SlideShare a Scribd company logo
Report on the First Knowledge Graph
Reasoning Challenge 2018
– Toward the eXplainable AI System –
Takahiro Kawamura*1, Shusaku Egami*2, Koutarou Tamura*3,
Yasunori Hokazono*4, Takanori Ugai*5, Yusuke Koyanagi*5,
Fumihito Nishino*5, Seiji Okajima*5, Katsuhiko Murakami*5,
Kunihiko Takamatsu*6, Aoi Sugiura*7, Shun Shiramatsu*8,
Shawn Zhang*8, Kouji Kozaki*9
1.National Agriculture and Food Research Organization, Japan
2.National Institute of Maritime, Port and Aviation Technology, Japan
3. NRI digital, Ltd. 4.Nomura Research Institute, Ltd.
5. Fujitsu Laboratories Ltd. 6. Kobe Tokiwa University 7. Kobe City Nishi-Kobe Medical Center
8.Nagoya Institute of Technology 9. Osaka Electro-Communication University
Investig
ation
strategy
Criminal
motive ….
Summary of Knowledge Graph Reasoning Challenge
A Contest to develop AI systems which have
abilities for “Reasoning” and “Explanation”
such like Sherlock Holmes.
Sherlock
Holmes
mystery story
Open Knowledge
Graph(OKG) AI system that estimate criminals
with reasonable explanations using
the OKG and other knowledge
The motive is …
Trick is …
The criminal is
XX Because …
Agenda of Talk
• Summary of Knowledge Graph Reasoning Challenge
by K. Kozaki
• Knowledge Graph Construction
by S. Egami
• Approach for estimation and reasoning techniques
by T. Ugai
• Evaluation / Conclusion and Current Work
by T. Kawamra
3
Knowledge Graph Construction
4
Knowledge Graph construction process
Extract scenes
(Manual)
Sentence
Simplification
(Manual)
Semantic Role
Annotating
(Manual)
Translation
(Auto)
RDF
construction
(Auto)
Add object types
(Manual)
Add absolute
time
(Manual)
Scene Linking
(Manual)
• Discussion about schema design and methodology
• We first held five open workshops from November 2017 to April 2018.
• The total number of participants in the workshops was 110.
• After the preliminary experiment of knowledge graph construction cooperating with the participants, we
finally adopted the below process.
5
• Basic policy
– Focus on scenes in a novel and the relationship of those scenes, including the
characters, objects, places, etc., with related scenes
• A scene ID (IRI) has subjects, verbs, objects, etc.
• Edges mainly represent five Ws (When, Where, Who, What, and Why).
Architecture of the Knowledge Graph
Scene1 Scene2 Scene3
Scene4
Scene5
Resource
Literal
type subject
source
source
subject subject
hasPredicate
source
hasPredicate
subject
hasPredicate
then
therefore because
then
6
Scene ID
Source text
Subject
Predicate
Object
subject
hasPredicate
source
5W1H
Scene ID
Relatio
n
• Properties representing scenes
– subject (who): A person or object representing the subject of the scene
– hasPredicate: A predicate representing the content of the scene
– 5W1H: what, where, when, whom, why, how.
– Relation among scenes: then, if, because, …etc.
– time: Absolute time(xsd:DateTime)
– source: Source text(EN/JP literal)
subject object
predicate
Scene
subject objectpredicate
Schema (Scene)
7
Original Sentence (EN|JA)
Absolute Time
Property values are defined as
resources to be referred in the
other scene
Predicate
Subject
Relationship to other Scene ID
Scene Type
- Situation: Fact
- Statement:Remark by A
- Talk: Remark by A to B
- Thought: Idea of A
Schema (Scene): Example
Unique ID (IRI)
of Each scene
8
Classes and Properties
9
Visualization tool
• We provided a knowledge graph visualization tool for applicants
Visualization
SPARQL query text
Keyword search
http://knowledge-graph.jp/visualization/ 10
Approach for estimation and
reasoning techniques
11
First Prized: NRI
• formalized the problem
as a constraint
satisfaction problem and
solved with a
lightweight formal
method
12
Second Prized: Fujitsu Laboratories
• used SPARQL and rules
13
Best Idea: Nagoya Institute of Technology
• discusses multi-agents model
14
Best Resource: Fujitsu Laboratories
• constructed word embedding of characters from all sentences of
Sherlock Holmes novels
15
Evaluation
16
Evaluation
• For evaluating estimation and reasoning techniques with explainability,
– metrics design for explainability, utility, novelty, and performance is required,
– but evaluation is also based on a qualitative comparison through discussion and
peer reviews.
• DARPA XAI states that
– the current AI techniques have a trade-off between accuracy and explainability,
so both properties should be measured.
– In particular, to measure the effectiveness of the explainability,
DARPA XAI rates user satisfaction regarding its clarity and utility.
• We first share the basic information of the proposed approaches, and then discuss the
evaluation of experts and of the general public.
17
Sharing Basic Information for Preparation
• The basic info. Was investigated and shared with experts in advance,
who were 7 board members of the SIG on Semantic Web and Ontology in JSAI
– Correctness of the answer
Check if the resulting criminal was correct or not, regardless of the approach.
The criminal, in this case, is the one designated in the novel or story.
– Feasibility of the program
Check if the submitted program correctly worked and the results were reproduced
(excluding idea-only submissions).
– Performance of the program
Referential information on the system environment and performance of the submitted
program, except for the idea only.
– Amount of data/knowledge to be used
How much did the approach use the knowledge graph (the total num. of scene IDs used)?
If the approach used external knowledge and data, we noted information about them.
18
Expert Evaluation
• Over more than a week, the experts evaluated the following aspects
according to five grades (1–5).
• For Estimation and/or reasoning methods,
– Significance
Novelty and technical improvement of the method.
– Applicability
Is the approach applicable to the other problems?
3 : applicable to the other novels and stories
5 : applicable to other domains.
– Extensibility
Is the approach expected to have a further technical extension?
19
Expert Evaluation cont'd
• For Knowledge and data,
– Originality of knowledge/data construction
E.g., how much external knowledge and data were prepared?
– Originality of knowledge/data use
E.g., was a small set of knowledge used efficiently, or
was a large set of knowledge used to simplify the process.
• and…
– Feasibility of idea (for idea only)
Feasibility of idea including algorithms and data/knowledge construction.
– Logical explainability
Is an explanation logically persuadable?
1 : no explanation and evidence
3 : some evidence in any form is provided
5 : there is an explanation that is consistent with the estimation and reasoning process.
– Effort
Amount of effort required for the submission (knowledge/data/system).
20
Public Evaluation
• Although the experts determine if a logical explanation could be held,
the public eval. focused on the psychological aspect of the explanations, that is,
the satisfaction with the explanation.
• The 45 applicants of SIGSWO meeting, Nov. 2018 answered to
after 15 min presentation
– Total score
– Explainability
• We added the total score to include psychological impressions other than explainability,
– such as presentation quality and entertainment aspects.
– If we only had a score for explainability, such aspects could be mixed in the explainability.
21
Public evaluation results
• In the public eval.,
ave., med., and sd
of the total scores and
the explainability
were compared.
• Comparing 1st and 2nd prizes, we found
– Ave. of both the total score and the explainability were higher for 1st prize.
– Med. of the total score of 1st was higher than 2nd prize, but
Med. of the explainability of 1st was the same as 2nd prize.
– Sd of both the total score and the explainability were also bigger for 1st prize
than for 2nd prize. (smaller the better)
• The paired t-test (α = 0.05) indicated that
– diff. in total score had a statistically significant difference bet. 1st and 2nd., but
– diff. in the explainability was not significantly different.
>
>
>
>
=
>
22
Expert evaluation results
• In the expert evaluation,
– Ave. of each metric in 1st prize
were higher than 2nd prize, but
the explainability was statistically
significantly higher for 2nd prize.
– We should note that sd of ave.
for each metric were less than 0.1
• Therefore, the final decision was left
to the expert peer review.
• As a result, the prize order was
determined, since
– the metrics other than the explainability
of 1st prize were > or = 2nd
• The eval. including explainability was left
to the future challenge…
2nd 1st
>
<
23
Conclusion and Current Work
• The 1st knowledge graph reasoning challenge in 2018 was summarized
for the development of AI techniques integrating ML and reasoning.
• The 2nd challenge started in June 2019 !
– 4 knowledge graphs from 4 mystery novels were added and published on
https://github.com/KnowledgeGraphJapan/KGRC-RDF/tree/master/2019
(Speckled Band + A Case Of Identity / Crooked Man / Dancing Men / Devils Foot)
– In addition to guessing criminal with explanation,
– it is better to be commonly applied to as many novels as possible.
– New tool/utility creation task is also added.
• The 3rd international challenge will open call for application in 2020!
• The 4th challenge will have knowledge graphs of real social problems, e.g., books listing
best practices of social problem solving, etc. 24
Ad

