SlideShare a Scribd company logo
Preventing cache
stampede with Redis &
XFetch
Jim Nelson <jnelson@archive.org>
Internet Archive
RedisConf 2017
Internet Archive
Universal Access to All Knowledge
Founded 1996, based in San Francisco
Archive of digital and physical media
Includes Web, books, music, film, software & more
Digital holdings: over 30 petabytes & counting
Key collections & services:
Wayback Machine
Grateful Dead live concert collection
Internet Archive ♡ Redis
Caching & other services backed by 10-node sharded Redis cluster
Sharding performed client-side via consistent hashing (PHP, Predis)
Each node supported by two replicated mirrors (fail-over)
Specialized Redis instances also used throughout IA’s services, including
Wayback, search, and more
Caching: Quick terminology
I assume we all know what caching is. This is the terminology I’ll use today:
Recompute: Expensive operation whose result is cached
(database query, file system read, HTTP request to remote service)
Expiration: When a cache value is considered stale or out-of-date
(time-to-live)
Evict: Removing a value from the cache
(to forcibly invalidate a value prior to expiry)
Cache stampede
Cache stampede
“A cache stampede is a type of cascading failure that can
occur when massively parallel computing systems with
caching mechanisms come under very high load. This
behaviour is sometimes also called dog-piling.”
–Wikipedia
https://en.wikipedia.org/wiki/Cache_stampede
Cache stampede: A scenario
Multiple servers, each with multiple workers serving requests, accessing a
common cached value
When the cached value expires or is evicted, all workers experience a
simultaneous cache miss
Workers recompute the missing value, causing overload of primary data
sources (e.g. database) and/or hung requests
Congestion collapse
Hung workers due to network congestion or expensive recomputes—that’s bad
Discarded user requests—that’s bad
Overloaded primary data stores (“Sources of Truth”)—that’s bad
Harmonics (peaks & valleys): brief periods of intense activity (mini-outages)
followed by lulls—that’s bad
Imagine a cached value with TTL of 1hr enjoying 10,000 hits/sec—that’s good.
Now imagine @ 1hr+1sec 10,000 cache misses —that’s bad.
Typical cache code
function fetch(name)
var data = redis.get(name)
if (!data)
data = recompute(name)
redis.set(name, expires, data)
return data
This “looks” fine, but consider tens of thousands of simultaneous workers calling this code at once:
no mutual exclusion, no upper-bound to simultaneous recomputes or writes … that’s a cache stampede
Typical stampede solutions
(a) Locking
One worker acquires lock, recomputes, and writes value to cache
Other workers wait for lock to be released, then retry cache read
Primary data source is not overloaded by requests
Redis is often used as a cluster-wide distributed lock:
https://redis.io/topics/distlock
Problems with locking
Introduces extra reads and writes into code path
Starvation: expiration / eviction can lead to blocked workers waiting for a
single worker to finish recompute
Distributed locks may be abandoned
Typical stampede solutions
(b) External recompute
Use a separate process / independent worker to recompute value
Workers never recompute
(Alternately, workers recompute as fall-back when external process fails)
Problems with external recompute
One more “moving part”—a daemon, a cron job, work stealing
Requires fall-back scheme if external recompute fails to run
External recomputation is often not easily deterministic:
caching based on a wide variety of user input
periodic external recomputation of 1,000,000 user records
External recomputation may be inefficient if cached values are never read by
XFetch
(Probabilistic early recomputation)
Probabilistic early recomputation (PER)
Recompute cache values before they expire
Before expiration, one worker “volunteers” to recompute the value
Without evicting old value, volunteer performs expensive recompute—
other workers continue reading cache
Before expiration, volunteer writes new cache value and extends its
time-to-live
Under ideal conditions, there are no cache misses
XFetch
Full paper title: “Optimal Probabilistic Cache Stampede Prevention”
Authors:
Andrea Vattani (Goodreads)
Flavio Chierichetti (Sapienza University)
Keegan Lowenstein (Bugsnag)
Archived at IA:
https://archive.org/details/xfetch
The algorithm
XFetch (“exponential fetch”) is elegant:
delta * beta * loge(rand())
where
delta – Time to recompute value
beta – control (default: 1.0, > 1.0 favors earlier recomputation, < 1.0 favors later)
rand – Random number [ 0.0 … 1.0 ]
Remember: log(0) to log(1) is negative, so XFetch produces negative value
Updated code
function fetch(name)
var data,delta,ttl = redis.get(name, delta, ttl)
if (!data or xfetch(delta, time() + ttl))
var data,recompute_time = recompute(name)
redis.set(name, expires, data), redis.set(delta, expires, recompute_time)
return data
function xfetch(delta, expiry)
/* XFetch is negative; value is being added to time() */
return time() - (delta * BETA * log(rand(0,1))) >= expiry
Can more than one volunteer recompute?
Yes. You should know this before using XFetch.
It’s possible for more than one worker to “roll” the magic number and start a
recompute. The odds of this occurring increase as the expiration deadline
approaches.
If your data source absolutely cannot be accessed by multiple workers, use a
lock or another sentinel—XFetch will minimize lock contention
How to determine delta?
XFetch must be supplied with the time required to recompute.
The easiest approach is to store the duration of the last recompute and read it
with the cached value.
What’s the deal with the beta value?
beta is the one knob you have to tweak XFetch.
beta > 1.0 favors earlier recomputation, < 1.0 favors later recomputation.
My suggestion: Start with the default (1.0), instrument your code, and change
only if necessary.
XFetch & Redis
Let’s look at some sample
code
Questions?
Redis & XFetch
Jim Nelson <jnelson@archive.org>
Internet Archive
RedisConf 2017
Ad

