SlideShare a Scribd company logo
Sean Davis, M.D., Ph.D.
Genetics Branch, Center for Cancer Research
National Cancer Institute
National Institutes of Health
RNA-seq: A high-resolution
View of the Transcriptome
Normal
Karyotype
Tumor
Karyotype
The Central Dogma
phenotype
Gene Copy
Number
Sequence
Variation
Chromatin
Structure and
Function
Gene
Expression
Transcriptional
Regulation
DNA
Methylation
Patient and
Population
Characteristics
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
Your Nature Paper
High Throughput
Sequencing
AKA, NGS
DNA
(0.1-1.0 ug)
Single molecule array
Sample preparation
Cluster growth
5’
5’3’
G
T
C
A
G
T
C
A
G
T
C
A
C
A
G
T
C
A
T
C
A
C
C
T
A
G
C
G
T
A
G
T
1 2 3 7 8 94 5 6
Image acquisition Base calling
T G C T A C G A T …
Sequencing
Illumina SBS Technology
Reversible Terminator Chemistry Foundation
© Illumina, Inc.http://www.illumina.com/technology/sequencing_technology.ilmn
http://seqanswers.com/forums/showthread.php?t=21
Single end vs paired end sequencing
Illumina Paired-end
sequencingPaired-end: useful for RRBS, essential for RNA-seq, not useful for ChIP-
seq
What comes out of the machine:
short reads in fastq format
@D3B4KKQ1_0166:8:1101:1960:2190#CGATGT/1
CTCCTGGAAAACGCTTTGGTAGATTTGGCCAGGAGCTTTCTTTTATGTAAATTG
+D3B4KKQ1_0166:8:1101:1960:2190#CGATGT/1
[^^cedeefee`cghhhfcRX`_gfghf^bZbecg^eeb[caef`ef^a_`eXa
@D3B4KKQ1_0166:8:1101:2154:2137#CGATGT/1
TCCANCCATGGCAAATTCCATGGCACCGTCAAGGCTGAGAACGGGAAGCTTGTC
+D3B4KKQ1_0166:8:1101:2154:2137#CGATGT/1
ab_eBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
@D3B4KKQ1_0166:8:1101:2249:2171#CGATGT/1
TACAAGTGCAGCATCAAGGAGCGAATGCTCTACTCCAGCTGCAAGAGCCGCCTC
+D3B4KKQ1_0166:8:1101:2249:2171#CGATGT/1
_[_ceeec[^eeghdffffhh^efh_egfhfgeec_fbafhhhhd`caegfheh
@D3B4KKQ1_0166:8:1101:2043:2187#CGATGT/1
GAAGGAGAGAAGGGGAGGAGGGCGGGGGGCACCTACTACATCGCCCTCCACATC
+D3B4KKQ1_0166:8:1101:2043:2187#CGATGT/1
^_accceg`gga`f[fgcb`Ucgfaa_LVV^[bbbbbRWW`W^Y[_[^bbbbb
@D3B4KKQ1_0166:8:1101:2188:2232#CGATGT/1
GTGGCCGATTCCTGAGCTGTGTTTGAGGAGAGGGCGGAGTGCCATCTGGGTAGC
+D3B4KKQ1_0166:8:1101:2188:2232#CGATGT/1
QS to int In
R:
as.integer(ch
arToRaw(‘e'))
-33
Pair end sequencing
s_8_1_sequence.txt.gz s_8_2_sequence.txt.gz
@D3B4KKQ1_0166:8:1101:1960:2190#CGATGT/1
CTCCTGGAAAACGCTTTGGTAGATTTGGCCAGGAGCTTTCTTTTATGTAAATTG
+D3B4KKQ1_0166:8:1101:1960:2190#CGATGT/1
[^^cedeefee`cghhhfcRX`_gfghf^bZbecg^eeb[caef`ef^a_`eXa
@D3B4KKQ1_0166:8:1101:2154:2137#CGATGT/1
TCCANCCATGGCAAATTCCATGGCACCGTCAAGGCTGAGAACGGGAAGCTTGTC
+D3B4KKQ1_0166:8:1101:2154:2137#CGATGT/1
ab_eBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
@D3B4KKQ1_0166:8:1101:2249:2171#CGATGT/1
TACAAGTGCAGCATCAAGGAGCGAATGCTCTACTCCAGCTGCAAGAGCCGCCTC
+D3B4KKQ1_0166:8:1101:2249:2171#CGATGT/1
_[_ceeec[^eeghdffffhh^efh_egfhfgeec_fbafhhhhd`caegfheh
@D3B4KKQ1_0166:8:1101:2043:2187#CGATGT/1
GAAGGAGAGAAGGGGAGGAGGGCGGGGGGCACCTACTACATCGCCCTCCACATC
+D3B4KKQ1_0166:8:1101:2043:2187#CGATGT/1
^_accceg`gga`f[fgcb`Ucgfaa_LVV^[bbbbbRWW`W^Y[_[^bbbbb
@D3B4KKQ1_0166:8:1101:2188:2232#CGATGT/1
GTGGCCGATTCCTGAGCTGTGTTTGAGGAGAGGGCGGAGTGCCATCTGGGTAGC
+D3B4KKQ1_0166:8:1101:2188:2232#CGATGT/1
aa_eeeeegggggihhiiifgeghfeghbgcghifiidg^dbgggeeeee`dcd
@D3B4KKQ1_0166:8:1101:1960:2190#CGATGT/2
GGCATATTTAACAGCATTGAACAGAATTCTGTGTCCTGTAAAAAAATTAGCTTA
+D3B4KKQ1_0166:8:1101:1960:2190#CGATGT/2
a__aaa`ce`cgcffdf_acda^ea]befffbeged`g[a`e_caaac]cb`gb
@D3B4KKQ1_0166:8:1101:2154:2137#CGATGT/2
TTGAGGCTGTTGTCATACTTCTCATGGTTCACACCCATGACGAACATGGGGGCG
+D3B4KKQ1_0166:8:1101:2154:2137#CGATGT/2
a__eeeeeggegefhhhiiihhhhhiieghhhghhiiffhiififhhiihegic
@D3B4KKQ1_0166:8:1101:2249:2171#CGATGT/2
CGGGGTGCACCTCGTCGTAGAGGAACTCTGCCGTCAGCTCTGCCCCATCGCCAA
+D3B4KKQ1_0166:8:1101:2249:2171#CGATGT/2
^__ee__cge`cghghhfgddgfgi]ehhfffff^ec[beegidffhhfhadba
