCS_AID v4.0, 2016-03-18
ALCS_AID v4.0, 2016-03-18ALCS_AID v4.0, 2016-03-18
ALCS_AID v4.0, 2016-03-18
lakshmanan m
 
RESUME_Dech L(03-Feb-2015)
RESUME_Dech L(03-Feb-2015)RESUME_Dech L(03-Feb-2015)
RESUME_Dech L(03-Feb-2015)
Dech Leanglum
 
Unit IV Learning Material.pdf GROUP TECHNOLOGY
Unit IV Learning Material.pdf GROUP TECHNOLOGYUnit IV Learning Material.pdf GROUP TECHNOLOGY
Unit IV Learning Material.pdf GROUP TECHNOLOGY
Kakarla Krishna Kishore
 
SAP PM Plant Maintenance Training
SAP PM Plant Maintenance Training SAP PM Plant Maintenance Training
SAP PM Plant Maintenance Training
Senthil kumar
 
M|18 Understanding the Architecture of MariaDB ColumnStore
M|18 Understanding the Architecture of MariaDB ColumnStoreM|18 Understanding the Architecture of MariaDB ColumnStore
M|18 Understanding the Architecture of MariaDB ColumnStore
MariaDB plc
 
It only took 15 years 9 months and 26 day summary version05
It only took 15 years 9 months and 26 day summary version05It only took 15 years 9 months and 26 day summary version05
It only took 15 years 9 months and 26 day summary version05
Hiroshi Okada
 
IRJET - Methodology for Analysis of Induction Motor’s Design Parameters using...
IRJET - Methodology for Analysis of Induction Motor’s Design Parameters using...IRJET - Methodology for Analysis of Induction Motor’s Design Parameters using...
IRJET - Methodology for Analysis of Induction Motor’s Design Parameters using...
IRJET Journal
 
II-PIC 2017: Case of Classification Codes
II-PIC 2017: Case of Classification CodesII-PIC 2017: Case of Classification Codes
II-PIC 2017: Case of Classification Codes
Dr. Haxel Consult
 
Understanding the architecture of MariaDB ColumnStore
Understanding the architecture of MariaDB ColumnStoreUnderstanding the architecture of MariaDB ColumnStore
Understanding the architecture of MariaDB ColumnStore
MariaDB plc
 
MDRM(Master Data Record Manager)
MDRM(Master Data Record Manager)MDRM(Master Data Record Manager)
MDRM(Master Data Record Manager)
Shadab akram Khan
 
What’s New in Imply 3.3 & Apache Druid 0.18
What’s New in Imply 3.3 & Apache Druid 0.18What’s New in Imply 3.3 & Apache Druid 0.18
What’s New in Imply 3.3 & Apache Druid 0.18
Imply
 
Database Design and Development 2022 00185501.docx
Database Design and Development 2022 00185501.docxDatabase Design and Development 2022 00185501.docx
Database Design and Development 2022 00185501.docx
kiokosoft
 
Case ih lb434 xl square baler service repair manual
Case ih lb434 xl square baler service repair manualCase ih lb434 xl square baler service repair manual
Case ih lb434 xl square baler service repair manual
fjsekkdkmem
 
Case ih lb424 xl square baler service repair manual
Case ih lb424 xl square baler service repair manualCase ih lb424 xl square baler service repair manual
Case ih lb424 xl square baler service repair manual
ufjsjekjkeme
 
Case ih lb424 xl square baler service repair manual
Case ih lb424 xl square baler service repair manualCase ih lb424 xl square baler service repair manual
Case ih lb424 xl square baler service repair manual
fjsekkdkmem
 
Case ih lb434 xl square baler service repair manual
Case ih lb434 xl square baler service repair manualCase ih lb434 xl square baler service repair manual
Case ih lb434 xl square baler service repair manual
ufjsjekjkeme
 
Portfolio
PortfolioPortfolio
Portfolio
Kedarsr
 
Cortana Analytics Workshop: Predictive Maintenance in the IoT Era
Cortana Analytics Workshop: Predictive Maintenance in the IoT EraCortana Analytics Workshop: Predictive Maintenance in the IoT Era
Cortana Analytics Workshop: Predictive Maintenance in the IoT Era
MSAdvAnalytics
 
Vendor Selection for Manufacturing Companies
Vendor Selection for Manufacturing Companies Vendor Selection for Manufacturing Companies
Vendor Selection for Manufacturing Companies
Melody Ucros
 
Vlfm2014 cims-4 group technology
Vlfm2014 cims-4 group technologyVlfm2014 cims-4 group technology
Vlfm2014 cims-4 group technology
shivaniradhu
 