More Related Content

What's hot (20)

Alfresco tuning part1
Alfresco tuning part1Alfresco tuning part1
Alfresco tuning part1
Luis Cabaceira
 
ReactJs presentation
ReactJs presentationReactJs presentation
ReactJs presentation
nishasowdri
 
Spring boot 를 적용한 전사모니터링 시스템 backend 개발 사례
Spring boot 를 적용한 전사모니터링 시스템 backend 개발 사례Spring boot 를 적용한 전사모니터링 시스템 backend 개발 사례
Spring boot 를 적용한 전사모니터링 시스템 backend 개발 사례
Jemin Huh
 
Authentication: Cookies vs JWTs and why you’re doing it wrong
Authentication: Cookies vs JWTs and why you’re doing it wrongAuthentication: Cookies vs JWTs and why you’re doing it wrong
Authentication: Cookies vs JWTs and why you’re doing it wrong
Derek Perkins
 
[Spring Camp 2018] 11번가 Spring Cloud 기반 MSA로의 전환 : 지난 1년간의 이야기
[Spring Camp 2018] 11번가 Spring Cloud 기반 MSA로의 전환 : 지난 1년간의 이야기[Spring Camp 2018] 11번가 Spring Cloud 기반 MSA로의 전환 : 지난 1년간의 이야기
[Spring Camp 2018] 11번가 Spring Cloud 기반 MSA로의 전환 : 지난 1년간의 이야기
YongSung Yoon
 
[오픈소스컨설팅] 스카우터 사용자 가이드 2020
[오픈소스컨설팅] 스카우터 사용자 가이드 2020[오픈소스컨설팅] 스카우터 사용자 가이드 2020
[오픈소스컨설팅] 스카우터 사용자 가이드 2020
Ji-Woong Choi
 
PHP7の内部実装から学ぶ性能改善テクニック
PHP7の内部実装から学ぶ性能改善テクニックPHP7の内部実装から学ぶ性能改善テクニック
PHP7の内部実装から学ぶ性能改善テクニック
Yoshio Hanawa
 
게임 운영에 필요한 로그성 데이터들에 대하여
게임 운영에 필요한 로그성 데이터들에 대하여게임 운영에 필요한 로그성 데이터들에 대하여
게임 운영에 필요한 로그성 데이터들에 대하여
iFunFactory Inc.
 
서버학개론(백엔드 서버 개발자를 위한)
서버학개론(백엔드 서버 개발자를 위한)서버학개론(백엔드 서버 개발자를 위한)
서버학개론(백엔드 서버 개발자를 위한)
SU BO KIM
 
[우리가 데이터를 쓰는 법] 모바일 게임 로그 데이터 분석 이야기 - 엔터메이트 공신배 팀장
[우리가 데이터를 쓰는 법] 모바일 게임 로그 데이터 분석 이야기 - 엔터메이트 공신배 팀장[우리가 데이터를 쓰는 법] 모바일 게임 로그 데이터 분석 이야기 - 엔터메이트 공신배 팀장
[우리가 데이터를 쓰는 법] 모바일 게임 로그 데이터 분석 이야기 - 엔터메이트 공신배 팀장
Dylan Ko
 
[2019] PAYCO 쇼핑 마이크로서비스 아키텍처(MSA) 전환기
[2019] PAYCO 쇼핑 마이크로서비스 아키텍처(MSA) 전환기[2019] PAYCO 쇼핑 마이크로서비스 아키텍처(MSA) 전환기
[2019] PAYCO 쇼핑 마이크로서비스 아키텍처(MSA) 전환기
NHN FORWARD
 
DDD와 이벤트소싱
DDD와 이벤트소싱DDD와 이벤트소싱
DDD와 이벤트소싱
Suhyeon Jo
 
[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス
[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス
[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス
Amazon Web Services Japan
 
The Integration of Laravel with Swoole
The Integration of Laravel with SwooleThe Integration of Laravel with Swoole
The Integration of Laravel with Swoole
Albert Chen
 
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트) 마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
Amazon Web Services Korea
 
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐
Terry Cho
 
JavaScript Promises
JavaScript PromisesJavaScript Promises
JavaScript Promises
L&T Technology Services Limited
 
Bigquery와 airflow를 이용한 데이터 분석 시스템 구축 v1 나무기술(주) 최유석 20170912
Bigquery와 airflow를 이용한 데이터 분석 시스템 구축 v1  나무기술(주) 최유석 20170912Bigquery와 airflow를 이용한 데이터 분석 시스템 구축 v1  나무기술(주) 최유석 20170912
Bigquery와 airflow를 이용한 데이터 분석 시스템 구축 v1 나무기술(주) 최유석 20170912
Yooseok Choi
 
実践 NestJS
実践 NestJS実践 NestJS
実践 NestJS
Ayumi Goto
 
[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유
[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유
[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유
Hyojun Jeon
 
ReactJs presentation
ReactJs presentationReactJs presentation
ReactJs presentation
nishasowdri
 
Spring boot 를 적용한 전사모니터링 시스템 backend 개발 사례
Spring boot 를 적용한 전사모니터링 시스템 backend 개발 사례Spring boot 를 적용한 전사모니터링 시스템 backend 개발 사례
Spring boot 를 적용한 전사모니터링 시스템 backend 개발 사례
Jemin Huh
 
Authentication: Cookies vs JWTs and why you’re doing it wrong
Authentication: Cookies vs JWTs and why you’re doing it wrongAuthentication: Cookies vs JWTs and why you’re doing it wrong
Authentication: Cookies vs JWTs and why you’re doing it wrong
Derek Perkins
 