More Related Content

What's hot (20)

自然言語処理によるテキストデータ処理
自然言語処理によるテキストデータ処理自然言語処理によるテキストデータ処理
自然言語処理によるテキストデータ処理
Yuki Arase
 
学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]
学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]
学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]
Masahito Ohue
 
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
Yahoo!デベロッパーネットワーク
 
系列ラベリングの基礎
系列ラベリングの基礎系列ラベリングの基礎
系列ラベリングの基礎
Takatomo Isikawa
 
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks
Yosuke Shinya
 
Getting started with MLOps
Getting started with MLOpsGetting started with MLOps
Getting started with MLOps
yusuke shibui
 
自然言語処理による議論マイニング
自然言語処理による議論マイニング自然言語処理による議論マイニング
自然言語処理による議論マイニング
Naoaki Okazaki
 
文献調査をどのように行うべきか?
文献調査をどのように行うべきか?文献調査をどのように行うべきか?
文献調査をどのように行うべきか?
Yuichi Goto
 
レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方
Shun Nukui
 
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクト
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクトCREST「共生インタラクション」共創型音メディア機能拡張プロジェクト
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクト
NU_I_TODALAB
 
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
Satoshi Hara
 
学振特別研究員になるために~2018年度申請版
学振特別研究員になるために~2018年度申請版学振特別研究員になるために~2018年度申請版
学振特別研究員になるために~2018年度申請版
Masahito Ohue
 
BERTology のススメ
BERTology のススメBERTology のススメ
BERTology のススメ
University of Tsukuba
 
学振特別研究員になるために~知っておくべき10のTips~
学振特別研究員になるために~知っておくべき10のTips~学振特別研究員になるために~知っておくべき10のTips~
学振特別研究員になるために~知っておくべき10のTips~
Masahito Ohue
 
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
Shohei Hido
 
SSII2020 [OS2-03] 深層学習における半教師あり学習の最新動向
SSII2020 [OS2-03] 深層学習における半教師あり学習の最新動向SSII2020 [OS2-03] 深層学習における半教師あり学習の最新動向
SSII2020 [OS2-03] 深層学習における半教師あり学習の最新動向
SSII
 
学振特別研究員になるために~2020年度申請版
学振特別研究員になるために~2020年度申請版学振特別研究員になるために~2020年度申請版
学振特別研究員になるために~2020年度申請版
Masahito Ohue
 
AIを取り巻く基準について
AIを取り巻く基準についてAIを取り巻く基準について
AIを取り巻く基準について
Noriyasu Higashino
 
因果推論の基礎
因果推論の基礎因果推論の基礎
因果推論の基礎
Hatsuru Morita
 
【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report
Deep Learning JP
 
自然言語処理によるテキストデータ処理
自然言語処理によるテキストデータ処理自然言語処理によるテキストデータ処理
自然言語処理によるテキストデータ処理
Yuki Arase
 
学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]
学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]
学振特別研究員になるために~知っておくべき10のTips~[平成28年度申請版]
Masahito Ohue
 