@D3B4KKQ1_0166:8:1101:2043:2187#CGATGT/2
CTTAGTCTCAGTTTTCCTCCAGCAGCCTGAGGAAACTCAAAGGCACAGTTCCCA
+D3B4KKQ1_0166:8:1101:2043:2187#CGATGT/2
_abeaaacg^g^eghhhhgafghhdfghfedeghfiiicfbgdHYagfeecggf
@D3B4KKQ1_0166:8:1101:2188:2232#CGATGT/2
TAGGCTCAAAGTCTAACGCCAATCCCGAACCTGGGCATCTGTACACACACACAC
+D3B4KKQ1_0166:8:1101:2188:2232#CGATGT/2
abbeceeegggcghiihiihhhhiifhiiiiihiiiiiiihegh`eggfebfhg
… …
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq protocol schematic
Our First Experiment
Overview of BAC in the Genome
Sequencing a BAC
Sequence Coverage
Repeats
Repeats
Repeats are not created equal
Approaches to RNA-seq
Nature Biotech (2010) 28, 421-423
Alignment
RNA-seq Alignment
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
Run Time
Alignment Yield
Splice Read Placement Accuracy
Impact on Transcript Assembly
Transcript Quantification
RNA-seq: A High-resolution View of the Transcriptome
Models for RNA-seq
• Count-based models
• Multi-reads (isoform resolution)
• Paired-end reads (include length resolution
step)
• Positional bias along transcript length
• Sequence bias
Read Counting
Mortazavi, 2008, NMeth
L. Pachter (2011) arXiv:1104.3889v
Sequence Bias--priming
Hansen (2010), NAR
Sample-specific Sequence Bias
RNA-seq: A High-resolution View of the Transcriptome
Models for RNA-seq
Result of Quantification
Clustering and Visualization
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
Hierarchical Clustering
Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8
Hierarchical Clustering
Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8
Hierarchical Clustering
Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8
Hierarchical Clustering
Gene 1
Gene 2
Gene 3
Gene 4
Gene 5
Gene 6
Gene 7
Gene 8
Distance Metrics
 Euclidean distance
 Manhattan distance
 Minkowski distance (generalized distance)
Distance Metrics
• Correlation
– maximum value of 1 if X and Y are perfectly correlated
– minimum value of -1 if X and Y are exactly opposite
– d(X,Y) = 1 – rxy
• Many, many others
• Choice of distance metric can be driven by
underlying data (eg., binary data, categorical data,
outliers, etc.)
Example of Distance Metric Choice
Example
• dat = matrix(rnorm(10000),ncol=20)
• dat[1:100,1:10] = dat[1:100,1:10]+1
• hclust
• dist
• as.dist(1-cor)
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
Differential Expression
MA Plot
RNA-seq: A High-resolution View of the Transcriptome
64
65
66
67
68
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
DE False Positive Rates
DE Evaluation
DE Software Runtime
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq workflow as
proposed by Anders et al.
in Nature Protocols
MA Plot
RNA-seq: A High-resolution View of the Transcriptome
RNA-seq: A High-resolution View of the Transcriptome
Fusion Gene Detection
Fusion gene schematic
RNA-seq: A High-resolution View of the Transcriptome
Fusion Detection
False Positive Fusion Detection
Experimental Design
• What are my goals?
– Differential expression?
– Transcriptome assembly?
– Identify rare, novel trancripts?
• System characteristics?
– Large, expanded genome?
– Intron/exon structures complex?
– No reference genome or transcriptome
Experimental Design
• Technical replicates
– Probably not needed due to low technical variation
• Biological replicates
– Not explicitly needed for transcript assembly
– Essential for differential expression analysis
– Number of replicates often driven by sample
availability for human studies
– More is almost always better
Links of Interest
• http://bioconductor.org
• http://biostars.org
• http://www.rna-seqblog.com/
• https://genome.ucsc.edu/ENCODE/
• http://www.ncbi.nlm.nih.gov/gds/
RNA-seq: A High-resolution View of the Transcriptome
Visualizing Splicing