ALCS_AID v4.0, 2016-03-18
ALCS_AID v4.0, 2016-03-18ALCS_AID v4.0, 2016-03-18
ALCS_AID v4.0, 2016-03-18
lakshmanan m
 
RESUME_Dech L(03-Feb-2015)
RESUME_Dech L(03-Feb-2015)RESUME_Dech L(03-Feb-2015)
RESUME_Dech L(03-Feb-2015)
Dech Leanglum
 
Unit IV Learning Material.pdf GROUP TECHNOLOGY
Unit IV Learning Material.pdf GROUP TECHNOLOGYUnit IV Learning Material.pdf GROUP TECHNOLOGY
Unit IV Learning Material.pdf GROUP TECHNOLOGY
Kakarla Krishna Kishore
 
SAP PM Plant Maintenance Training
SAP PM Plant Maintenance Training SAP PM Plant Maintenance Training
SAP PM Plant Maintenance Training
Senthil kumar
 
M|18 Understanding the Architecture of MariaDB ColumnStore
M|18 Understanding the Architecture of MariaDB ColumnStoreM|18 Understanding the Architecture of MariaDB ColumnStore
M|18 Understanding the Architecture of MariaDB ColumnStore
MariaDB plc
 
It only took 15 years 9 months and 26 day summary version05
It only took 15 years 9 months and 26 day summary version05It only took 15 years 9 months and 26 day summary version05
It only took 15 years 9 months and 26 day summary version05
Hiroshi Okada
 
IRJET - Methodology for Analysis of Induction Motor’s Design Parameters using...
IRJET - Methodology for Analysis of Induction Motor’s Design Parameters using...IRJET - Methodology for Analysis of Induction Motor’s Design Parameters using...
IRJET - Methodology for Analysis of Induction Motor’s Design Parameters using...
IRJET Journal
 
Ad

More from QAware GmbH (20)

Frontends mit Hilfe von KI entwickeln.pdf
Frontends mit Hilfe von KI entwickeln.pdfFrontends mit Hilfe von KI entwickeln.pdf
Frontends mit Hilfe von KI entwickeln.pdf
QAware GmbH
 
Mit ChatGPT Dinosaurier besiegen - Möglichkeiten und Grenzen von LLM für die ...
Mit ChatGPT Dinosaurier besiegen - Möglichkeiten und Grenzen von LLM für die ...Mit ChatGPT Dinosaurier besiegen - Möglichkeiten und Grenzen von LLM für die ...
Mit ChatGPT Dinosaurier besiegen - Möglichkeiten und Grenzen von LLM für die ...
QAware GmbH
 
50 Shades of K8s Autoscaling #JavaLand24.pdf
50 Shades of K8s Autoscaling #JavaLand24.pdf50 Shades of K8s Autoscaling #JavaLand24.pdf
50 Shades of K8s Autoscaling #JavaLand24.pdf
QAware GmbH
 
Make Agile Great - PM-Erfahrungen aus zwei virtuellen internationalen SAFe-Pr...
Make Agile Great - PM-Erfahrungen aus zwei virtuellen internationalen SAFe-Pr...Make Agile Great - PM-Erfahrungen aus zwei virtuellen internationalen SAFe-Pr...
Make Agile Great - PM-Erfahrungen aus zwei virtuellen internationalen SAFe-Pr...
QAware GmbH
 
Fully-managed Cloud-native Databases: The path to indefinite scale @ CNN Mainz
Fully-managed Cloud-native Databases: The path to indefinite scale @ CNN MainzFully-managed Cloud-native Databases: The path to indefinite scale @ CNN Mainz
Fully-managed Cloud-native Databases: The path to indefinite scale @ CNN Mainz
QAware GmbH
 
Down the Ivory Tower towards Agile Architecture
Down the Ivory Tower towards Agile ArchitectureDown the Ivory Tower towards Agile Architecture
Down the Ivory Tower towards Agile Architecture
QAware GmbH
 
"Mixed" Scrum-Teams – Die richtige Mischung macht's!
"Mixed" Scrum-Teams – Die richtige Mischung macht's!"Mixed" Scrum-Teams – Die richtige Mischung macht's!
"Mixed" Scrum-Teams – Die richtige Mischung macht's!
QAware GmbH
 
Make Developers Fly: Principles for Platform Engineering
Make Developers Fly: Principles for Platform EngineeringMake Developers Fly: Principles for Platform Engineering
Make Developers Fly: Principles for Platform Engineering
QAware GmbH
 
Der Tod der Testpyramide? – Frontend-Testing mit Playwright
Der Tod der Testpyramide? – Frontend-Testing mit PlaywrightDer Tod der Testpyramide? – Frontend-Testing mit Playwright
Der Tod der Testpyramide? – Frontend-Testing mit Playwright
QAware GmbH
 