[Spring Camp 2018] 11번가 Spring Cloud 기반 MSA로의 전환 : 지난 1년간의 이야기
[Spring Camp 2018] 11번가 Spring Cloud 기반 MSA로의 전환 : 지난 1년간의 이야기[Spring Camp 2018] 11번가 Spring Cloud 기반 MSA로의 전환 : 지난 1년간의 이야기
[Spring Camp 2018] 11번가 Spring Cloud 기반 MSA로의 전환 : 지난 1년간의 이야기
YongSung Yoon
 
[오픈소스컨설팅] 스카우터 사용자 가이드 2020
[오픈소스컨설팅] 스카우터 사용자 가이드 2020[오픈소스컨설팅] 스카우터 사용자 가이드 2020
[오픈소스컨설팅] 스카우터 사용자 가이드 2020
Ji-Woong Choi
 
PHP7の内部実装から学ぶ性能改善テクニック
PHP7の内部実装から学ぶ性能改善テクニックPHP7の内部実装から学ぶ性能改善テクニック
PHP7の内部実装から学ぶ性能改善テクニック
Yoshio Hanawa
 
게임 운영에 필요한 로그성 데이터들에 대하여
게임 운영에 필요한 로그성 데이터들에 대하여게임 운영에 필요한 로그성 데이터들에 대하여
게임 운영에 필요한 로그성 데이터들에 대하여
iFunFactory Inc.
 
서버학개론(백엔드 서버 개발자를 위한)
서버학개론(백엔드 서버 개발자를 위한)서버학개론(백엔드 서버 개발자를 위한)
서버학개론(백엔드 서버 개발자를 위한)
SU BO KIM
 
[우리가 데이터를 쓰는 법] 모바일 게임 로그 데이터 분석 이야기 - 엔터메이트 공신배 팀장
[우리가 데이터를 쓰는 법] 모바일 게임 로그 데이터 분석 이야기 - 엔터메이트 공신배 팀장[우리가 데이터를 쓰는 법] 모바일 게임 로그 데이터 분석 이야기 - 엔터메이트 공신배 팀장
[우리가 데이터를 쓰는 법] 모바일 게임 로그 데이터 분석 이야기 - 엔터메이트 공신배 팀장
Dylan Ko
 
[2019] PAYCO 쇼핑 마이크로서비스 아키텍처(MSA) 전환기
[2019] PAYCO 쇼핑 마이크로서비스 아키텍처(MSA) 전환기[2019] PAYCO 쇼핑 마이크로서비스 아키텍처(MSA) 전환기
[2019] PAYCO 쇼핑 마이크로서비스 아키텍처(MSA) 전환기
NHN FORWARD
 
DDD와 이벤트소싱
DDD와 이벤트소싱DDD와 이벤트소싱
DDD와 이벤트소싱
Suhyeon Jo
 
[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス
[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス
[Aurora事例祭り]Amazon Aurora を使いこなすためのベストプラクティス
Amazon Web Services Japan
 
The Integration of Laravel with Swoole
The Integration of Laravel with SwooleThe Integration of Laravel with Swoole
The Integration of Laravel with Swoole
Albert Chen
 
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트) 마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
마이크로서비스 기반 클라우드 아키텍처 구성 모범 사례 - 윤석찬 (AWS 테크에반젤리스트)
Amazon Web Services Korea
 
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐
대용량 분산 아키텍쳐 설계 #3 대용량 분산 시스템 아키텍쳐
Terry Cho
 
Bigquery와 airflow를 이용한 데이터 분석 시스템 구축 v1 나무기술(주) 최유석 20170912
Bigquery와 airflow를 이용한 데이터 분석 시스템 구축 v1  나무기술(주) 최유석 20170912Bigquery와 airflow를 이용한 데이터 분석 시스템 구축 v1  나무기술(주) 최유석 20170912
Bigquery와 airflow를 이용한 데이터 분석 시스템 구축 v1 나무기술(주) 최유석 20170912
Yooseok Choi
 
[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유
[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유
[NDC18] 야생의 땅 듀랑고의 데이터 엔지니어링 이야기: 로그 시스템 구축 경험 공유
Hyojun Jeon
 

Similar to RedisConf17 - Internet Archive - Preventing Cache Stampede with Redis and XFetch (20)

Sedna XML Database: Executor Internals
Sedna XML Database: Executor InternalsSedna XML Database: Executor Internals
Sedna XML Database: Executor Internals
Ivan Shcheklein
 
A Scalable I/O Manager for GHC
A Scalable I/O Manager for GHCA Scalable I/O Manager for GHC
A Scalable I/O Manager for GHC
Johan Tibell
 
Performance and predictability (1)
Performance and predictability (1)Performance and predictability (1)
Performance and predictability (1)
RichardWarburton
 
Performance and Predictability - Richard Warburton
Performance and Predictability - Richard WarburtonPerformance and Predictability - Richard Warburton
Performance and Predictability - Richard Warburton
JAXLondon2014
 
Work Stealing For Fun & Profit: Jim Nelson
Work Stealing For Fun & Profit: Jim NelsonWork Stealing For Fun & Profit: Jim Nelson
Work Stealing For Fun & Profit: Jim Nelson
Redis Labs
 
Leveraging Hadoop in your PostgreSQL Environment
Leveraging Hadoop in your PostgreSQL EnvironmentLeveraging Hadoop in your PostgreSQL Environment
Leveraging Hadoop in your PostgreSQL Environment
Jim Mlodgenski
 
