SlideShare a Scribd company logo
分散表現を用いた
商品レコメンダーシステムの構築と評価
Recommender System with Distributed Representation
Thuy PhiVan1,2, Chen Liu 2 and Yu Hirate2
1. Computational Linguistics Laboratory, NAIST
2.Rakuten Institute of Technology, Rakuten, Inc.
{ar-thuy.phivan, chen.liu, yu.hirate}@rakuten.com
2
1. Distributed Representation
for words, docs and categories
3
Distributed Representations for Words
• Distributed representations for words
• Similar words are projected into similar vectors.
• Relationship between words can be expressed
as a simple vector calculation.
[T.Mikolov et al. NIPS 2013]
• Analogy
• v(“woman”) – v(”man”) + v(”king”) = v(“queen”)
4
2 models in word2vec
input projection output input projection output
v(t-2)
v(t-1)
v(t+1)
v(t+2)
v(t)
v(t-2)
v(t-1)
v(t+1)
v(t+2)
v(t)
CBoW Skip-gram
• given context words
• predict a probability of
a target word
• given a target word
• predict a probability of
context words
5
Sample results of word2vec
trained by Wikipedia data
query: nagoya
• osaka 0.799002
• chiba 0.762829
• fukuoka 0.755166
• sendai 0.731760
• yokohama 0.729205
• kobe 0.726732
• shiga 0.705707
• niigata 0.699777
• aichi 0.692371
• hyogo 0.687128
• saitama 0.685672
• tokyo 0.671428
• sapporo 0.670466
• kumamoto 0.660786
• japan 0.658769
• kitakyushu 0.654265
• wakayama 0.652783
• shizuoka 0.624380
query: coffee
• cocoa 0.603515
• robusta 0.565269
• beans 0.565232
• bananas 0.565207
• cinnamon 0.556771
• citrus 0.547495
• espresso 0.542120
• caff 0.542082
• infusions 0.538069
• tea 0.532565
• cassava 0.524657
• pineapples 0.523557
• coffea 0.512420
• tapioca 0.510727
• sugarcane 0.508203
• yams 0.507347
• avocados 0.507072
• arabica 0.506231
6
Doc2Vec(Paragraph2Vec) [Q.Le et al. ICML2014]
input projection output input projection output
v(doc)
v(t-1)
v(t+1)
v(t)
v(t-2)
v(t-1)
v(t)
v(t+1)
v(doc)
PV-DM PV-DBoW
v(t-2)
• Assign a “Document Vector” to each document
• Document vector can be used for
• feature of the document
• similarity of documents
7
Category2Vec [Marui et al. NLP2015]
https://github.com/rakuten-nlp/category2vec
• Assign “Category Vector” to each category.
• Each document has its own category information.
input projection output
input projection output
v(doc)
v(t-1)
v(t+1)
v(t)
v(t-2)
v(t-1)
v(t)
v(t+1)
v(doc)
CV-DM CV-DBoW
v(t-2)
v(cat)
v(cat)
8
2. Applying Doc2Vec to
Item Recommender
9
Recommender Systems in EC service
Item2Item recommender
• Given an item, show relevant items to the item
User2Item recommender
• Given a user, show relevant items to the user
10
Distributed Representation for Users and Items
Document : a sequence of words with context.
User : a sequence of item views with user’s intention.
Set of documents
Vectors for words
Vectors for documents
sim{word, word}
sim{doc, word}
sim{doc, doc}
Set of user behaviors
Vectors for items
Vectors for users
sim{item, item}
sim{user, item}
sim{user, user}
11
Dataset Preparation
• Service:
• Rakuten Singapore www.rakuten.com.sg
• Rakuten’s EC service in Singapore
• Started from 2014.
• Data Source
• Purchase History Data
• Click Through Data
• Term
• Jan. 2015 – Oct. 2015
12
Dataset Preparation
(Purchase History Data)
• A set of items purchased by the same user.
User ID A set of Purchased Items
user #1 𝑖𝑡𝑒𝑚1,1, 𝑖𝑡𝑒𝑚1,2
user #2 {𝑖𝑡𝑒𝑚2.1, 𝑖𝑡𝑒𝑚2.2, 𝑖𝑡𝑒𝑚2.3}
⋮ ⋮
user #N {𝑖𝑡𝑒𝑚 𝑁.1}
13
Dataset Preparation
(Click Through Data)
• A set of users’ sessions
• Session :
• A sequence of page views with the same cookie.
• A sequence is splitted by time interval > 2 hours.
User ID A set of Sessions
user #1 𝑖𝑡𝑒𝑚1.1.1, 𝑖𝑡𝑒𝑚1.1.2, ⋯ , 𝑖𝑡𝑒𝑚1.1.𝑛 , 𝑖𝑡𝑒𝑚1,2,1 ⋯
user #2 {𝑖𝑡𝑒𝑚2.1.1, 𝑖𝑡𝑒𝑚2.1.2}
⋮ ⋮
user #N 𝑖𝑡𝑒𝑚 𝑁.1.1, 𝑖𝑡𝑒𝑚 𝑁.1.2, ⋯ , 𝑖𝑡𝑒𝑚 𝑁.1.𝑛 , 𝑖𝑡𝑒𝑚 𝑁,2,1, ⋯
Longer than 2 hours time
Session A Session B
: session
14
Dataset Property
• More than 60% of sessions finish with one page request.
• More than X% of users visited rakuten.com.sg one time only.
Distribution of Session Length Distribution of Session Count
15
Item2Item Recommender (Example)
Click
Though
Data
Purchase
History
Data
16
3. Evaluation
17
Evaluation Metrics
Training Data
2015/01/01
2015/08/31
Test
Data
2015/09/01
2015/10/31
• N is the total number of common users in training and testing data
• Hit-rate of the recommender system (RS):
hit-rate = Number of hits / N
• Each user: RS predicts top-20 items
• “Hit”: any items for 1 particular user appear in test data
18
Evaluations
1. Parameter Optimization
• Find an optimal parameter set.
• Find important parameters to build a good
model
2. Performance Comparison with Conventional
Recommender Algorithms
• Item Similarity
• Matrix Factorization
19
1. Parameter Optimization
Parameter Values Explanation
Size
[50, 100, 200, 300,
400, 500]
Dimensionality of the vectors
Window [1, 3, 5, 8, 10, 15]
Maximum number items of context
that the training algorithm take into account
Negative [0, 5, 10, 15, 20, 25]
Number of “noise words” should be drawn
(usually between 5-20)
Sample
[0, 1e-2, 1e-3, 1e-4,
1e-5, 1e-6, 1e-7, 1e-8]
Sub-sampling of frequent words
Min-count [1, ..., 20]
Items appear less than this min-count
value is ignored
Iteration [10,15, 20, 25, 30] Number of iteration for building model
• Best setting for parameters
Size Window Negative Sample min_count Iteration hit-rate
300 8 10 1e-5 3 20 0.1821
20
1. Parameter Optimization
13.7
15.5
17.7 18.2 17.8 17.2
0
2
4
6
8
10
12
14
16
18
20
50 100 200 300 400 500
hit-rate(%)
Size
15.4
16.9
17.8 18.2 18 18
0
2
4
6
8
10
12
14
16
18
20
1 3 5 8 10 15
hit-rate(%)
window
15.9
17.9 18.2 17.6 17.4 17.3
0
2
4
6
8
10
12
14
16
18
20
0 5 10 15 20 25
hit-rate(%)
Negative
16.216.516.416.7
18.2
15.1
2
0.3
0
2
4
6
8
10
12
14
16
18
20
0
1.00E-02
1.00E-03
1.00E-04
1.00E-05
1.00E-06
1.00E-07
1.00E-08
hit-rate(%)
Sample
16.8
18.2
18.9
18.8
18.9
19
18.8
18.7
18.9
18.90
2
4
6
8
10
12
14
16
18
20
1 3 5 7 9 11 13 15 17 19
hit-rate(%)
Min_count
16.8
17.8 18.2 18.2 18.2
0
2
4
6
8
10
12
14
16
18
20
10 15 20 25 30
hit-rate(%)
Iteration
21
2. Performance Comparison
with Conventional Recommender Algorithms
Item Similarity Matrix Factorization
U x
I
= { }
= { }
Jaccard Sim. of user sets
dim=32
max iteration=25
22
2. Performance Comparison
with Conventional Algorithms
0
2
4
6
8
10
12
14
16
18
20
Item Similarity Matrix
Factorization
Doc2Vec
hit-rate(%) Doc2Vec based algorithm performed the best.
23
Conclusion and Future Works
• Conclusion
• Developed distributed representation based RS.
• Applied it to dataset generated based on Rakuten Singapore
click through data.
• Confirmed distributed representation based RS performed better
than conventional RS algorithms.
• Future Works
• Distributed representation based RS based on other datasets
• Rakuten Singapore Product Data
• Rakuten (Japan) Ichiba Click Though Data
• Hybrid Model (contents based RS x user behavior based RS)
• Testing the real service.
24
Thank you