More Related Content

What's hot (20)

PPTX
Comparative genomics
Jajati Keshari Nayak
 
PPTX
Next Generation Sequencing (NGS)
LOGESWARAN KA
 
PPTX
RNA-seq Data Analysis Overview
Sean Davis
 
PPTX
Snp and its role in diseases
Ashfaq Ahmad
 
PDF
Genome Assembly
Aureliano Bombarely
 
PPTX
Rna seq and chip seq
Jyoti Singh
 
PDF
De novo genome assembly - T.Seemann - IMB winter school 2016 - brisbane, au ...
Torsten Seemann
 
PPT
Genomics and bioinformatics
Senthil Natesan
 
PPTX
Whole genome sequence
sababibi
 
PDF
Bioinformatics
Amna Jalil
 
PPTX
Express sequence tags
Dhananjay Desai
 
PPTX
Transcriptome analysis
Divya Srivastava
 
PPTX
Multiple Alignment Sequence using Clustal Omega/ Shumaila Riaz
ShumailaRiaz6
 
PPTX
2 whole genome sequencing and analysis
saberhussain9
 
PPTX
Transcriptome analysis
RamaJumwal2
 
PPTX
gene prediction programs
MugdhaSharma11
 
PPTX
Clinical proteomics in diseases lecture, 2014
Mohammad Hessam Rafiee
 
PPTX
GENOMICS AND BIOINFORMATICS
sandeshGM
 
PPT
Structure analysis of protein
KAUSHAL SAHU
 
Comparative genomics
Jajati Keshari Nayak
 
Next Generation Sequencing (NGS)
LOGESWARAN KA
 
RNA-seq Data Analysis Overview
Sean Davis
 
Snp and its role in diseases
Ashfaq Ahmad
 
Genome Assembly
Aureliano Bombarely
 
Rna seq and chip seq
Jyoti Singh
 
De novo genome assembly - T.Seemann - IMB winter school 2016 - brisbane, au ...
Torsten Seemann
 
Genomics and bioinformatics
Senthil Natesan
 
Whole genome sequence
sababibi
 
Bioinformatics
Amna Jalil
 
Express sequence tags
Dhananjay Desai
 
Transcriptome analysis
Divya Srivastava
 
Multiple Alignment Sequence using Clustal Omega/ Shumaila Riaz
ShumailaRiaz6
 
2 whole genome sequencing and analysis
saberhussain9
 
Transcriptome analysis
RamaJumwal2
 
gene prediction programs
MugdhaSharma11
 
Clinical proteomics in diseases lecture, 2014
Mohammad Hessam Rafiee
 
GENOMICS AND BIOINFORMATICS
sandeshGM
 
Structure analysis of protein
KAUSHAL SAHU
 

Viewers also liked (6)