.NET Fest 2018. Maarten Balliauw. Let’s refresh our memory! Memory management...
.NET Fest 2018. Maarten Balliauw. Let’s refresh our memory! Memory management....NET Fest 2018. Maarten Balliauw. Let’s refresh our memory! Memory management...
.NET Fest 2018. Maarten Balliauw. Let’s refresh our memory! Memory management...
NETFest
 
Openstack meetup lyon_2017-09-28
Openstack meetup lyon_2017-09-28Openstack meetup lyon_2017-09-28
Openstack meetup lyon_2017-09-28
Xavier Lucas
 
Java In-Process Caching - Performance, Progress and Pittfalls
Java In-Process Caching - Performance, Progress and PittfallsJava In-Process Caching - Performance, Progress and Pittfalls
Java In-Process Caching - Performance, Progress and Pittfalls
cruftex
 
Java In-Process Caching - Performance, Progress and Pitfalls
Java In-Process Caching - Performance, Progress and PitfallsJava In-Process Caching - Performance, Progress and Pitfalls
Java In-Process Caching - Performance, Progress and Pitfalls
Jens Wilke
 
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
HostedbyConfluent
 
[Ruxcon Monthly Sydney 2011] Proprietary Protocols Reverse Engineering : Rese...
[Ruxcon Monthly Sydney 2011] Proprietary Protocols Reverse Engineering : Rese...[Ruxcon Monthly Sydney 2011] Proprietary Protocols Reverse Engineering : Rese...
[Ruxcon Monthly Sydney 2011] Proprietary Protocols Reverse Engineering : Rese...
Moabi.com
 
GC free coding in @Java presented @Geecon
GC free coding in @Java presented @GeeconGC free coding in @Java presented @Geecon
GC free coding in @Java presented @Geecon
Peter Lawrey
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
Antonios Katsarakis
 
DotNetFest - Let’s refresh our memory! Memory management in .NET
DotNetFest - Let’s refresh our memory! Memory management in .NETDotNetFest - Let’s refresh our memory! Memory management in .NET
DotNetFest - Let’s refresh our memory! Memory management in .NET
Maarten Balliauw
 
Servers and Processes: Behavior and Analysis
Servers and Processes: Behavior and AnalysisServers and Processes: Behavior and Analysis
Servers and Processes: Behavior and Analysis
dreamwidth
 
Web program-peformance-optimization
Web program-peformance-optimizationWeb program-peformance-optimization
Web program-peformance-optimization
xiaojueqq12345
 
Zaharia spark-scala-days-2012
Zaharia spark-scala-days-2012Zaharia spark-scala-days-2012
Zaharia spark-scala-days-2012
Skills Matter Talks
 
Privilege Escalation with Metasploit
Privilege Escalation with MetasploitPrivilege Escalation with Metasploit
Privilege Escalation with Metasploit
egypt
 
Flink internals web
Flink internals web Flink internals web
Flink internals web
Kostas Tzoumas
 
Sedna XML Database: Executor Internals
Sedna XML Database: Executor InternalsSedna XML Database: Executor Internals
Sedna XML Database: Executor Internals
Ivan Shcheklein
 
A Scalable I/O Manager for GHC
A Scalable I/O Manager for GHCA Scalable I/O Manager for GHC
A Scalable I/O Manager for GHC
Johan Tibell
 
Performance and predictability (1)
Performance and predictability (1)Performance and predictability (1)
Performance and predictability (1)
RichardWarburton
 
Performance and Predictability - Richard Warburton
Performance and Predictability - Richard WarburtonPerformance and Predictability - Richard Warburton
Performance and Predictability - Richard Warburton
JAXLondon2014
 
Work Stealing For Fun & Profit: Jim Nelson
Work Stealing For Fun & Profit: Jim NelsonWork Stealing For Fun & Profit: Jim Nelson
Work Stealing For Fun & Profit: Jim Nelson
Redis Labs
 
Leveraging Hadoop in your PostgreSQL Environment
Leveraging Hadoop in your PostgreSQL EnvironmentLeveraging Hadoop in your PostgreSQL Environment
Leveraging Hadoop in your PostgreSQL Environment
Jim Mlodgenski
 
.NET Fest 2018. Maarten Balliauw. Let’s refresh our memory! Memory management...
.NET Fest 2018. Maarten Balliauw. Let’s refresh our memory! Memory management....NET Fest 2018. Maarten Balliauw. Let’s refresh our memory! Memory management...
.NET Fest 2018. Maarten Balliauw. Let’s refresh our memory! Memory management...
NETFest
 
Openstack meetup lyon_2017-09-28
Openstack meetup lyon_2017-09-28Openstack meetup lyon_2017-09-28
Openstack meetup lyon_2017-09-28
Xavier Lucas
 
Java In-Process Caching - Performance, Progress and Pittfalls
Java In-Process Caching - Performance, Progress and PittfallsJava In-Process Caching - Performance, Progress and Pittfalls
Java In-Process Caching - Performance, Progress and Pittfalls
cruftex
 
Java In-Process Caching - Performance, Progress and Pitfalls
Java In-Process Caching - Performance, Progress and PitfallsJava In-Process Caching - Performance, Progress and Pitfalls
Java In-Process Caching - Performance, Progress and Pitfalls
Jens Wilke
 
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
Streaming Data Lakes using Kafka Connect + Apache Hudi | Vinoth Chandar, Apac...
HostedbyConfluent
 
[Ruxcon Monthly Sydney 2011] Proprietary Protocols Reverse Engineering : Rese...
[Ruxcon Monthly Sydney 2011] Proprietary Protocols Reverse Engineering : Rese...[Ruxcon Monthly Sydney 2011] Proprietary Protocols Reverse Engineering : Rese...
[Ruxcon Monthly Sydney 2011] Proprietary Protocols Reverse Engineering : Rese...
Moabi.com
 