More Related Content

What's hot (20)

Mining Product Reputations On the Web
Mining Product Reputations On the WebMining Product Reputations On the Web
Mining Product Reputations On the Web
feiwin
 
巨量與開放資料之創新機會與關鍵挑戰-曾新穆
巨量與開放資料之創新機會與關鍵挑戰-曾新穆巨量與開放資料之創新機會與關鍵挑戰-曾新穆
巨量與開放資料之創新機會與關鍵挑戰-曾新穆
台灣資料科學年會
 
Predictive Text Analytics
Predictive Text AnalyticsPredictive Text Analytics
Predictive Text Analytics
Seth Grimes
 
NLP applied to French legal decisions
NLP applied to French legal decisionsNLP applied to French legal decisions
NLP applied to French legal decisions
Michael BENESTY
 
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and Beyond
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and BeyondBenchmarking for Neural Information Retrieval: MS MARCO, TREC, and Beyond
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and Beyond
Bhaskar Mitra
 
Probabilistic retrieval model
Probabilistic retrieval modelProbabilistic retrieval model
Probabilistic retrieval model
baradhimarch81
 
Popular Text Analytics Algorithms
Popular Text Analytics AlgorithmsPopular Text Analytics Algorithms
Popular Text Analytics Algorithms
PromptCloud
 
Approaches for Keyword Query Routing
Approaches for Keyword Query RoutingApproaches for Keyword Query Routing
Approaches for Keyword Query Routing
IJERA Editor
 
IRE Semantic Annotation of Documents
IRE Semantic Annotation of Documents IRE Semantic Annotation of Documents
IRE Semantic Annotation of Documents
Sharvil Katariya
 
EFFICIENT SCHEMA BASED KEYWORD SEARCH IN RELATIONAL DATABASES
EFFICIENT SCHEMA BASED KEYWORD SEARCH IN RELATIONAL DATABASESEFFICIENT SCHEMA BASED KEYWORD SEARCH IN RELATIONAL DATABASES
EFFICIENT SCHEMA BASED KEYWORD SEARCH IN RELATIONAL DATABASES
IJCSEIT Journal
 
Tutorial Data Management and workflows
Tutorial Data Management and workflowsTutorial Data Management and workflows
Tutorial Data Management and workflows
SSSW
 
Text Analytics Presentation
Text Analytics PresentationText Analytics Presentation
Text Analytics Presentation
Skylar Ritchie
 
Dagstuhl 2013 - Montali - On the Relationship between OBDA and Relational Map...
Dagstuhl 2013 - Montali - On the Relationship between OBDA and Relational Map...Dagstuhl 2013 - Montali - On the Relationship between OBDA and Relational Map...
Dagstuhl 2013 - Montali - On the Relationship between OBDA and Relational Map...
Faculty of Computer Science - Free University of Bozen-Bolzano
 
EFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATA
EFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATAEFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATA
EFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATA
csandit
 
Document Classification Using Expectation Maximization with Semi Supervised L...
Document Classification Using Expectation Maximization with Semi Supervised L...Document Classification Using Expectation Maximization with Semi Supervised L...
Document Classification Using Expectation Maximization with Semi Supervised L...
ijsc
 
Building AI Applications using Knowledge Graphs
Building AI Applications using Knowledge GraphsBuilding AI Applications using Knowledge Graphs
Building AI Applications using Knowledge Graphs
Andre Freitas
 
A Scalable Approach for Efficiently Generating Structured Dataset Topic Profiles
A Scalable Approach for Efficiently Generating Structured Dataset Topic ProfilesA Scalable Approach for Efficiently Generating Structured Dataset Topic Profiles
A Scalable Approach for Efficiently Generating Structured Dataset Topic Profiles
Besnik Fetahu
 
[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
Gabriel Moreira
 
Probablistic information retrieval
Probablistic information retrievalProbablistic information retrieval
Probablistic information retrieval
Nisha Arankandath
 
Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação
Gabriel Moreira
 
Mining Product Reputations On the Web
Mining Product Reputations On the WebMining Product Reputations On the Web
Mining Product Reputations On the Web
feiwin
 
巨量與開放資料之創新機會與關鍵挑戰-曾新穆
巨量與開放資料之創新機會與關鍵挑戰-曾新穆巨量與開放資料之創新機會與關鍵挑戰-曾新穆
巨量與開放資料之創新機會與關鍵挑戰-曾新穆
台灣資料科學年會
 
Predictive Text Analytics
Predictive Text AnalyticsPredictive Text Analytics
Predictive Text Analytics
Seth Grimes
 
NLP applied to French legal decisions
NLP applied to French legal decisionsNLP applied to French legal decisions
NLP applied to French legal decisions
Michael BENESTY
 
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and Beyond
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and BeyondBenchmarking for Neural Information Retrieval: MS MARCO, TREC, and Beyond
Benchmarking for Neural Information Retrieval: MS MARCO, TREC, and Beyond
Bhaskar Mitra
 
Probabilistic retrieval model
Probabilistic retrieval modelProbabilistic retrieval model
Probabilistic retrieval model
baradhimarch81
 
Popular Text Analytics Algorithms
Popular Text Analytics AlgorithmsPopular Text Analytics Algorithms
Popular Text Analytics Algorithms
PromptCloud
 
Approaches for Keyword Query Routing
Approaches for Keyword Query RoutingApproaches for Keyword Query Routing
Approaches for Keyword Query Routing
IJERA Editor
 
IRE Semantic Annotation of Documents
IRE Semantic Annotation of Documents IRE Semantic Annotation of Documents
IRE Semantic Annotation of Documents
Sharvil Katariya
 
EFFICIENT SCHEMA BASED KEYWORD SEARCH IN RELATIONAL DATABASES
EFFICIENT SCHEMA BASED KEYWORD SEARCH IN RELATIONAL DATABASESEFFICIENT SCHEMA BASED KEYWORD SEARCH IN RELATIONAL DATABASES
EFFICIENT SCHEMA BASED KEYWORD SEARCH IN RELATIONAL DATABASES
IJCSEIT Journal
 
Tutorial Data Management and workflows
Tutorial Data Management and workflowsTutorial Data Management and workflows
Tutorial Data Management and workflows
SSSW
 
Text Analytics Presentation
Text Analytics PresentationText Analytics Presentation
Text Analytics Presentation
Skylar Ritchie
 
EFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATA
EFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATAEFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATA
EFFICIENTLY PROCESSING OF TOP-K TYPICALITY QUERY FOR STRUCTURED DATA
csandit
 
Document Classification Using Expectation Maximization with Semi Supervised L...
Document Classification Using Expectation Maximization with Semi Supervised L...Document Classification Using Expectation Maximization with Semi Supervised L...
Document Classification Using Expectation Maximization with Semi Supervised L...
ijsc
 
Building AI Applications using Knowledge Graphs
Building AI Applications using Knowledge GraphsBuilding AI Applications using Knowledge Graphs
Building AI Applications using Knowledge Graphs
Andre Freitas
 
A Scalable Approach for Efficiently Generating Structured Dataset Topic Profiles
A Scalable Approach for Efficiently Generating Structured Dataset Topic ProfilesA Scalable Approach for Efficiently Generating Structured Dataset Topic Profiles
A Scalable Approach for Efficiently Generating Structured Dataset Topic Profiles
Besnik Fetahu
 
[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
[Phd Thesis Defense] CHAMELEON: A Deep Learning Meta-Architecture for News Re...
Gabriel Moreira
 
Probablistic information retrieval
Probablistic information retrievalProbablistic information retrieval
Probablistic information retrieval
Nisha Arankandath
 
Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação Sistemas de Recomendação sem Enrolação
Sistemas de Recomendação sem Enrolação
Gabriel Moreira
 

Viewers also liked (14)

Proov
ProovProov
Proov
Martin Ruubel
 
Large-Scale Machine Learning for E-commerce
Large-Scale Machine Learning for E-commerceLarge-Scale Machine Learning for E-commerce
Large-Scale Machine Learning for E-commerce
Rakuten Group, Inc.
 
Effective Communication in Multicultural Teams
Effective Communication in Multicultural TeamsEffective Communication in Multicultural Teams
Effective Communication in Multicultural Teams
Rakuten Group, Inc.
 
Intro to GraphQL
 Intro to GraphQL Intro to GraphQL
Intro to GraphQL
Rakuten Group, Inc.
 
Creating a team of DevOps “Super Sentai”
Creating a team of DevOps “Super Sentai”Creating a team of DevOps “Super Sentai”
Creating a team of DevOps “Super Sentai”
Rakuten Group, Inc.
 