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
Yahoo!デベロッパーネットワーク
 
系列ラベリングの基礎
系列ラベリングの基礎系列ラベリングの基礎
系列ラベリングの基礎
Takatomo Isikawa
 
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks
【宝くじ仮説】The Lottery Ticket Hypothesis: Finding Small, Trainable Neural Networks
Yosuke Shinya
 
Getting started with MLOps
Getting started with MLOpsGetting started with MLOps
Getting started with MLOps
yusuke shibui
 
自然言語処理による議論マイニング
自然言語処理による議論マイニング自然言語処理による議論マイニング
自然言語処理による議論マイニング
Naoaki Okazaki
 
文献調査をどのように行うべきか?
文献調査をどのように行うべきか?文献調査をどのように行うべきか?
文献調査をどのように行うべきか?
Yuichi Goto
 
レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方レコメンドエンジン作成コンテストの勝ち方
レコメンドエンジン作成コンテストの勝ち方
Shun Nukui
 
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクト
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクトCREST「共生インタラクション」共創型音メディア機能拡張プロジェクト
CREST「共生インタラクション」共創型音メディア機能拡張プロジェクト
NU_I_TODALAB
 
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究【論文調査】XAI技術の効能を ユーザ実験で評価する研究
【論文調査】XAI技術の効能を ユーザ実験で評価する研究
Satoshi Hara
 
学振特別研究員になるために~2018年度申請版
学振特別研究員になるために~2018年度申請版学振特別研究員になるために~2018年度申請版
学振特別研究員になるために~2018年度申請版
Masahito Ohue
 
学振特別研究員になるために~知っておくべき10のTips~
学振特別研究員になるために~知っておくべき10のTips~学振特別研究員になるために~知っておくべき10のTips~
学振特別研究員になるために~知っておくべき10のTips~
Masahito Ohue
 
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
機械学習モデルフォーマットの話:さようならPMML、こんにちはPFA
Shohei Hido
 
SSII2020 [OS2-03] 深層学習における半教師あり学習の最新動向
SSII2020 [OS2-03] 深層学習における半教師あり学習の最新動向SSII2020 [OS2-03] 深層学習における半教師あり学習の最新動向
SSII2020 [OS2-03] 深層学習における半教師あり学習の最新動向
SSII
 
学振特別研究員になるために~2020年度申請版
学振特別研究員になるために~2020年度申請版学振特別研究員になるために~2020年度申請版
学振特別研究員になるために~2020年度申請版
Masahito Ohue
 
AIを取り巻く基準について
AIを取り巻く基準についてAIを取り巻く基準について
AIを取り巻く基準について
Noriyasu Higashino
 
【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report【DL輪読会】GPT-4Technical Report
【DL輪読会】GPT-4Technical Report
Deep Learning JP
 

Similar to Report on the First Knowledge Graph Reasoning Challenge 2018 -Toward the eXplainable AI System- (20)

Learning Analytics for the Evaluation of Competencies and Behaviors in Seriou...
Learning Analytics for the Evaluation of Competencies and Behaviors in Seriou...Learning Analytics for the Evaluation of Competencies and Behaviors in Seriou...
Learning Analytics for the Evaluation of Competencies and Behaviors in Seriou...
MIT
 
Aplicando Analítica de Aprendizaje para la Evaluación de Competencias y Compo...
Aplicando Analítica de Aprendizaje para la Evaluación de Competencias y Compo...Aplicando Analítica de Aprendizaje para la Evaluación de Competencias y Compo...
Aplicando Analítica de Aprendizaje para la Evaluación de Competencias y Compo...
Facultad de Informática UCM
 
INT428_Zero Lecture Artificial Intelligence in L.P.U
INT428_Zero Lecture Artificial Intelligence in L.P.UINT428_Zero Lecture Artificial Intelligence in L.P.U
INT428_Zero Lecture Artificial Intelligence in L.P.U
AyushSingh695401
 
Statistical Analysis of Results in Music Information Retrieval: Why and How
Statistical Analysis of Results in Music Information Retrieval: Why and HowStatistical Analysis of Results in Music Information Retrieval: Why and How
Statistical Analysis of Results in Music Information Retrieval: Why and How
Julián Urbano
 
data analysis.ppt
data analysis.pptdata analysis.ppt
data analysis.ppt
HanaKassahun1
 
data analysis.pptx
data analysis.pptxdata analysis.pptx
data analysis.pptx
HanaKassahun1
 
Lecture5.pdf
Lecture5.pdfLecture5.pdf
Lecture5.pdf
Take1As
 
Recognizing and Organizing Opinions Expressed in the World ...
Recognizing and Organizing Opinions Expressed in the World ...Recognizing and Organizing Opinions Expressed in the World ...
Recognizing and Organizing Opinions Expressed in the World ...
butest
 
Learning Analytics and Serious Games: Trends and Considerations
Learning Analytics and Serious Games: Trends and ConsiderationsLearning Analytics and Serious Games: Trends and Considerations
Learning Analytics and Serious Games: Trends and Considerations
Laila Shoukry
 
Knowledge Graph Reasoning Techniques through Studies on Mystery Stories - Rep...
Knowledge Graph Reasoning Techniques through Studies on Mystery Stories - Rep...Knowledge Graph Reasoning Techniques through Studies on Mystery Stories - Rep...
Knowledge Graph Reasoning Techniques through Studies on Mystery Stories - Rep...
KnowledgeGraph
 
Data-Driven Learning Strategy
Data-Driven Learning StrategyData-Driven Learning Strategy
Data-Driven Learning Strategy
Jessie Chuang
 
Week1- Introduction.pptx
Week1- Introduction.pptxWeek1- Introduction.pptx
Week1- Introduction.pptx
fahmi324663
 
2015 03-28-eb-final
2015 03-28-eb-final2015 03-28-eb-final
2015 03-28-eb-final
Christopher Wilson
 
A Space X Industry Day Briefing 7 Jul08 Jgm R4
A Space X Industry Day Briefing 7 Jul08 Jgm R4A Space X Industry Day Briefing 7 Jul08 Jgm R4
A Space X Industry Day Briefing 7 Jul08 Jgm R4
jmorriso
 