GC free coding in @Java presented @Geecon
GC free coding in @Java presented @GeeconGC free coding in @Java presented @Geecon
GC free coding in @Java presented @Geecon
Peter Lawrey
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
Antonios Katsarakis
 
DotNetFest - Let’s refresh our memory! Memory management in .NET
DotNetFest - Let’s refresh our memory! Memory management in .NETDotNetFest - Let’s refresh our memory! Memory management in .NET
DotNetFest - Let’s refresh our memory! Memory management in .NET
Maarten Balliauw
 
Servers and Processes: Behavior and Analysis
Servers and Processes: Behavior and AnalysisServers and Processes: Behavior and Analysis
Servers and Processes: Behavior and Analysis
dreamwidth
 
Web program-peformance-optimization
Web program-peformance-optimizationWeb program-peformance-optimization
Web program-peformance-optimization
xiaojueqq12345
 
Privilege Escalation with Metasploit
Privilege Escalation with MetasploitPrivilege Escalation with Metasploit
Privilege Escalation with Metasploit
egypt
 
Ad

More from Redis Labs (20)

Redis Day Bangalore 2020 - Session state caching with redis
Redis Day Bangalore 2020 - Session state caching with redisRedis Day Bangalore 2020 - Session state caching with redis
Redis Day Bangalore 2020 - Session state caching with redis
Redis Labs
 
Protecting Your API with Redis by Jane Paek - Redis Day Seattle 2020
Protecting Your API with Redis by Jane Paek - Redis Day Seattle 2020Protecting Your API with Redis by Jane Paek - Redis Day Seattle 2020
Protecting Your API with Redis by Jane Paek - Redis Day Seattle 2020
Redis Labs
 
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
Redis Labs
 
SQL, Redis and Kubernetes by Paul Stanton of Windocks - Redis Day Seattle 2020
SQL, Redis and Kubernetes by Paul Stanton of Windocks - Redis Day Seattle 2020SQL, Redis and Kubernetes by Paul Stanton of Windocks - Redis Day Seattle 2020
SQL, Redis and Kubernetes by Paul Stanton of Windocks - Redis Day Seattle 2020
Redis Labs
 
Rust and Redis - Solving Problems for Kubernetes by Ravi Jagannathan of VMwar...
Rust and Redis - Solving Problems for Kubernetes by Ravi Jagannathan of VMwar...Rust and Redis - Solving Problems for Kubernetes by Ravi Jagannathan of VMwar...
Rust and Redis - Solving Problems for Kubernetes by Ravi Jagannathan of VMwar...
Redis Labs
 
Redis for Data Science and Engineering by Dmitry Polyakovsky of Oracle
Redis for Data Science and Engineering by Dmitry Polyakovsky of OracleRedis for Data Science and Engineering by Dmitry Polyakovsky of Oracle
Redis for Data Science and Engineering by Dmitry Polyakovsky of Oracle
Redis Labs
 
Practical Use Cases for ACLs in Redis 6 by Jamie Scott - Redis Day Seattle 2020
Practical Use Cases for ACLs in Redis 6 by Jamie Scott - Redis Day Seattle 2020Practical Use Cases for ACLs in Redis 6 by Jamie Scott - Redis Day Seattle 2020
Practical Use Cases for ACLs in Redis 6 by Jamie Scott - Redis Day Seattle 2020
Redis Labs
 
Moving Beyond Cache by Yiftach Shoolman Redis Labs - Redis Day Seattle 2020
Moving Beyond Cache by Yiftach Shoolman Redis Labs - Redis Day Seattle 2020Moving Beyond Cache by Yiftach Shoolman Redis Labs - Redis Day Seattle 2020
Moving Beyond Cache by Yiftach Shoolman Redis Labs - Redis Day Seattle 2020
Redis Labs
 
Leveraging Redis for System Monitoring by Adam McCormick of SBG - Redis Day S...
Leveraging Redis for System Monitoring by Adam McCormick of SBG - Redis Day S...Leveraging Redis for System Monitoring by Adam McCormick of SBG - Redis Day S...
Leveraging Redis for System Monitoring by Adam McCormick of SBG - Redis Day S...
Redis Labs
 
JSON in Redis - When to use RedisJSON by Jay Won of Coupang - Redis Day Seatt...
JSON in Redis - When to use RedisJSON by Jay Won of Coupang - Redis Day Seatt...JSON in Redis - When to use RedisJSON by Jay Won of Coupang - Redis Day Seatt...
JSON in Redis - When to use RedisJSON by Jay Won of Coupang - Redis Day Seatt...
Redis Labs
 
Highly Available Persistent Session Management Service by Mohamed Elmergawi o...
Highly Available Persistent Session Management Service by Mohamed Elmergawi o...Highly Available Persistent Session Management Service by Mohamed Elmergawi o...
Highly Available Persistent Session Management Service by Mohamed Elmergawi o...
Redis Labs
 
Anatomy of a Redis Command by Madelyn Olson of Amazon Web Services - Redis Da...
Anatomy of a Redis Command by Madelyn Olson of Amazon Web Services - Redis Da...Anatomy of a Redis Command by Madelyn Olson of Amazon Web Services - Redis Da...
Anatomy of a Redis Command by Madelyn Olson of Amazon Web Services - Redis Da...
Redis Labs
 
Building a Multi-dimensional Analytics Engine with RedisGraph by Matthew Goos...
Building a Multi-dimensional Analytics Engine with RedisGraph by Matthew Goos...Building a Multi-dimensional Analytics Engine with RedisGraph by Matthew Goos...
Building a Multi-dimensional Analytics Engine with RedisGraph by Matthew Goos...
Redis Labs
 
