Abstract: The amount of information stored in the form of digital has a gigantic growth in this electronic era. Extraction of heterogeneous entities from biomedical documents is being a big challenge as achieving high f-score is still a problem. Text Mining plays a vital role for extracting different types of entities and finding relationship between the entities from huge collection of biomedical documents. We have proposed hybrid approach which includes a Dictionary based approach and a Rule based approach to reduce the number of false negatives and the Random Forest Algorithm to improve f-score measure.