Learning Analytics Design in Game-based Learning
Learning Analytics Design in Game-based LearningLearning Analytics Design in Game-based Learning
Learning Analytics Design in Game-based Learning
MIT
 
Systematic Literature Reviews and Systematic Mapping Studies
Systematic Literature Reviews and Systematic Mapping StudiesSystematic Literature Reviews and Systematic Mapping Studies
Systematic Literature Reviews and Systematic Mapping Studies
alessio_ferrari
 
ANNQ UNVERSITY research methodology unit 1.pdf
ANNQ UNVERSITY research methodology unit 1.pdfANNQ UNVERSITY research methodology unit 1.pdf
ANNQ UNVERSITY research methodology unit 1.pdf
deepak14367
 
Sentiment Analysis of Twitter Data
Sentiment Analysis of Twitter DataSentiment Analysis of Twitter Data
Sentiment Analysis of Twitter Data
Sumit Raj
 
Knowledge base system appl. p 1,2-ver1
Knowledge base system appl.  p 1,2-ver1Knowledge base system appl.  p 1,2-ver1
Knowledge base system appl. p 1,2-ver1
Taymoor Nazmy
 
Linking Heterogeneous Scholarly Data Sources in an Interoperable Setting: the...
Linking Heterogeneous Scholarly Data Sources in an Interoperable Setting: the...Linking Heterogeneous Scholarly Data Sources in an Interoperable Setting: the...
Linking Heterogeneous Scholarly Data Sources in an Interoperable Setting: the...
Platforma Otwartej Nauki
 
Learning Analytics for the Evaluation of Competencies and Behaviors in Seriou...
Learning Analytics for the Evaluation of Competencies and Behaviors in Seriou...Learning Analytics for the Evaluation of Competencies and Behaviors in Seriou...
Learning Analytics for the Evaluation of Competencies and Behaviors in Seriou...
MIT
 
Aplicando Analítica de Aprendizaje para la Evaluación de Competencias y Compo...
Aplicando Analítica de Aprendizaje para la Evaluación de Competencias y Compo...Aplicando Analítica de Aprendizaje para la Evaluación de Competencias y Compo...
Aplicando Analítica de Aprendizaje para la Evaluación de Competencias y Compo...
Facultad de Informática UCM
 
INT428_Zero Lecture Artificial Intelligence in L.P.U
INT428_Zero Lecture Artificial Intelligence in L.P.UINT428_Zero Lecture Artificial Intelligence in L.P.U
INT428_Zero Lecture Artificial Intelligence in L.P.U
AyushSingh695401
 
Statistical Analysis of Results in Music Information Retrieval: Why and How
Statistical Analysis of Results in Music Information Retrieval: Why and HowStatistical Analysis of Results in Music Information Retrieval: Why and How
Statistical Analysis of Results in Music Information Retrieval: Why and How
Julián Urbano
 
Lecture5.pdf
Lecture5.pdfLecture5.pdf
Lecture5.pdf
Take1As
 
Recognizing and Organizing Opinions Expressed in the World ...
Recognizing and Organizing Opinions Expressed in the World ...Recognizing and Organizing Opinions Expressed in the World ...
Recognizing and Organizing Opinions Expressed in the World ...
butest
 
Learning Analytics and Serious Games: Trends and Considerations
Learning Analytics and Serious Games: Trends and ConsiderationsLearning Analytics and Serious Games: Trends and Considerations
Learning Analytics and Serious Games: Trends and Considerations
Laila Shoukry
 
Knowledge Graph Reasoning Techniques through Studies on Mystery Stories - Rep...
Knowledge Graph Reasoning Techniques through Studies on Mystery Stories - Rep...Knowledge Graph Reasoning Techniques through Studies on Mystery Stories - Rep...
Knowledge Graph Reasoning Techniques through Studies on Mystery Stories - Rep...
KnowledgeGraph
 
Data-Driven Learning Strategy
Data-Driven Learning StrategyData-Driven Learning Strategy
Data-Driven Learning Strategy
Jessie Chuang
 
Week1- Introduction.pptx
Week1- Introduction.pptxWeek1- Introduction.pptx
Week1- Introduction.pptx
fahmi324663
 
A Space X Industry Day Briefing 7 Jul08 Jgm R4
A Space X Industry Day Briefing 7 Jul08 Jgm R4A Space X Industry Day Briefing 7 Jul08 Jgm R4
A Space X Industry Day Briefing 7 Jul08 Jgm R4
jmorriso
 
Learning Analytics Design in Game-based Learning
Learning Analytics Design in Game-based LearningLearning Analytics Design in Game-based Learning
Learning Analytics Design in Game-based Learning
MIT
 
Systematic Literature Reviews and Systematic Mapping Studies
Systematic Literature Reviews and Systematic Mapping StudiesSystematic Literature Reviews and Systematic Mapping Studies
Systematic Literature Reviews and Systematic Mapping Studies
alessio_ferrari
 
ANNQ UNVERSITY research methodology unit 1.pdf
ANNQ UNVERSITY research methodology unit 1.pdfANNQ UNVERSITY research methodology unit 1.pdf
ANNQ UNVERSITY research methodology unit 1.pdf
deepak14367
 
Sentiment Analysis of Twitter Data
Sentiment Analysis of Twitter DataSentiment Analysis of Twitter Data
Sentiment Analysis of Twitter Data
Sumit Raj
 
Knowledge base system appl. p 1,2-ver1
Knowledge base system appl.  p 1,2-ver1Knowledge base system appl.  p 1,2-ver1
Knowledge base system appl. p 1,2-ver1
Taymoor Nazmy
 
Linking Heterogeneous Scholarly Data Sources in an Interoperable Setting: the...
Linking Heterogeneous Scholarly Data Sources in an Interoperable Setting: the...Linking Heterogeneous Scholarly Data Sources in an Interoperable Setting: the...
Linking Heterogeneous Scholarly Data Sources in an Interoperable Setting: the...
Platforma Otwartej Nauki
 