PPTX
Transcriptomics
Mohammad Hosein Romena
 
PPTX
Rna seq - PDX models
Amitha Dasari
 
PDF
Aims@jcu 2015 amin
Amin Mohamed
 
PDF
Amin's talk at the 13th ICRS, Hawaii
Amin Mohamed
 
PPTX
Whole Transcriptome Profiling of Cancer Tumors in Mouse PDX Models
Tom Koch
 
PPTX
Why Transcriptome? Why RNA-Seq? ENCODE answers….
Mohammad Hossein Banabazi
 
Transcriptomics
Mohammad Hosein Romena
 
Rna seq - PDX models
Amitha Dasari
 
Aims@jcu 2015 amin
Amin Mohamed
 
Amin's talk at the 13th ICRS, Hawaii
Amin Mohamed
 
Whole Transcriptome Profiling of Cancer Tumors in Mouse PDX Models
Tom Koch
 
Why Transcriptome? Why RNA-Seq? ENCODE answers….
Mohammad Hossein Banabazi
 
Ad

Similar to RNA-seq: A High-resolution View of the Transcriptome (20)

ODP
OKC Grand Rounds 2009
Sean Davis
 
PPT
Genomica - Microarreglos de DNA
Ulises Urzua
 
ODP
Genomics Technologies
Sean Davis
 
PDF
Rna seq
Sean Davis
 
PPT
155 dna microarray
SHAPE Society
 
PPT
Dna microarray mehran- u of toronto
Society for Heart Attack Prevention and Eradication
 
PPT
115 genomic and proteomic screen
Society for Heart Attack Prevention and Eradication
 
PPT
115 genomic and proteomic screen
SHAPE Society
 
PPT
Acc 2002 microarray mehran for print
Society for Heart Attack Prevention and Eradication
 
PPT
Acc 2002 microarray mehran for print
SHAPE Society
 
PDF
Predicting phenotype from genotype with machine learning
Patricia Francis-Lyon
 
PDF
Visual Exploration of Clinical and Genomic Data for Patient Stratification
Nils Gehlenborg
 
PPT
Acc 2002 mehran for print
SHAPE Society
 
PPT
Dna microarray application in vp research mehran
Society for Heart Attack Prevention and Eradication
 
PPTX
High Dimensional Biological Data Analysis and Visualization
Dmitry Grapov
 
PPT
20100509 bioinformatics kapushesky_lecture03-04_0
Computer Science Club
 
OKC Grand Rounds 2009
Sean Davis
 
Genomica - Microarreglos de DNA
Ulises Urzua
 
Genomics Technologies
Sean Davis
 
Rna seq
Sean Davis
 
155 dna microarray
SHAPE Society
 
Dna microarray mehran- u of toronto
Society for Heart Attack Prevention and Eradication
 
115 genomic and proteomic screen
Society for Heart Attack Prevention and Eradication
 
115 genomic and proteomic screen
SHAPE Society
 
Acc 2002 microarray mehran for print
Society for Heart Attack Prevention and Eradication
 
Acc 2002 microarray mehran for print
SHAPE Society
 
Predicting phenotype from genotype with machine learning
Patricia Francis-Lyon
 
Visual Exploration of Clinical and Genomic Data for Patient Stratification
Nils Gehlenborg
 
Acc 2002 mehran for print
SHAPE Society
 
Dna microarray application in vp research mehran
Society for Heart Attack Prevention and Eradication
 
High Dimensional Biological Data Analysis and Visualization
Dmitry Grapov
 
20100509 bioinformatics kapushesky_lecture03-04_0
Computer Science Club
 
Ad

More from Sean Davis (10)

PDF
Lightweight data engineering, tools, and software to facilitate data reuse an...
Sean Davis
 
PPTX
2016 07 12_purdue_bigdatainomics_seandavis
Sean Davis
 
PPTX
SRAdb Bioconductor Package Overview
Sean Davis
 
PPTX
ShinySRAdb: an R package using shiny to wrap the SRAdb Bioconductor package
Sean Davis
 
PDF
Introduction to R
Sean Davis
 
PDF
Forsharing cshl2011 sequencing
Sean Davis
 
PDF
Public datatutorialoverview
Sean Davis
 
PPTX
Sssc retreat.bioinfo resources.20110411
Sean Davis
 
PPT
Genetics Branch Journal club
Sean Davis
 
ODP
Bioc strucvariant seattle_11_09
Sean Davis
 
Lightweight data engineering, tools, and software to facilitate data reuse an...
Sean Davis
 
2016 07 12_purdue_bigdatainomics_seandavis
Sean Davis
 
SRAdb Bioconductor Package Overview
Sean Davis
 
ShinySRAdb: an R package using shiny to wrap the SRAdb Bioconductor package
Sean Davis
 