Was kommt nach den SPAs
Was kommt nach den SPAsWas kommt nach den SPAs
Was kommt nach den SPAs
QAware GmbH
 
Cloud Migration mit KI: der Turbo
Cloud Migration mit KI: der Turbo Cloud Migration mit KI: der Turbo
Cloud Migration mit KI: der Turbo
QAware GmbH
 
Migration von stark regulierten Anwendungen in die Cloud: Dem Teufel die See...
 Migration von stark regulierten Anwendungen in die Cloud: Dem Teufel die See... Migration von stark regulierten Anwendungen in die Cloud: Dem Teufel die See...
Migration von stark regulierten Anwendungen in die Cloud: Dem Teufel die See...
QAware GmbH
 
Aus blau wird grün! Ansätze und Technologien für nachhaltige Kubernetes-Cluster
Aus blau wird grün! Ansätze und Technologien für nachhaltige Kubernetes-Cluster Aus blau wird grün! Ansätze und Technologien für nachhaltige Kubernetes-Cluster
Aus blau wird grün! Ansätze und Technologien für nachhaltige Kubernetes-Cluster
QAware GmbH
 
Endlich gute API Tests. Boldly Testing APIs Where No One Has Tested Before.
Endlich gute API Tests. Boldly Testing APIs Where No One Has Tested Before.Endlich gute API Tests. Boldly Testing APIs Where No One Has Tested Before.
Endlich gute API Tests. Boldly Testing APIs Where No One Has Tested Before.
QAware GmbH
 
Kubernetes with Cilium in AWS - Experience Report!
Kubernetes with Cilium in AWS - Experience Report!Kubernetes with Cilium in AWS - Experience Report!
Kubernetes with Cilium in AWS - Experience Report!
QAware GmbH
 
50 Shades of K8s Autoscaling
50 Shades of K8s Autoscaling50 Shades of K8s Autoscaling
50 Shades of K8s Autoscaling
QAware GmbH
 
Kontinuierliche Sicherheitstests für APIs mit Testkube und OWASP ZAP
Kontinuierliche Sicherheitstests für APIs mit Testkube und OWASP ZAPKontinuierliche Sicherheitstests für APIs mit Testkube und OWASP ZAP
Kontinuierliche Sicherheitstests für APIs mit Testkube und OWASP ZAP
QAware GmbH
 
Service Mesh Pain & Gain. Experiences from a client project.
Service Mesh Pain & Gain. Experiences from a client project.Service Mesh Pain & Gain. Experiences from a client project.
Service Mesh Pain & Gain. Experiences from a client project.
QAware GmbH
 
50 Shades of K8s Autoscaling
50 Shades of K8s Autoscaling50 Shades of K8s Autoscaling
50 Shades of K8s Autoscaling
QAware GmbH
 
Blue turns green! Approaches and technologies for sustainable K8s clusters.
Blue turns green! Approaches and technologies for sustainable K8s clusters.Blue turns green! Approaches and technologies for sustainable K8s clusters.
Blue turns green! Approaches and technologies for sustainable K8s clusters.
QAware GmbH
 
Frontends mit Hilfe von KI entwickeln.pdf
Frontends mit Hilfe von KI entwickeln.pdfFrontends mit Hilfe von KI entwickeln.pdf
Frontends mit Hilfe von KI entwickeln.pdf
QAware GmbH
 
Mit ChatGPT Dinosaurier besiegen - Möglichkeiten und Grenzen von LLM für die ...
Mit ChatGPT Dinosaurier besiegen - Möglichkeiten und Grenzen von LLM für die ...Mit ChatGPT Dinosaurier besiegen - Möglichkeiten und Grenzen von LLM für die ...
Mit ChatGPT Dinosaurier besiegen - Möglichkeiten und Grenzen von LLM für die ...
QAware GmbH
 
50 Shades of K8s Autoscaling #JavaLand24.pdf
50 Shades of K8s Autoscaling #JavaLand24.pdf50 Shades of K8s Autoscaling #JavaLand24.pdf
50 Shades of K8s Autoscaling #JavaLand24.pdf
QAware GmbH
 
Make Agile Great - PM-Erfahrungen aus zwei virtuellen internationalen SAFe-Pr...
Make Agile Great - PM-Erfahrungen aus zwei virtuellen internationalen SAFe-Pr...Make Agile Great - PM-Erfahrungen aus zwei virtuellen internationalen SAFe-Pr...
Make Agile Great - PM-Erfahrungen aus zwei virtuellen internationalen SAFe-Pr...
QAware GmbH
 