Ad

More from KnowledgeGraph (20)

【LODC2022データ作成部門優秀賞】VirtualHome2KGデータセット―家庭内の日常生活行動のシミュレーション動画とナレッジグラフ―
【LODC2022データ作成部門優秀賞】VirtualHome2KGデータセット―家庭内の日常生活行動のシミュレーション動画とナレッジグラフ―【LODC2022データ作成部門優秀賞】VirtualHome2KGデータセット―家庭内の日常生活行動のシミュレーション動画とナレッジグラフ―
【LODC2022データ作成部門優秀賞】VirtualHome2KGデータセット―家庭内の日常生活行動のシミュレーション動画とナレッジグラフ―
KnowledgeGraph
 
Contextualized Scene Knowledge Graphs for XAI Benchmarking
Contextualized Scene Knowledge Graphs for XAI BenchmarkingContextualized Scene Knowledge Graphs for XAI Benchmarking
Contextualized Scene Knowledge Graphs for XAI Benchmarking
KnowledgeGraph
 
ナレッジグラフ/LOD利用技術の入門(後編)
ナレッジグラフ/LOD利用技術の入門(後編)ナレッジグラフ/LOD利用技術の入門(後編)
ナレッジグラフ/LOD利用技術の入門(後編)
KnowledgeGraph
 
ナレッジグラフ/LOD利用技術の入門(前編)
ナレッジグラフ/LOD利用技術の入門(前編)ナレッジグラフ/LOD利用技術の入門(前編)
ナレッジグラフ/LOD利用技術の入門(前編)
KnowledgeGraph
 
[part 1]ナレッジグラフ推論チャレンジ・Tech Live!
[part 1]ナレッジグラフ推論チャレンジ・Tech Live![part 1]ナレッジグラフ推論チャレンジ・Tech Live!
[part 1]ナレッジグラフ推論チャレンジ・Tech Live!
KnowledgeGraph
 
[part 2]ナレッジグラフ推論チャレンジ・Tech Live!
[part 2]ナレッジグラフ推論チャレンジ・Tech Live![part 2]ナレッジグラフ推論チャレンジ・Tech Live!
[part 2]ナレッジグラフ推論チャレンジ・Tech Live!
KnowledgeGraph
 
Linked Open Data勉強会2020 後編:SPARQLの簡単な使い方、SPARQLを使った簡単なアプリ開発
Linked Open Data勉強会2020 後編:SPARQLの簡単な使い方、SPARQLを使った簡単なアプリ開発Linked Open Data勉強会2020 後編:SPARQLの簡単な使い方、SPARQLを使った簡単なアプリ開発
Linked Open Data勉強会2020 後編:SPARQLの簡単な使い方、SPARQLを使った簡単なアプリ開発
KnowledgeGraph
 
Linked Open Data勉強会2020 前編:LODの基礎・作成・公開
Linked Open Data勉強会2020 前編:LODの基礎・作成・公開Linked Open Data勉強会2020 前編:LODの基礎・作成・公開
Linked Open Data勉強会2020 前編:LODの基礎・作成・公開
KnowledgeGraph
 
第2回ナレッジグラフ推論チャレンジ2019の紹介(11/22, SWO研究会)
第2回ナレッジグラフ推論チャレンジ2019の紹介(11/22, SWO研究会)第2回ナレッジグラフ推論チャレンジ2019の紹介(11/22, SWO研究会)
第2回ナレッジグラフ推論チャレンジ2019の紹介(11/22, SWO研究会)
KnowledgeGraph
 
ナレッジグラフ推論チャレンジ2019技術勉強会(10/21開催)
ナレッジグラフ推論チャレンジ2019技術勉強会(10/21開催)ナレッジグラフ推論チャレンジ2019技術勉強会(10/21開催)
ナレッジグラフ推論チャレンジ2019技術勉強会(10/21開催)
KnowledgeGraph
 
第2回ナレッジグラフ推論チャレンジ2019:ツール部門の紹介
第2回ナレッジグラフ推論チャレンジ2019:ツール部門の紹介第2回ナレッジグラフ推論チャレンジ2019:ツール部門の紹介
第2回ナレッジグラフ推論チャレンジ2019:ツール部門の紹介
KnowledgeGraph
 
第2回ナレッジグラフ推論チャレンジ2019応募に向けて
第2回ナレッジグラフ推論チャレンジ2019応募に向けて第2回ナレッジグラフ推論チャレンジ2019応募に向けて
第2回ナレッジグラフ推論チャレンジ2019応募に向けて
KnowledgeGraph
 
ナレッジグラフ入門
ナレッジグラフ入門ナレッジグラフ入門
ナレッジグラフ入門
KnowledgeGraph
 
第1回ナレッジグラフ推論チャレンジ2018の振り返り
第1回ナレッジグラフ推論チャレンジ2018の振り返り第1回ナレッジグラフ推論チャレンジ2018の振り返り
第1回ナレッジグラフ推論チャレンジ2018の振り返り
KnowledgeGraph
 
第1回ナレッジグラフ推論チャレンジ2018開催報告~ 第2回チャレンジ開催案内~
第1回ナレッジグラフ推論チャレンジ2018開催報告~ 第2回チャレンジ開催案内~第1回ナレッジグラフ推論チャレンジ2018開催報告~ 第2回チャレンジ開催案内~
第1回ナレッジグラフ推論チャレンジ2018開催報告~ 第2回チャレンジ開催案内~
KnowledgeGraph
 
第1回推論チャレンジの振り返り&第2回の開催概要
第1回推論チャレンジの振り返り&第2回の開催概要第1回推論チャレンジの振り返り&第2回の開催概要
第1回推論チャレンジの振り返り&第2回の開催概要
KnowledgeGraph
 
ナレッジグラフ推論チャレンジ2018ミートアップ@東京(2018/12/26)
ナレッジグラフ推論チャレンジ2018ミートアップ@東京(2018/12/26)ナレッジグラフ推論チャレンジ2018ミートアップ@東京(2018/12/26)
ナレッジグラフ推論チャレンジ2018ミートアップ@東京(2018/12/26)
KnowledgeGraph
 