RediSearch 1.6 by Pieter Cailliau - Redis Day Bangalore 2020
RediSearch 1.6 by Pieter Cailliau - Redis Day Bangalore 2020RediSearch 1.6 by Pieter Cailliau - Redis Day Bangalore 2020
RediSearch 1.6 by Pieter Cailliau - Redis Day Bangalore 2020
Redis Labs
 
RedisGraph 2.0 by Pieter Cailliau - Redis Day Bangalore 2020
RedisGraph 2.0 by Pieter Cailliau - Redis Day Bangalore 2020RedisGraph 2.0 by Pieter Cailliau - Redis Day Bangalore 2020
RedisGraph 2.0 by Pieter Cailliau - Redis Day Bangalore 2020
Redis Labs
 
RedisTimeSeries 1.2 by Pieter Cailliau - Redis Day Bangalore 2020
RedisTimeSeries 1.2 by Pieter Cailliau - Redis Day Bangalore 2020RedisTimeSeries 1.2 by Pieter Cailliau - Redis Day Bangalore 2020
RedisTimeSeries 1.2 by Pieter Cailliau - Redis Day Bangalore 2020
Redis Labs
 
RedisAI 0.9 by Sherin Thomas of Tensorwerk - Redis Day Bangalore 2020
RedisAI 0.9 by Sherin Thomas of Tensorwerk - Redis Day Bangalore 2020RedisAI 0.9 by Sherin Thomas of Tensorwerk - Redis Day Bangalore 2020
RedisAI 0.9 by Sherin Thomas of Tensorwerk - Redis Day Bangalore 2020
Redis Labs
 
Rate-Limiting 30 Million requests by Vijay Lakshminarayanan and Girish Koundi...
Rate-Limiting 30 Million requests by Vijay Lakshminarayanan and Girish Koundi...Rate-Limiting 30 Million requests by Vijay Lakshminarayanan and Girish Koundi...
Rate-Limiting 30 Million requests by Vijay Lakshminarayanan and Girish Koundi...
Redis Labs
 
Three Pillars of Observability by Rajalakshmi Raji Srinivasan of Site24x7 Zoh...
Three Pillars of Observability by Rajalakshmi Raji Srinivasan of Site24x7 Zoh...Three Pillars of Observability by Rajalakshmi Raji Srinivasan of Site24x7 Zoh...
Three Pillars of Observability by Rajalakshmi Raji Srinivasan of Site24x7 Zoh...
Redis Labs
 
Solving Complex Scaling Problems by Prashant Kumar and Abhishek Jain of Myntr...
Solving Complex Scaling Problems by Prashant Kumar and Abhishek Jain of Myntr...Solving Complex Scaling Problems by Prashant Kumar and Abhishek Jain of Myntr...
Solving Complex Scaling Problems by Prashant Kumar and Abhishek Jain of Myntr...
Redis Labs
 
Redis Day Bangalore 2020 - Session state caching with redis
Redis Day Bangalore 2020 - Session state caching with redisRedis Day Bangalore 2020 - Session state caching with redis
Redis Day Bangalore 2020 - Session state caching with redis
Redis Labs
 
Protecting Your API with Redis by Jane Paek - Redis Day Seattle 2020
Protecting Your API with Redis by Jane Paek - Redis Day Seattle 2020Protecting Your API with Redis by Jane Paek - Redis Day Seattle 2020
Protecting Your API with Redis by Jane Paek - Redis Day Seattle 2020
Redis Labs
 
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
The Happy Marriage of Redis and Protobuf by Scott Haines of Twilio - Redis Da...
Redis Labs
 
SQL, Redis and Kubernetes by Paul Stanton of Windocks - Redis Day Seattle 2020
SQL, Redis and Kubernetes by Paul Stanton of Windocks - Redis Day Seattle 2020SQL, Redis and Kubernetes by Paul Stanton of Windocks - Redis Day Seattle 2020
SQL, Redis and Kubernetes by Paul Stanton of Windocks - Redis Day Seattle 2020
Redis Labs
 
Rust and Redis - Solving Problems for Kubernetes by Ravi Jagannathan of VMwar...
Rust and Redis - Solving Problems for Kubernetes by Ravi Jagannathan of VMwar...Rust and Redis - Solving Problems for Kubernetes by Ravi Jagannathan of VMwar...
Rust and Redis - Solving Problems for Kubernetes by Ravi Jagannathan of VMwar...
Redis Labs
 
Redis for Data Science and Engineering by Dmitry Polyakovsky of Oracle
Redis for Data Science and Engineering by Dmitry Polyakovsky of OracleRedis for Data Science and Engineering by Dmitry Polyakovsky of Oracle
Redis for Data Science and Engineering by Dmitry Polyakovsky of Oracle
Redis Labs
 
Practical Use Cases for ACLs in Redis 6 by Jamie Scott - Redis Day Seattle 2020
Practical Use Cases for ACLs in Redis 6 by Jamie Scott - Redis Day Seattle 2020Practical Use Cases for ACLs in Redis 6 by Jamie Scott - Redis Day Seattle 2020
Practical Use Cases for ACLs in Redis 6 by Jamie Scott - Redis Day Seattle 2020
Redis Labs
 
Moving Beyond Cache by Yiftach Shoolman Redis Labs - Redis Day Seattle 2020
Moving Beyond Cache by Yiftach Shoolman Redis Labs - Redis Day Seattle 2020Moving Beyond Cache by Yiftach Shoolman Redis Labs - Redis Day Seattle 2020
Moving Beyond Cache by Yiftach Shoolman Redis Labs - Redis Day Seattle 2020
Redis Labs
 