Fully-managed Cloud-native Databases: The path to indefinite scale @ CNN Mainz
Fully-managed Cloud-native Databases: The path to indefinite scale @ CNN MainzFully-managed Cloud-native Databases: The path to indefinite scale @ CNN Mainz
Fully-managed Cloud-native Databases: The path to indefinite scale @ CNN Mainz
QAware GmbH
 
Down the Ivory Tower towards Agile Architecture
Down the Ivory Tower towards Agile ArchitectureDown the Ivory Tower towards Agile Architecture
Down the Ivory Tower towards Agile Architecture
QAware GmbH
 
"Mixed" Scrum-Teams – Die richtige Mischung macht's!
"Mixed" Scrum-Teams – Die richtige Mischung macht's!"Mixed" Scrum-Teams – Die richtige Mischung macht's!
"Mixed" Scrum-Teams – Die richtige Mischung macht's!
QAware GmbH
 
Make Developers Fly: Principles for Platform Engineering
Make Developers Fly: Principles for Platform EngineeringMake Developers Fly: Principles for Platform Engineering
Make Developers Fly: Principles for Platform Engineering
QAware GmbH
 
Der Tod der Testpyramide? – Frontend-Testing mit Playwright
Der Tod der Testpyramide? – Frontend-Testing mit PlaywrightDer Tod der Testpyramide? – Frontend-Testing mit Playwright
Der Tod der Testpyramide? – Frontend-Testing mit Playwright
QAware GmbH
 
Was kommt nach den SPAs
Was kommt nach den SPAsWas kommt nach den SPAs
Was kommt nach den SPAs
QAware GmbH
 
Cloud Migration mit KI: der Turbo
Cloud Migration mit KI: der Turbo Cloud Migration mit KI: der Turbo
Cloud Migration mit KI: der Turbo
QAware GmbH
 
Migration von stark regulierten Anwendungen in die Cloud: Dem Teufel die See...
 Migration von stark regulierten Anwendungen in die Cloud: Dem Teufel die See... Migration von stark regulierten Anwendungen in die Cloud: Dem Teufel die See...
Migration von stark regulierten Anwendungen in die Cloud: Dem Teufel die See...
QAware GmbH
 
Aus blau wird grün! Ansätze und Technologien für nachhaltige Kubernetes-Cluster
Aus blau wird grün! Ansätze und Technologien für nachhaltige Kubernetes-Cluster Aus blau wird grün! Ansätze und Technologien für nachhaltige Kubernetes-Cluster
Aus blau wird grün! Ansätze und Technologien für nachhaltige Kubernetes-Cluster
QAware GmbH
 
Endlich gute API Tests. Boldly Testing APIs Where No One Has Tested Before.
Endlich gute API Tests. Boldly Testing APIs Where No One Has Tested Before.Endlich gute API Tests. Boldly Testing APIs Where No One Has Tested Before.
Endlich gute API Tests. Boldly Testing APIs Where No One Has Tested Before.
QAware GmbH
 
Kubernetes with Cilium in AWS - Experience Report!
Kubernetes with Cilium in AWS - Experience Report!Kubernetes with Cilium in AWS - Experience Report!
Kubernetes with Cilium in AWS - Experience Report!
QAware GmbH
 
50 Shades of K8s Autoscaling
50 Shades of K8s Autoscaling50 Shades of K8s Autoscaling
50 Shades of K8s Autoscaling
QAware GmbH
 
Kontinuierliche Sicherheitstests für APIs mit Testkube und OWASP ZAP
Kontinuierliche Sicherheitstests für APIs mit Testkube und OWASP ZAPKontinuierliche Sicherheitstests für APIs mit Testkube und OWASP ZAP
Kontinuierliche Sicherheitstests für APIs mit Testkube und OWASP ZAP
QAware GmbH
 
Service Mesh Pain & Gain. Experiences from a client project.
Service Mesh Pain & Gain. Experiences from a client project.Service Mesh Pain & Gain. Experiences from a client project.
Service Mesh Pain & Gain. Experiences from a client project.
QAware GmbH
 
50 Shades of K8s Autoscaling
50 Shades of K8s Autoscaling50 Shades of K8s Autoscaling
50 Shades of K8s Autoscaling
QAware GmbH
 
Blue turns green! Approaches and technologies for sustainable K8s clusters.
Blue turns green! Approaches and technologies for sustainable K8s clusters.Blue turns green! Approaches and technologies for sustainable K8s clusters.
Blue turns green! Approaches and technologies for sustainable K8s clusters.
QAware GmbH
 
Ad

Recently uploaded (20)

Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-UmgebungenHCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
HCL Nomad Web – Best Practices und Verwaltung von Multiuser-Umgebungen
panagenda
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 

Real Time BOM Explosions with Apache Solr and Spark