ナレッジグラフ推論チャレンジ技術勉強会(2018/10/18)
ナレッジグラフ推論チャレンジ技術勉強会(2018/10/18)ナレッジグラフ推論チャレンジ技術勉強会(2018/10/18)
ナレッジグラフ推論チャレンジ技術勉強会(2018/10/18)
KnowledgeGraph
 
ナレッジグラフ推論チャレンジ:応募に向けた「技術勉強会」資料
ナレッジグラフ推論チャレンジ:応募に向けた「技術勉強会」資料ナレッジグラフ推論チャレンジ:応募に向けた「技術勉強会」資料
ナレッジグラフ推論チャレンジ:応募に向けた「技術勉強会」資料
KnowledgeGraph
 
【ナレッジグラフ推論チャレンジ】SPARQLと可視化ツールを用いた推論検討例
【ナレッジグラフ推論チャレンジ】SPARQLと可視化ツールを用いた推論検討例【ナレッジグラフ推論チャレンジ】SPARQLと可視化ツールを用いた推論検討例
【ナレッジグラフ推論チャレンジ】SPARQLと可視化ツールを用いた推論検討例
KnowledgeGraph
 
【LODC2022データ作成部門優秀賞】VirtualHome2KGデータセット―家庭内の日常生活行動のシミュレーション動画とナレッジグラフ―
【LODC2022データ作成部門優秀賞】VirtualHome2KGデータセット―家庭内の日常生活行動のシミュレーション動画とナレッジグラフ―【LODC2022データ作成部門優秀賞】VirtualHome2KGデータセット―家庭内の日常生活行動のシミュレーション動画とナレッジグラフ―
【LODC2022データ作成部門優秀賞】VirtualHome2KGデータセット―家庭内の日常生活行動のシミュレーション動画とナレッジグラフ―
KnowledgeGraph
 
Contextualized Scene Knowledge Graphs for XAI Benchmarking
Contextualized Scene Knowledge Graphs for XAI BenchmarkingContextualized Scene Knowledge Graphs for XAI Benchmarking
Contextualized Scene Knowledge Graphs for XAI Benchmarking
KnowledgeGraph
 
ナレッジグラフ/LOD利用技術の入門(後編)
ナレッジグラフ/LOD利用技術の入門(後編)ナレッジグラフ/LOD利用技術の入門(後編)
ナレッジグラフ/LOD利用技術の入門(後編)
KnowledgeGraph
 
ナレッジグラフ/LOD利用技術の入門(前編)
ナレッジグラフ/LOD利用技術の入門(前編)ナレッジグラフ/LOD利用技術の入門(前編)
ナレッジグラフ/LOD利用技術の入門(前編)
KnowledgeGraph
 
[part 1]ナレッジグラフ推論チャレンジ・Tech Live!
[part 1]ナレッジグラフ推論チャレンジ・Tech Live![part 1]ナレッジグラフ推論チャレンジ・Tech Live!
[part 1]ナレッジグラフ推論チャレンジ・Tech Live!
KnowledgeGraph
 
[part 2]ナレッジグラフ推論チャレンジ・Tech Live!
[part 2]ナレッジグラフ推論チャレンジ・Tech Live![part 2]ナレッジグラフ推論チャレンジ・Tech Live!
[part 2]ナレッジグラフ推論チャレンジ・Tech Live!
KnowledgeGraph
 
Linked Open Data勉強会2020 後編:SPARQLの簡単な使い方、SPARQLを使った簡単なアプリ開発
Linked Open Data勉強会2020 後編:SPARQLの簡単な使い方、SPARQLを使った簡単なアプリ開発Linked Open Data勉強会2020 後編:SPARQLの簡単な使い方、SPARQLを使った簡単なアプリ開発
Linked Open Data勉強会2020 後編:SPARQLの簡単な使い方、SPARQLを使った簡単なアプリ開発
KnowledgeGraph
 
Linked Open Data勉強会2020 前編:LODの基礎・作成・公開
Linked Open Data勉強会2020 前編:LODの基礎・作成・公開Linked Open Data勉強会2020 前編:LODの基礎・作成・公開
Linked Open Data勉強会2020 前編:LODの基礎・作成・公開
KnowledgeGraph
 
第2回ナレッジグラフ推論チャレンジ2019の紹介(11/22, SWO研究会)
第2回ナレッジグラフ推論チャレンジ2019の紹介(11/22, SWO研究会)第2回ナレッジグラフ推論チャレンジ2019の紹介(11/22, SWO研究会)
第2回ナレッジグラフ推論チャレンジ2019の紹介(11/22, SWO研究会)
KnowledgeGraph
 
ナレッジグラフ推論チャレンジ2019技術勉強会(10/21開催)
ナレッジグラフ推論チャレンジ2019技術勉強会(10/21開催)ナレッジグラフ推論チャレンジ2019技術勉強会(10/21開催)
ナレッジグラフ推論チャレンジ2019技術勉強会(10/21開催)
KnowledgeGraph
 
第2回ナレッジグラフ推論チャレンジ2019:ツール部門の紹介
第2回ナレッジグラフ推論チャレンジ2019:ツール部門の紹介第2回ナレッジグラフ推論チャレンジ2019:ツール部門の紹介
第2回ナレッジグラフ推論チャレンジ2019:ツール部門の紹介
KnowledgeGraph
 
第2回ナレッジグラフ推論チャレンジ2019応募に向けて
第2回ナレッジグラフ推論チャレンジ2019応募に向けて第2回ナレッジグラフ推論チャレンジ2019応募に向けて
第2回ナレッジグラフ推論チャレンジ2019応募に向けて
KnowledgeGraph
 