Designing kinder Experiences
Designing kinder ExperiencesDesigning kinder Experiences
Designing kinder Experiences
Rakuten Group, Inc.
 
Rakuten Ichiba_Rakuten Technology Conference 2016
Rakuten Ichiba_Rakuten Technology Conference 2016Rakuten Ichiba_Rakuten Technology Conference 2016
Rakuten Ichiba_Rakuten Technology Conference 2016
Rakuten Group, Inc.
 
楽天のプライベートクラウドを支えるフラッシュストレージ
楽天のプライベートクラウドを支えるフラッシュストレージ楽天のプライベートクラウドを支えるフラッシュストレージ
楽天のプライベートクラウドを支えるフラッシュストレージ
Rakuten Group, Inc.
 
USING VISION SENSORS FOR INNOVATIVE HCI
USING VISION SENSORS FOR INNOVATIVE HCIUSING VISION SENSORS FOR INNOVATIVE HCI
USING VISION SENSORS FOR INNOVATIVE HCI
Rakuten Group, Inc.
 
楽天トラベルの開発プロセスに関して
楽天トラベルの開発プロセスに関して楽天トラベルの開発プロセスに関して
楽天トラベルの開発プロセスに関して
Rakuten Group, Inc.
 
IBM Watson Question-Answering System and Cognitive Computing
IBM Watson Question-Answering System and Cognitive ComputingIBM Watson Question-Answering System and Cognitive Computing
IBM Watson Question-Answering System and Cognitive Computing
Rakuten Group, Inc.
 
リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介
Recruit Technologies
 
Introduction to Deep Learning (NVIDIA)
Introduction to Deep Learning (NVIDIA)Introduction to Deep Learning (NVIDIA)
Introduction to Deep Learning (NVIDIA)
Rakuten Group, Inc.
 
深層学習による自然言語処理の研究動向
深層学習による自然言語処理の研究動向深層学習による自然言語処理の研究動向
深層学習による自然言語処理の研究動向
STAIR Lab, Chiba Institute of Technology
 
Large-Scale Machine Learning for E-commerce
Large-Scale Machine Learning for E-commerceLarge-Scale Machine Learning for E-commerce
Large-Scale Machine Learning for E-commerce
Rakuten Group, Inc.
 
Effective Communication in Multicultural Teams
Effective Communication in Multicultural TeamsEffective Communication in Multicultural Teams
Effective Communication in Multicultural Teams
Rakuten Group, Inc.
 
Creating a team of DevOps “Super Sentai”
Creating a team of DevOps “Super Sentai”Creating a team of DevOps “Super Sentai”
Creating a team of DevOps “Super Sentai”
Rakuten Group, Inc.
 
Rakuten Ichiba_Rakuten Technology Conference 2016
Rakuten Ichiba_Rakuten Technology Conference 2016Rakuten Ichiba_Rakuten Technology Conference 2016
Rakuten Ichiba_Rakuten Technology Conference 2016
Rakuten Group, Inc.
 
楽天のプライベートクラウドを支えるフラッシュストレージ
楽天のプライベートクラウドを支えるフラッシュストレージ楽天のプライベートクラウドを支えるフラッシュストレージ
楽天のプライベートクラウドを支えるフラッシュストレージ
Rakuten Group, Inc.
 
USING VISION SENSORS FOR INNOVATIVE HCI
USING VISION SENSORS FOR INNOVATIVE HCIUSING VISION SENSORS FOR INNOVATIVE HCI
USING VISION SENSORS FOR INNOVATIVE HCI
Rakuten Group, Inc.
 
楽天トラベルの開発プロセスに関して
楽天トラベルの開発プロセスに関して楽天トラベルの開発プロセスに関して
楽天トラベルの開発プロセスに関して
Rakuten Group, Inc.
 
IBM Watson Question-Answering System and Cognitive Computing
IBM Watson Question-Answering System and Cognitive ComputingIBM Watson Question-Answering System and Cognitive Computing
IBM Watson Question-Answering System and Cognitive Computing
Rakuten Group, Inc.
 
リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介
Recruit Technologies
 
Introduction to Deep Learning (NVIDIA)
Introduction to Deep Learning (NVIDIA)Introduction to Deep Learning (NVIDIA)
Introduction to Deep Learning (NVIDIA)
Rakuten Group, Inc.
 

Similar to Recommender System with Distributed Representation (20)

Recommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative FilteringRecommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative Filtering
Changsung Moon
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systems
NAVER Engineering
 
Collaborative Filtering Recommendation System
Collaborative Filtering Recommendation SystemCollaborative Filtering Recommendation System
Collaborative Filtering Recommendation System
Milind Gokhale
 
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...
Mladen Jovanovic
 
Introduction to Recommender System
Introduction to Recommender SystemIntroduction to Recommender System
Introduction to Recommender System
WQ Fan
 
Recommender systems
Recommender systemsRecommender systems
Recommender systems
Vivek Murugesan
 
Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...
Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...
Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...
Rajasekar Nonburaj
 
Recommendation system
Recommendation systemRecommendation system
Recommendation system
Ding Li
 
Introduction to Recommender Systems
Introduction to Recommender SystemsIntroduction to Recommender Systems
Introduction to Recommender Systems
Turi, Inc.
 
Rokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptxRokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptx
Jadna Almeida
 
Rokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptxRokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptx
Jadna Almeida
 
Notes on Recommender Systems pdf 2nd module
Notes on Recommender Systems pdf 2nd moduleNotes on Recommender Systems pdf 2nd module
Notes on Recommender Systems pdf 2nd module
PRABHAKARK24
 
IRJET- An Efficient Ensemble Machine Learning System for Restaurant Recom...
IRJET-  	  An Efficient Ensemble Machine Learning System for Restaurant Recom...IRJET-  	  An Efficient Ensemble Machine Learning System for Restaurant Recom...
IRJET- An Efficient Ensemble Machine Learning System for Restaurant Recom...
IRJET Journal
 
IntroductionRecommenderSystems_Petroni.pdf
IntroductionRecommenderSystems_Petroni.pdfIntroductionRecommenderSystems_Petroni.pdf
IntroductionRecommenderSystems_Petroni.pdf
AlphaIssaghaDiallo
 
BOOK RECALL TYPPPPPPBBBBBBBBBHHHHHHHHHHHHY
BOOK RECALL TYPPPPPPBBBBBBBBBHHHHHHHHHHHHYBOOK RECALL TYPPPPPPBBBBBBBBBHHHHHHHHHHHHY
BOOK RECALL TYPPPPPPBBBBBBBBBHHHHHHHHHHHHY
13DikshaDatir
 
Rating Prediction for Restaurant
Rating Prediction for Restaurant Rating Prediction for Restaurant
Rating Prediction for Restaurant
Yaqing Wang
 
Modeling Social Data, Lecture 8: Recommendation Systems
Modeling Social Data, Lecture 8: Recommendation SystemsModeling Social Data, Lecture 8: Recommendation Systems
Modeling Social Data, Lecture 8: Recommendation Systems
jakehofman
 
Real-time personalized recommendations using product embeddings
Real-time personalized recommendations using product embeddingsReal-time personalized recommendations using product embeddings
Real-time personalized recommendations using product embeddings
Jakub Macina
 
A survey of memory based methods for collaborative filtering based techniques
A survey of memory based methods for collaborative filtering based techniquesA survey of memory based methods for collaborative filtering based techniques
A survey of memory based methods for collaborative filtering based techniques
IAEME Publication
 
Recommender Systems
Recommender SystemsRecommender Systems
Recommender Systems
Francesco Casalegno
 
Recommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative FilteringRecommender Systems: Advances in Collaborative Filtering
Recommender Systems: Advances in Collaborative Filtering
Changsung Moon
 
Recent advances in deep recommender systems
Recent advances in deep recommender systemsRecent advances in deep recommender systems
Recent advances in deep recommender systems
NAVER Engineering
 
Collaborative Filtering Recommendation System
Collaborative Filtering Recommendation SystemCollaborative Filtering Recommendation System
Collaborative Filtering Recommendation System
Milind Gokhale
 
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...
PyCon Balkans 2018 // Recommender systems - collaborative filtering and dimen...
Mladen Jovanovic
 
Introduction to Recommender System
Introduction to Recommender SystemIntroduction to Recommender System
Introduction to Recommender System
WQ Fan
 
Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...
Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...
Building a Recommender systems by Vivek Murugesan - Technical Architect at Cr...
Rajasekar Nonburaj
 
Recommendation system
Recommendation systemRecommendation system
Recommendation system
Ding Li
 
Introduction to Recommender Systems
Introduction to Recommender SystemsIntroduction to Recommender Systems
Introduction to Recommender Systems
Turi, Inc.
 
Rokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptxRokach-GomaxSlides (1).pptx
Rokach-GomaxSlides (1).pptx
Jadna Almeida
 
Rokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptxRokach-GomaxSlides.pptx
Rokach-GomaxSlides.pptx
Jadna Almeida
 
Notes on Recommender Systems pdf 2nd module
Notes on Recommender Systems pdf 2nd moduleNotes on Recommender Systems pdf 2nd module
Notes on Recommender Systems pdf 2nd module
PRABHAKARK24
 
IRJET- An Efficient Ensemble Machine Learning System for Restaurant Recom...
IRJET-  	  An Efficient Ensemble Machine Learning System for Restaurant Recom...IRJET-  	  An Efficient Ensemble Machine Learning System for Restaurant Recom...
IRJET- An Efficient Ensemble Machine Learning System for Restaurant Recom...
IRJET Journal
 
IntroductionRecommenderSystems_Petroni.pdf
IntroductionRecommenderSystems_Petroni.pdfIntroductionRecommenderSystems_Petroni.pdf
IntroductionRecommenderSystems_Petroni.pdf
AlphaIssaghaDiallo
 
BOOK RECALL TYPPPPPPBBBBBBBBBHHHHHHHHHHHHY
BOOK RECALL TYPPPPPPBBBBBBBBBHHHHHHHHHHHHYBOOK RECALL TYPPPPPPBBBBBBBBBHHHHHHHHHHHHY
BOOK RECALL TYPPPPPPBBBBBBBBBHHHHHHHHHHHHY
13DikshaDatir
 
Rating Prediction for Restaurant
Rating Prediction for Restaurant Rating Prediction for Restaurant
Rating Prediction for Restaurant
Yaqing Wang
 
Modeling Social Data, Lecture 8: Recommendation Systems
Modeling Social Data, Lecture 8: Recommendation SystemsModeling Social Data, Lecture 8: Recommendation Systems
Modeling Social Data, Lecture 8: Recommendation Systems
jakehofman
 
Real-time personalized recommendations using product embeddings
Real-time personalized recommendations using product embeddingsReal-time personalized recommendations using product embeddings
Real-time personalized recommendations using product embeddings
Jakub Macina
 
A survey of memory based methods for collaborative filtering based techniques
A survey of memory based methods for collaborative filtering based techniquesA survey of memory based methods for collaborative filtering based techniques
A survey of memory based methods for collaborative filtering based techniques
IAEME Publication
 

More from Rakuten Group, Inc. (20)

EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
Rakuten Group, Inc.
 
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
Rakuten Group, Inc.
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり
Rakuten Group, Inc.
 
What Makes Software Green?
What Makes Software Green?What Makes Software Green?
What Makes Software Green?
Rakuten Group, Inc.
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Rakuten Group, Inc.
 
DataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みDataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組み
Rakuten Group, Inc.
 
大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開
Rakuten Group, Inc.
 