Leveraging Redis for System Monitoring by Adam McCormick of SBG - Redis Day S...
Leveraging Redis for System Monitoring by Adam McCormick of SBG - Redis Day S...Leveraging Redis for System Monitoring by Adam McCormick of SBG - Redis Day S...
Leveraging Redis for System Monitoring by Adam McCormick of SBG - Redis Day S...
Redis Labs
 
JSON in Redis - When to use RedisJSON by Jay Won of Coupang - Redis Day Seatt...
JSON in Redis - When to use RedisJSON by Jay Won of Coupang - Redis Day Seatt...JSON in Redis - When to use RedisJSON by Jay Won of Coupang - Redis Day Seatt...
JSON in Redis - When to use RedisJSON by Jay Won of Coupang - Redis Day Seatt...
Redis Labs
 
Highly Available Persistent Session Management Service by Mohamed Elmergawi o...
Highly Available Persistent Session Management Service by Mohamed Elmergawi o...Highly Available Persistent Session Management Service by Mohamed Elmergawi o...
Highly Available Persistent Session Management Service by Mohamed Elmergawi o...
Redis Labs
 
Anatomy of a Redis Command by Madelyn Olson of Amazon Web Services - Redis Da...
Anatomy of a Redis Command by Madelyn Olson of Amazon Web Services - Redis Da...Anatomy of a Redis Command by Madelyn Olson of Amazon Web Services - Redis Da...
Anatomy of a Redis Command by Madelyn Olson of Amazon Web Services - Redis Da...
Redis Labs
 
Building a Multi-dimensional Analytics Engine with RedisGraph by Matthew Goos...
Building a Multi-dimensional Analytics Engine with RedisGraph by Matthew Goos...Building a Multi-dimensional Analytics Engine with RedisGraph by Matthew Goos...
Building a Multi-dimensional Analytics Engine with RedisGraph by Matthew Goos...
Redis Labs
 
RediSearch 1.6 by Pieter Cailliau - Redis Day Bangalore 2020
RediSearch 1.6 by Pieter Cailliau - Redis Day Bangalore 2020RediSearch 1.6 by Pieter Cailliau - Redis Day Bangalore 2020
RediSearch 1.6 by Pieter Cailliau - Redis Day Bangalore 2020
Redis Labs
 
RedisGraph 2.0 by Pieter Cailliau - Redis Day Bangalore 2020
RedisGraph 2.0 by Pieter Cailliau - Redis Day Bangalore 2020RedisGraph 2.0 by Pieter Cailliau - Redis Day Bangalore 2020
RedisGraph 2.0 by Pieter Cailliau - Redis Day Bangalore 2020
Redis Labs
 
RedisTimeSeries 1.2 by Pieter Cailliau - Redis Day Bangalore 2020
RedisTimeSeries 1.2 by Pieter Cailliau - Redis Day Bangalore 2020RedisTimeSeries 1.2 by Pieter Cailliau - Redis Day Bangalore 2020
RedisTimeSeries 1.2 by Pieter Cailliau - Redis Day Bangalore 2020
Redis Labs
 
RedisAI 0.9 by Sherin Thomas of Tensorwerk - Redis Day Bangalore 2020
RedisAI 0.9 by Sherin Thomas of Tensorwerk - Redis Day Bangalore 2020RedisAI 0.9 by Sherin Thomas of Tensorwerk - Redis Day Bangalore 2020
RedisAI 0.9 by Sherin Thomas of Tensorwerk - Redis Day Bangalore 2020
Redis Labs
 
Rate-Limiting 30 Million requests by Vijay Lakshminarayanan and Girish Koundi...
Rate-Limiting 30 Million requests by Vijay Lakshminarayanan and Girish Koundi...Rate-Limiting 30 Million requests by Vijay Lakshminarayanan and Girish Koundi...
Rate-Limiting 30 Million requests by Vijay Lakshminarayanan and Girish Koundi...
Redis Labs
 
Three Pillars of Observability by Rajalakshmi Raji Srinivasan of Site24x7 Zoh...
Three Pillars of Observability by Rajalakshmi Raji Srinivasan of Site24x7 Zoh...Three Pillars of Observability by Rajalakshmi Raji Srinivasan of Site24x7 Zoh...
Three Pillars of Observability by Rajalakshmi Raji Srinivasan of Site24x7 Zoh...
Redis Labs
 
Solving Complex Scaling Problems by Prashant Kumar and Abhishek Jain of Myntr...
Solving Complex Scaling Problems by Prashant Kumar and Abhishek Jain of Myntr...Solving Complex Scaling Problems by Prashant Kumar and Abhishek Jain of Myntr...
Solving Complex Scaling Problems by Prashant Kumar and Abhishek Jain of Myntr...
Redis Labs
 
Ad

Recently uploaded (20)

Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...What is Model Context Protocol(MCP) - The new technology for communication bw...
What is Model Context Protocol(MCP) - The new technology for communication bw...
Vishnu Singh Chundawat
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
tecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdftecnologias de las primeras civilizaciones.pdf
tecnologias de las primeras civilizaciones.pdf
fjgm517
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven InsightsAndrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell: Transforming Business Strategy Through Data-Driven Insights
Andrew Marnell
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
HCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser EnvironmentsHCL Nomad Web – Best Practices and Managing Multiuser Environments
HCL Nomad Web – Best Practices and Managing Multiuser Environments
panagenda
 
Generative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in BusinessGenerative Artificial Intelligence (GenAI) in Business
Generative Artificial Intelligence (GenAI) in Business
Dr. Tathagat Varma
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
AI EngineHost Review: Revolutionary USA Datacenter-Based Hosting with NVIDIA ...
SOFTTECHHUB
 

