The document discusses recurrent neural networks (RNNs) and long short-term memory (LSTM) networks. It provides details on the architecture of RNNs including forward and back propagation. LSTMs are described as a type of RNN that can learn long-term dependencies using forget, input and output gates to control the cell state. Examples of applications for RNNs and LSTMs include language modeling, machine translation, speech recognition, and generating image descriptions.