楽天における大規模データベースの運用
楽天における大規模データベースの運用楽天における大規模データベースの運用
楽天における大規模データベースの運用
Rakuten Group, Inc.
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー
Rakuten Group, Inc.
 
楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割
Rakuten Group, Inc.
 
Rakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdf
Rakuten Group, Inc.
 
The Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfThe Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdf
Rakuten Group, Inc.
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdf
Rakuten Group, Inc.
 
Making Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfMaking Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdf
Rakuten Group, Inc.
 
How We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfHow We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdf
Rakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
Rakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
Rakuten Group, Inc.
 
OWASPTop10_Introduction
OWASPTop10_IntroductionOWASPTop10_Introduction
OWASPTop10_Introduction
Rakuten Group, Inc.
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technology
Rakuten Group, Inc.
 
100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情
Rakuten Group, Inc.
 
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
EPSS (Exploit Prediction Scoring System)モニタリングツールの開発
Rakuten Group, Inc.
 
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
コードレビュー改善のためにJenkinsとIntelliJ IDEAのプラグインを自作してみた話
Rakuten Group, Inc.
 
楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり楽天における安全な秘匿情報管理への道のり
楽天における安全な秘匿情報管理への道のり
Rakuten Group, Inc.
 
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Simple and Effective Knowledge-Driven Query Expansion for QA-Based Product At...
Rakuten Group, Inc.
 
DataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組みDataSkillCultureを浸透させる楽天の取り組み
DataSkillCultureを浸透させる楽天の取り組み
Rakuten Group, Inc.
 
大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開大規模なリアルタイム監視の導入と展開
大規模なリアルタイム監視の導入と展開
Rakuten Group, Inc.
 
楽天における大規模データベースの運用
楽天における大規模データベースの運用楽天における大規模データベースの運用
楽天における大規模データベースの運用
Rakuten Group, Inc.
 
楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー楽天サービスを支えるネットワークインフラストラクチャー
楽天サービスを支えるネットワークインフラストラクチャー
Rakuten Group, Inc.
 
楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割楽天の規模とクラウドプラットフォーム統括部の役割
楽天の規模とクラウドプラットフォーム統括部の役割
Rakuten Group, Inc.
 
Rakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdfRakuten Services and Infrastructure Team.pdf
Rakuten Services and Infrastructure Team.pdf
Rakuten Group, Inc.
 
The Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdfThe Data Platform Administration Handling the 100 PB.pdf
The Data Platform Administration Handling the 100 PB.pdf
Rakuten Group, Inc.
 
Supporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdfSupporting Internal Customers as Technical Account Managers.pdf
Supporting Internal Customers as Technical Account Managers.pdf
Rakuten Group, Inc.
 
Making Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdfMaking Cloud Native CI_CD Services.pdf
Making Cloud Native CI_CD Services.pdf
Rakuten Group, Inc.
 
How We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdfHow We Defined Our Own Cloud.pdf
How We Defined Our Own Cloud.pdf
Rakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
Rakuten Group, Inc.
 
Travel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech infoTravel & Leisure Platform Department's tech info
Travel & Leisure Platform Department's tech info
Rakuten Group, Inc.
 
Introduction of GORA API Group technology
Introduction of GORA API Group technologyIntroduction of GORA API Group technology
Introduction of GORA API Group technology
Rakuten Group, Inc.
 
100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情100PBを越えるデータプラットフォームの実情
100PBを越えるデータプラットフォームの実情
Rakuten Group, Inc.
 

Recently uploaded (20)

"AI in the browser: predicting user actions in real time with TensorflowJS", ...
"AI in the browser: predicting user actions in real time with TensorflowJS", ..."AI in the browser: predicting user actions in real time with TensorflowJS", ...
"AI in the browser: predicting user actions in real time with TensorflowJS", ...
Fwdays
 
Introducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and ARIntroducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and AR
Safe Software
 
Fully Open-Source Private Clouds: Freedom, Security, and Control
Fully Open-Source Private Clouds: Freedom, Security, and ControlFully Open-Source Private Clouds: Freedom, Security, and Control
Fully Open-Source Private Clouds: Freedom, Security, and Control
ShapeBlue
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
A Comprehensive Guide on Integrating Monoova Payment Gateway
A Comprehensive Guide on Integrating Monoova Payment GatewayA Comprehensive Guide on Integrating Monoova Payment Gateway
A Comprehensive Guide on Integrating Monoova Payment Gateway
danielle hunter
 
Building Agents with LangGraph & Gemini
Building Agents with LangGraph &  GeminiBuilding Agents with LangGraph &  Gemini
Building Agents with LangGraph & Gemini
HusseinMalikMammadli
 
Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025
Prasta Maha
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
AI Trends - Mary Meeker
AI Trends - Mary MeekerAI Trends - Mary Meeker
AI Trends - Mary Meeker
Razin Mustafiz
 
AI in Java - MCP in Action, Langchain4J-CDI, SmallRye-LLM, Spring AI
AI in Java - MCP in Action, Langchain4J-CDI, SmallRye-LLM, Spring AIAI in Java - MCP in Action, Langchain4J-CDI, SmallRye-LLM, Spring AI
AI in Java - MCP in Action, Langchain4J-CDI, SmallRye-LLM, Spring AI
Buhake Sindi
 
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AISAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
Peter Spielvogel
 
Security Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk CertificateSecurity Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk Certificate
VICTOR MAESTRE RAMIREZ
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...
pranavbodhak
 
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk TechniciansOffshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
john823664
 
STKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 versionSTKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 version
Dr. Jimmy Schwarzkopf
 
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Lorenzo Miniero
 
Dev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API WorkflowsDev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API Workflows
UiPathCommunity
 
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Nikki Chapple
 
"AI in the browser: predicting user actions in real time with TensorflowJS", ...
"AI in the browser: predicting user actions in real time with TensorflowJS", ..."AI in the browser: predicting user actions in real time with TensorflowJS", ...
"AI in the browser: predicting user actions in real time with TensorflowJS", ...
Fwdays
 
Introducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and ARIntroducing FME Realize: A New Era of Spatial Computing and AR
Introducing FME Realize: A New Era of Spatial Computing and AR
Safe Software
 
Fully Open-Source Private Clouds: Freedom, Security, and Control
Fully Open-Source Private Clouds: Freedom, Security, and ControlFully Open-Source Private Clouds: Freedom, Security, and Control
Fully Open-Source Private Clouds: Freedom, Security, and Control
ShapeBlue
 
Let’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack CommunityLet’s Get Slack Certified! 🚀- Slack Community
Let’s Get Slack Certified! 🚀- Slack Community
SanjeetMishra29
 
A Comprehensive Guide on Integrating Monoova Payment Gateway
A Comprehensive Guide on Integrating Monoova Payment GatewayA Comprehensive Guide on Integrating Monoova Payment Gateway
A Comprehensive Guide on Integrating Monoova Payment Gateway
danielle hunter
 
Building Agents with LangGraph & Gemini
Building Agents with LangGraph &  GeminiBuilding Agents with LangGraph &  Gemini
Building Agents with LangGraph & Gemini
HusseinMalikMammadli
 
Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025Kubernetes Cloud Native Indonesia Meetup - May 2025
Kubernetes Cloud Native Indonesia Meetup - May 2025
Prasta Maha
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
AI Trends - Mary Meeker
AI Trends - Mary MeekerAI Trends - Mary Meeker
AI Trends - Mary Meeker
Razin Mustafiz
 
AI in Java - MCP in Action, Langchain4J-CDI, SmallRye-LLM, Spring AI
AI in Java - MCP in Action, Langchain4J-CDI, SmallRye-LLM, Spring AIAI in Java - MCP in Action, Langchain4J-CDI, SmallRye-LLM, Spring AI
AI in Java - MCP in Action, Langchain4J-CDI, SmallRye-LLM, Spring AI
Buhake Sindi
 
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AISAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
Peter Spielvogel
 
Security Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk CertificateSecurity Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk Certificate
VICTOR MAESTRE RAMIREZ
 
New Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDBNew Ways to Reduce Database Costs with ScyllaDB
New Ways to Reduce Database Costs with ScyllaDB
ScyllaDB
 
Contributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptxContributing to WordPress With & Without Code.pptx
Contributing to WordPress With & Without Code.pptx
Patrick Lumumba
 
Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...
pranavbodhak
 
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk TechniciansOffshore IT Support: Balancing In-House and Offshore Help Desk Technicians
Offshore IT Support: Balancing In-House and Offshore Help Desk Technicians
john823664
 
STKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 versionSTKI Israel Market Study 2025 final v1 version
STKI Israel Market Study 2025 final v1 version
Dr. Jimmy Schwarzkopf
 
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Lorenzo Miniero
 
Dev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API WorkflowsDev Dives: System-to-system integration with UiPath API Workflows
Dev Dives: System-to-system integration with UiPath API Workflows
UiPathCommunity
 