RedisConf17 - Internet Archive - Preventing Cache Stampede with Redis and XFetch

  • 1. Preventing cache stampede with Redis & XFetch Jim Nelson <[email protected]> Internet Archive RedisConf 2017
  • 2. Internet Archive Universal Access to All Knowledge Founded 1996, based in San Francisco Archive of digital and physical media Includes Web, books, music, film, software & more Digital holdings: over 30 petabytes & counting Key collections & services: Wayback Machine Grateful Dead live concert collection
  • 3. Internet Archive ♡ Redis Caching & other services backed by 10-node sharded Redis cluster Sharding performed client-side via consistent hashing (PHP, Predis) Each node supported by two replicated mirrors (fail-over) Specialized Redis instances also used throughout IA’s services, including Wayback, search, and more
  • 4. Caching: Quick terminology I assume we all know what caching is. This is the terminology I’ll use today: Recompute: Expensive operation whose result is cached (database query, file system read, HTTP request to remote service) Expiration: When a cache value is considered stale or out-of-date (time-to-live) Evict: Removing a value from the cache (to forcibly invalidate a value prior to expiry)
  • 6. Cache stampede “A cache stampede is a type of cascading failure that can occur when massively parallel computing systems with caching mechanisms come under very high load. This behaviour is sometimes also called dog-piling.” –Wikipedia https://en.wikipedia.org/wiki/Cache_stampede
  • 7. Cache stampede: A scenario Multiple servers, each with multiple workers serving requests, accessing a common cached value When the cached value expires or is evicted, all workers experience a simultaneous cache miss Workers recompute the missing value, causing overload of primary data sources (e.g. database) and/or hung requests
  • 8. Congestion collapse Hung workers due to network congestion or expensive recomputes—that’s bad Discarded user requests—that’s bad Overloaded primary data stores (“Sources of Truth”)—that’s bad Harmonics (peaks & valleys): brief periods of intense activity (mini-outages) followed by lulls—that’s bad Imagine a cached value with TTL of 1hr enjoying 10,000 hits/sec—that’s good. Now imagine @ 1hr+1sec 10,000 cache misses —that’s bad.
  • 9. Typical cache code function fetch(name) var data = redis.get(name) if (!data) data = recompute(name) redis.set(name, expires, data) return data This “looks” fine, but consider tens of thousands of simultaneous workers calling this code at once: no mutual exclusion, no upper-bound to simultaneous recomputes or writes … that’s a cache stampede
  • 10. Typical stampede solutions (a) Locking One worker acquires lock, recomputes, and writes value to cache Other workers wait for lock to be released, then retry cache read Primary data source is not overloaded by requests Redis is often used as a cluster-wide distributed lock: https://redis.io/topics/distlock
  • 11. Problems with locking Introduces extra reads and writes into code path Starvation: expiration / eviction can lead to blocked workers waiting for a single worker to finish recompute Distributed locks may be abandoned
  • 12. Typical stampede solutions (b) External recompute Use a separate process / independent worker to recompute value Workers never recompute (Alternately, workers recompute as fall-back when external process fails)
  • 13. Problems with external recompute One more “moving part”—a daemon, a cron job, work stealing Requires fall-back scheme if external recompute fails to run External recomputation is often not easily deterministic: caching based on a wide variety of user input periodic external recomputation of 1,000,000 user records External recomputation may be inefficient if cached values are never read by
  • 15. Probabilistic early recomputation (PER) Recompute cache values before they expire Before expiration, one worker “volunteers” to recompute the value Without evicting old value, volunteer performs expensive recompute— other workers continue reading cache Before expiration, volunteer writes new cache value and extends its time-to-live Under ideal conditions, there are no cache misses
  • 16. XFetch Full paper title: “Optimal Probabilistic Cache Stampede Prevention” Authors: Andrea Vattani (Goodreads) Flavio Chierichetti (Sapienza University) Keegan Lowenstein (Bugsnag) Archived at IA: https://archive.org/details/xfetch
  • 17. The algorithm XFetch (“exponential fetch”) is elegant: delta * beta * loge(rand()) where delta – Time to recompute value beta – control (default: 1.0, > 1.0 favors earlier recomputation, < 1.0 favors later) rand – Random number [ 0.0 … 1.0 ] Remember: log(0) to log(1) is negative, so XFetch produces negative value
  • 18. Updated code function fetch(name) var data,delta,ttl = redis.get(name, delta, ttl) if (!data or xfetch(delta, time() + ttl)) var data,recompute_time = recompute(name) redis.set(name, expires, data), redis.set(delta, expires, recompute_time) return data function xfetch(delta, expiry) /* XFetch is negative; value is being added to time() */ return time() - (delta * BETA * log(rand(0,1))) >= expiry
  • 19. Can more than one volunteer recompute? Yes. You should know this before using XFetch. It’s possible for more than one worker to “roll” the magic number and start a recompute. The odds of this occurring increase as the expiration deadline approaches. If your data source absolutely cannot be accessed by multiple workers, use a lock or another sentinel—XFetch will minimize lock contention
  • 20. How to determine delta? XFetch must be supplied with the time required to recompute. The easiest approach is to store the duration of the last recompute and read it with the cached value.
  • 21. What’s the deal with the beta value? beta is the one knob you have to tweak XFetch. beta > 1.0 favors earlier recomputation, < 1.0 favors later recomputation. My suggestion: Start with the default (1.0), instrument your code, and change only if necessary.
  • 22. XFetch & Redis Let’s look at some sample code
  • 24. Redis & XFetch Jim Nelson <[email protected]> Internet Archive RedisConf 2017