ナレッジグラフ入門
ナレッジグラフ入門ナレッジグラフ入門
ナレッジグラフ入門
KnowledgeGraph
 
第1回ナレッジグラフ推論チャレンジ2018の振り返り
第1回ナレッジグラフ推論チャレンジ2018の振り返り第1回ナレッジグラフ推論チャレンジ2018の振り返り
第1回ナレッジグラフ推論チャレンジ2018の振り返り
KnowledgeGraph
 
第1回ナレッジグラフ推論チャレンジ2018開催報告~ 第2回チャレンジ開催案内~
第1回ナレッジグラフ推論チャレンジ2018開催報告~ 第2回チャレンジ開催案内~第1回ナレッジグラフ推論チャレンジ2018開催報告~ 第2回チャレンジ開催案内~
第1回ナレッジグラフ推論チャレンジ2018開催報告~ 第2回チャレンジ開催案内~
KnowledgeGraph
 
第1回推論チャレンジの振り返り&第2回の開催概要
第1回推論チャレンジの振り返り&第2回の開催概要第1回推論チャレンジの振り返り&第2回の開催概要
第1回推論チャレンジの振り返り&第2回の開催概要
KnowledgeGraph
 
ナレッジグラフ推論チャレンジ2018ミートアップ@東京(2018/12/26)
ナレッジグラフ推論チャレンジ2018ミートアップ@東京(2018/12/26)ナレッジグラフ推論チャレンジ2018ミートアップ@東京(2018/12/26)
ナレッジグラフ推論チャレンジ2018ミートアップ@東京(2018/12/26)
KnowledgeGraph
 
ナレッジグラフ推論チャレンジ技術勉強会(2018/10/18)
ナレッジグラフ推論チャレンジ技術勉強会(2018/10/18)ナレッジグラフ推論チャレンジ技術勉強会(2018/10/18)
ナレッジグラフ推論チャレンジ技術勉強会(2018/10/18)
KnowledgeGraph
 
ナレッジグラフ推論チャレンジ:応募に向けた「技術勉強会」資料
ナレッジグラフ推論チャレンジ:応募に向けた「技術勉強会」資料ナレッジグラフ推論チャレンジ:応募に向けた「技術勉強会」資料
ナレッジグラフ推論チャレンジ:応募に向けた「技術勉強会」資料
KnowledgeGraph
 
【ナレッジグラフ推論チャレンジ】SPARQLと可視化ツールを用いた推論検討例
【ナレッジグラフ推論チャレンジ】SPARQLと可視化ツールを用いた推論検討例【ナレッジグラフ推論チャレンジ】SPARQLと可視化ツールを用いた推論検討例
【ナレッジグラフ推論チャレンジ】SPARQLと可視化ツールを用いた推論検討例
KnowledgeGraph
 
Ad

Recently uploaded (20)

Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025Splunk Security Update | Public Sector Summit Germany 2025
Splunk Security Update | Public Sector Summit Germany 2025
Splunk
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Massive Power Outage Hits Spain, Portugal, and France: Causes, Impact, and On...
Aqusag Technologies
 
Build Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For DevsBuild Your Own Copilot & Agents For Devs
Build Your Own Copilot & Agents For Devs
Brian McKeiver
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc Webinar: Consumer Expectations vs Corporate Realities on Data Broker...
TrustArc
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdfSAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
SAP Modernization: Maximizing the Value of Your SAP S/4HANA Migration.pdf
Precisely
 
How analogue intelligence complements AI
How analogue intelligence complements AIHow analogue intelligence complements AI
How analogue intelligence complements AI
Paul Rowe
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 

Report on the First Knowledge Graph Reasoning Challenge 2018 -Toward the eXplainable AI System-

