Cloud computing becomes an ideal computing paradigm for scientific and commercial applications. The
increased availability of the cloud models and allied developing models creates easier computing cloud
environment. Energy consumption and effective energy management are the two important challenges in
virtualized computing platforms. Energy consumption can be minimized by allocating computationally
intensive tasks to a resource at a suitable frequency. An optimal Dynamic Voltage and Frequency Scaling
(DVFS) based strategy of task allocation can minimize the overall consumption of energy and meet the
required QoS. However, they do not control the internal and external switching to server frequencies,
which causes the degradation of performance. In this paper, we propose the Real Time Adaptive EnergyScheduling (RTAES) algorithm by manipulating the reconfiguring proficiency of Cloud ComputingVirtualized Data Centers (CCVDCs) for computationally intensive applications. The RTAES algorithm
minimizes consumption of energy and time during computation, reconfiguration and communication. Our
proposed model confirms the effectiveness of its implementation, scalability, power consumption and
execution time with respect to other existing approaches.