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Nikki Chapple
 

Recommender System with Distributed Representation

  • 1. 分散表現を用いた 商品レコメンダーシステムの構築と評価 Recommender System with Distributed Representation Thuy PhiVan1,2, Chen Liu 2 and Yu Hirate2 1. Computational Linguistics Laboratory, NAIST 2.Rakuten Institute of Technology, Rakuten, Inc. {ar-thuy.phivan, chen.liu, yu.hirate}@rakuten.com
  • 2. 2 1. Distributed Representation for words, docs and categories
  • 3. 3 Distributed Representations for Words • Distributed representations for words • Similar words are projected into similar vectors. • Relationship between words can be expressed as a simple vector calculation. [T.Mikolov et al. NIPS 2013] • Analogy • v(“woman”) – v(”man”) + v(”king”) = v(“queen”)
  • 4. 4 2 models in word2vec input projection output input projection output v(t-2) v(t-1) v(t+1) v(t+2) v(t) v(t-2) v(t-1) v(t+1) v(t+2) v(t) CBoW Skip-gram • given context words • predict a probability of a target word • given a target word • predict a probability of context words
  • 5. 5 Sample results of word2vec trained by Wikipedia data query: nagoya • osaka 0.799002 • chiba 0.762829 • fukuoka 0.755166 • sendai 0.731760 • yokohama 0.729205 • kobe 0.726732 • shiga 0.705707 • niigata 0.699777 • aichi 0.692371 • hyogo 0.687128 • saitama 0.685672 • tokyo 0.671428 • sapporo 0.670466 • kumamoto 0.660786 • japan 0.658769 • kitakyushu 0.654265 • wakayama 0.652783 • shizuoka 0.624380 query: coffee • cocoa 0.603515 • robusta 0.565269 • beans 0.565232 • bananas 0.565207 • cinnamon 0.556771 • citrus 0.547495 • espresso 0.542120 • caff 0.542082 • infusions 0.538069 • tea 0.532565 • cassava 0.524657 • pineapples 0.523557 • coffea 0.512420 • tapioca 0.510727 • sugarcane 0.508203 • yams 0.507347 • avocados 0.507072 • arabica 0.506231
  • 6. 6 Doc2Vec(Paragraph2Vec) [Q.Le et al. ICML2014] input projection output input projection output v(doc) v(t-1) v(t+1) v(t) v(t-2) v(t-1) v(t) v(t+1) v(doc) PV-DM PV-DBoW v(t-2) • Assign a “Document Vector” to each document • Document vector can be used for • feature of the document • similarity of documents
  • 7. 7 Category2Vec [Marui et al. NLP2015] https://github.com/rakuten-nlp/category2vec • Assign “Category Vector” to each category. • Each document has its own category information. input projection output input projection output v(doc) v(t-1) v(t+1) v(t) v(t-2) v(t-1) v(t) v(t+1) v(doc) CV-DM CV-DBoW v(t-2) v(cat) v(cat)
  • 8. 8 2. Applying Doc2Vec to Item Recommender
  • 9. 9 Recommender Systems in EC service Item2Item recommender • Given an item, show relevant items to the item User2Item recommender • Given a user, show relevant items to the user
  • 10. 10 Distributed Representation for Users and Items Document : a sequence of words with context. User : a sequence of item views with user’s intention. Set of documents Vectors for words Vectors for documents sim{word, word} sim{doc, word} sim{doc, doc} Set of user behaviors Vectors for items Vectors for users sim{item, item} sim{user, item} sim{user, user}
  • 11. 11 Dataset Preparation • Service: • Rakuten Singapore www.rakuten.com.sg • Rakuten’s EC service in Singapore • Started from 2014. • Data Source • Purchase History Data • Click Through Data • Term • Jan. 2015 – Oct. 2015
  • 12. 12 Dataset Preparation (Purchase History Data) • A set of items purchased by the same user. User ID A set of Purchased Items user #1 𝑖𝑡𝑒𝑚1,1, 𝑖𝑡𝑒𝑚1,2 user #2 {𝑖𝑡𝑒𝑚2.1, 𝑖𝑡𝑒𝑚2.2, 𝑖𝑡𝑒𝑚2.3} ⋮ ⋮ user #N {𝑖𝑡𝑒𝑚 𝑁.1}
  • 13. 13 Dataset Preparation (Click Through Data) • A set of users’ sessions • Session : • A sequence of page views with the same cookie. • A sequence is splitted by time interval > 2 hours. User ID A set of Sessions user #1 𝑖𝑡𝑒𝑚1.1.1, 𝑖𝑡𝑒𝑚1.1.2, ⋯ , 𝑖𝑡𝑒𝑚1.1.𝑛 , 𝑖𝑡𝑒𝑚1,2,1 ⋯ user #2 {𝑖𝑡𝑒𝑚2.1.1, 𝑖𝑡𝑒𝑚2.1.2} ⋮ ⋮ user #N 𝑖𝑡𝑒𝑚 𝑁.1.1, 𝑖𝑡𝑒𝑚 𝑁.1.2, ⋯ , 𝑖𝑡𝑒𝑚 𝑁.1.𝑛 , 𝑖𝑡𝑒𝑚 𝑁,2,1, ⋯ Longer than 2 hours time Session A Session B : session
  • 14. 14 Dataset Property • More than 60% of sessions finish with one page request. • More than X% of users visited rakuten.com.sg one time only. Distribution of Session Length Distribution of Session Count
  • 17. 17 Evaluation Metrics Training Data 2015/01/01 2015/08/31 Test Data 2015/09/01 2015/10/31 • N is the total number of common users in training and testing data • Hit-rate of the recommender system (RS): hit-rate = Number of hits / N • Each user: RS predicts top-20 items • “Hit”: any items for 1 particular user appear in test data
  • 18. 18 Evaluations 1. Parameter Optimization • Find an optimal parameter set. • Find important parameters to build a good model 2. Performance Comparison with Conventional Recommender Algorithms • Item Similarity • Matrix Factorization
  • 19. 19 1. Parameter Optimization Parameter Values Explanation Size [50, 100, 200, 300, 400, 500] Dimensionality of the vectors Window [1, 3, 5, 8, 10, 15] Maximum number items of context that the training algorithm take into account Negative [0, 5, 10, 15, 20, 25] Number of “noise words” should be drawn (usually between 5-20) Sample [0, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8] Sub-sampling of frequent words Min-count [1, ..., 20] Items appear less than this min-count value is ignored Iteration [10,15, 20, 25, 30] Number of iteration for building model • Best setting for parameters Size Window Negative Sample min_count Iteration hit-rate 300 8 10 1e-5 3 20 0.1821
  • 20. 20 1. Parameter Optimization 13.7 15.5 17.7 18.2 17.8 17.2 0 2 4 6 8 10 12 14 16 18 20 50 100 200 300 400 500 hit-rate(%) Size 15.4 16.9 17.8 18.2 18 18 0 2 4 6 8 10 12 14 16 18 20 1 3 5 8 10 15 hit-rate(%) window 15.9 17.9 18.2 17.6 17.4 17.3 0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 hit-rate(%) Negative 16.216.516.416.7 18.2 15.1 2 0.3 0 2 4 6 8 10 12 14 16 18 20 0 1.00E-02 1.00E-03 1.00E-04 1.00E-05 1.00E-06 1.00E-07 1.00E-08 hit-rate(%) Sample 16.8 18.2 18.9 18.8 18.9 19 18.8 18.7 18.9 18.90 2 4 6 8 10 12 14 16 18 20 1 3 5 7 9 11 13 15 17 19 hit-rate(%) Min_count 16.8 17.8 18.2 18.2 18.2 0 2 4 6 8 10 12 14 16 18 20 10 15 20 25 30 hit-rate(%) Iteration
  • 21. 21 2. Performance Comparison with Conventional Recommender Algorithms Item Similarity Matrix Factorization U x I = { } = { } Jaccard Sim. of user sets dim=32 max iteration=25
  • 22. 22 2. Performance Comparison with Conventional Algorithms 0 2 4 6 8 10 12 14 16 18 20 Item Similarity Matrix Factorization Doc2Vec hit-rate(%) Doc2Vec based algorithm performed the best.
  • 23. 23 Conclusion and Future Works • Conclusion • Developed distributed representation based RS. • Applied it to dataset generated based on Rakuten Singapore click through data. • Confirmed distributed representation based RS performed better than conventional RS algorithms. • Future Works • Distributed representation based RS based on other datasets • Rakuten Singapore Product Data • Rakuten (Japan) Ichiba Click Though Data • Hybrid Model (contents based RS x user behavior based RS) • Testing the real service.