  • 1. Report on the First Knowledge Graph Reasoning Challenge 2018 – Toward the eXplainable AI System – Takahiro Kawamura*1, Shusaku Egami*2, Koutarou Tamura*3, Yasunori Hokazono*4, Takanori Ugai*5, Yusuke Koyanagi*5, Fumihito Nishino*5, Seiji Okajima*5, Katsuhiko Murakami*5, Kunihiko Takamatsu*6, Aoi Sugiura*7, Shun Shiramatsu*8, Shawn Zhang*8, Kouji Kozaki*9 1.National Agriculture and Food Research Organization, Japan 2.National Institute of Maritime, Port and Aviation Technology, Japan 3. NRI digital, Ltd. 4.Nomura Research Institute, Ltd. 5. Fujitsu Laboratories Ltd. 6. Kobe Tokiwa University 7. Kobe City Nishi-Kobe Medical Center 8.Nagoya Institute of Technology 9. Osaka Electro-Communication University
  • 2. Investig ation strategy Criminal motive …. Summary of Knowledge Graph Reasoning Challenge A Contest to develop AI systems which have abilities for “Reasoning” and “Explanation” such like Sherlock Holmes. Sherlock Holmes mystery story Open Knowledge Graph(OKG) AI system that estimate criminals with reasonable explanations using the OKG and other knowledge The motive is … Trick is … The criminal is XX Because …
  • 3. Agenda of Talk • Summary of Knowledge Graph Reasoning Challenge by K. Kozaki • Knowledge Graph Construction by S. Egami • Approach for estimation and reasoning techniques by T. Ugai • Evaluation / Conclusion and Current Work by T. Kawamra 3
  • 5. Knowledge Graph construction process Extract scenes (Manual) Sentence Simplification (Manual) Semantic Role Annotating (Manual) Translation (Auto) RDF construction (Auto) Add object types (Manual) Add absolute time (Manual) Scene Linking (Manual) • Discussion about schema design and methodology • We first held five open workshops from November 2017 to April 2018. • The total number of participants in the workshops was 110. • After the preliminary experiment of knowledge graph construction cooperating with the participants, we finally adopted the below process. 5
  • 6. • Basic policy – Focus on scenes in a novel and the relationship of those scenes, including the characters, objects, places, etc., with related scenes • A scene ID (IRI) has subjects, verbs, objects, etc. • Edges mainly represent five Ws (When, Where, Who, What, and Why). Architecture of the Knowledge Graph Scene1 Scene2 Scene3 Scene4 Scene5 Resource Literal type subject source source subject subject hasPredicate source hasPredicate subject hasPredicate then therefore because then 6
  • 7. Scene ID Source text Subject Predicate Object subject hasPredicate source 5W1H Scene ID Relatio n • Properties representing scenes – subject (who): A person or object representing the subject of the scene – hasPredicate: A predicate representing the content of the scene – 5W1H: what, where, when, whom, why, how. – Relation among scenes: then, if, because, …etc. – time: Absolute time(xsd:DateTime) – source: Source text(EN/JP literal) subject object predicate Scene subject objectpredicate Schema (Scene) 7
  • 8. Original Sentence (EN|JA) Absolute Time Property values are defined as resources to be referred in the other scene Predicate Subject Relationship to other Scene ID Scene Type - Situation: Fact - Statement:Remark by A - Talk: Remark by A to B - Thought: Idea of A Schema (Scene): Example Unique ID (IRI) of Each scene 8
  • 10. Visualization tool • We provided a knowledge graph visualization tool for applicants Visualization SPARQL query text Keyword search http://knowledge-graph.jp/visualization/ 10
  • 11. Approach for estimation and reasoning techniques 11
  • 12. First Prized: NRI • formalized the problem as a constraint satisfaction problem and solved with a lightweight formal method 12
  • 13. Second Prized: Fujitsu Laboratories • used SPARQL and rules 13
  • 14. Best Idea: Nagoya Institute of Technology • discusses multi-agents model 14
  • 15. Best Resource: Fujitsu Laboratories • constructed word embedding of characters from all sentences of Sherlock Holmes novels 15
  • 17. Evaluation • For evaluating estimation and reasoning techniques with explainability, – metrics design for explainability, utility, novelty, and performance is required, – but evaluation is also based on a qualitative comparison through discussion and peer reviews. • DARPA XAI states that – the current AI techniques have a trade-off between accuracy and explainability, so both properties should be measured. – In particular, to measure the effectiveness of the explainability, DARPA XAI rates user satisfaction regarding its clarity and utility. • We first share the basic information of the proposed approaches, and then discuss the evaluation of experts and of the general public. 17
  • 18. Sharing Basic Information for Preparation • The basic info. Was investigated and shared with experts in advance, who were 7 board members of the SIG on Semantic Web and Ontology in JSAI – Correctness of the answer Check if the resulting criminal was correct or not, regardless of the approach. The criminal, in this case, is the one designated in the novel or story. – Feasibility of the program Check if the submitted program correctly worked and the results were reproduced (excluding idea-only submissions). – Performance of the program Referential information on the system environment and performance of the submitted program, except for the idea only. – Amount of data/knowledge to be used How much did the approach use the knowledge graph (the total num. of scene IDs used)? If the approach used external knowledge and data, we noted information about them. 18
  • 19. Expert Evaluation • Over more than a week, the experts evaluated the following aspects according to five grades (1–5). • For Estimation and/or reasoning methods, – Significance Novelty and technical improvement of the method. – Applicability Is the approach applicable to the other problems? 3 : applicable to the other novels and stories 5 : applicable to other domains. – Extensibility Is the approach expected to have a further technical extension? 19
  • 20. Expert Evaluation cont'd • For Knowledge and data, – Originality of knowledge/data construction E.g., how much external knowledge and data were prepared? – Originality of knowledge/data use E.g., was a small set of knowledge used efficiently, or was a large set of knowledge used to simplify the process. • and… – Feasibility of idea (for idea only) Feasibility of idea including algorithms and data/knowledge construction. – Logical explainability Is an explanation logically persuadable? 1 : no explanation and evidence 3 : some evidence in any form is provided 5 : there is an explanation that is consistent with the estimation and reasoning process. – Effort Amount of effort required for the submission (knowledge/data/system). 20
  • 21. Public Evaluation • Although the experts determine if a logical explanation could be held, the public eval. focused on the psychological aspect of the explanations, that is, the satisfaction with the explanation. • The 45 applicants of SIGSWO meeting, Nov. 2018 answered to after 15 min presentation – Total score – Explainability • We added the total score to include psychological impressions other than explainability, – such as presentation quality and entertainment aspects. – If we only had a score for explainability, such aspects could be mixed in the explainability. 21
  • 22. Public evaluation results • In the public eval., ave., med., and sd of the total scores and the explainability were compared. • Comparing 1st and 2nd prizes, we found – Ave. of both the total score and the explainability were higher for 1st prize. – Med. of the total score of 1st was higher than 2nd prize, but Med. of the explainability of 1st was the same as 2nd prize. – Sd of both the total score and the explainability were also bigger for 1st prize than for 2nd prize. (smaller the better) • The paired t-test (α = 0.05) indicated that – diff. in total score had a statistically significant difference bet. 1st and 2nd., but – diff. in the explainability was not significantly different. > > > > = > 22
  • 23. Expert evaluation results • In the expert evaluation, – Ave. of each metric in 1st prize were higher than 2nd prize, but the explainability was statistically significantly higher for 2nd prize. – We should note that sd of ave. for each metric were less than 0.1 • Therefore, the final decision was left to the expert peer review. • As a result, the prize order was determined, since – the metrics other than the explainability of 1st prize were > or = 2nd • The eval. including explainability was left to the future challenge… 2nd 1st > < 23
  • 24. Conclusion and Current Work • The 1st knowledge graph reasoning challenge in 2018 was summarized for the development of AI techniques integrating ML and reasoning. • The 2nd challenge started in June 2019 ! – 4 knowledge graphs from 4 mystery novels were added and published on https://github.com/KnowledgeGraphJapan/KGRC-RDF/tree/master/2019 (Speckled Band + A Case Of Identity / Crooked Man / Dancing Men / Devils Foot) – In addition to guessing criminal with explanation, – it is better to be commonly applied to as many novels as possible. – New tool/utility creation task is also added. • The 3rd international challenge will open call for application in 2020! • The 4th challenge will have knowledge graphs of real social problems, e.g., books listing best practices of social problem solving, etc. 24