Introduction to R
Sean Davis
 
Forsharing cshl2011 sequencing
Sean Davis
 
Public datatutorialoverview
Sean Davis
 
Sssc retreat.bioinfo resources.20110411
Sean Davis
 
Genetics Branch Journal club
Sean Davis
 
Bioc strucvariant seattle_11_09
Sean Davis
 

Recently uploaded (20)

PPTX
Structure and uses of DDT, Saccharin..pptx
harsimrankaur204
 
PDF
Refractory solid condensation detected in an embedded protoplanetary disk
Sérgio Sacani
 
PPTX
Lamarckism is one of the earliest theories of evolution, proposed before Darw...
Laxman Khatal
 
PPTX
Diuretic Medicinal Chemistry II Unit II.pptx
Dhanashri Dupade
 
PPTX
CARBOHYDRATES METABOLSIM, UNIT 2, B Pharm II SEMESTER, BIOCHEMISTRY
ARUN KUMAR
 
PPTX
INTRODUCTION TO METAMORPHIC ROCKS.pptx
JingJing82
 
DOCX
Analytical methods in CleaningValidation.docx
Markus Janssen
 
PPTX
RESEARCH METHODOLOGY DR PUTRI Ms.EPI.pptx
nilarafidabm
 
PDF
LiDO: Discovery of a 10:1 Resonator with a Novel Libration State
Sérgio Sacani
 
PDF
Polarized Multiwavelength Emission from Pulsar Wind—Accretion Disk Interactio...
Sérgio Sacani
 
PDF
Pharmaceutical Microbiology (sem-3) UNIT IV.pdf
payalpilaji
 
PPTX
MOUNTAINS...........................................
AnaRosePagdato1
 
PDF
GK_GS One Liner For Competitive Exam.pdf
abhi01nm
 
PDF
The Rise of Autonomous Intelligence: How AI Agents Are Redefining Science, Ar...
Kamer Ali Yuksel
 
PDF
Is the Interstellar Object 3I/ATLAS Alien Technology?
Sérgio Sacani
 
PDF
The steady state population of Earth’s minimoons of lunar provenance
Sérgio Sacani
 
PDF
A proposed mechanism for the formation of protocell-like structures on Titan
Sérgio Sacani
 
PDF
Continuous Model-Based Engineering of Software-Intensive Systems: Approaches,...
Hugo Bruneliere
 
PPTX
Weather Data Revolution: Advanced Technologies & AI(use) for Precise Storm Tr...
kutatomoshi
 
PDF
Lecture Notes on Linear Algebra: From Concrete Matrices to Abstract Structures
Pranav Sharma
 
Structure and uses of DDT, Saccharin..pptx
harsimrankaur204
 
Refractory solid condensation detected in an embedded protoplanetary disk
Sérgio Sacani
 
Lamarckism is one of the earliest theories of evolution, proposed before Darw...
Laxman Khatal
 
Diuretic Medicinal Chemistry II Unit II.pptx
Dhanashri Dupade
 
CARBOHYDRATES METABOLSIM, UNIT 2, B Pharm II SEMESTER, BIOCHEMISTRY
ARUN KUMAR
 
INTRODUCTION TO METAMORPHIC ROCKS.pptx
JingJing82
 
Analytical methods in CleaningValidation.docx
Markus Janssen
 
RESEARCH METHODOLOGY DR PUTRI Ms.EPI.pptx
nilarafidabm
 
LiDO: Discovery of a 10:1 Resonator with a Novel Libration State
Sérgio Sacani
 
Polarized Multiwavelength Emission from Pulsar Wind—Accretion Disk Interactio...
Sérgio Sacani
 
Pharmaceutical Microbiology (sem-3) UNIT IV.pdf
payalpilaji
 
MOUNTAINS...........................................
AnaRosePagdato1
 
GK_GS One Liner For Competitive Exam.pdf
abhi01nm
 
The Rise of Autonomous Intelligence: How AI Agents Are Redefining Science, Ar...
Kamer Ali Yuksel
 
Is the Interstellar Object 3I/ATLAS Alien Technology?
Sérgio Sacani
 
The steady state population of Earth’s minimoons of lunar provenance
Sérgio Sacani
 
A proposed mechanism for the formation of protocell-like structures on Titan
Sérgio Sacani
 
Continuous Model-Based Engineering of Software-Intensive Systems: Approaches,...
Hugo Bruneliere
 
Weather Data Revolution: Advanced Technologies & AI(use) for Precise Storm Tr...
kutatomoshi
 
Lecture Notes on Linear Algebra: From Concrete Matrices to Abstract Structures
Pranav Sharma
 

RNA-seq: A High-resolution View of the Transcriptome

Editor's Notes

  • #2: I am going to spend a few minutes illustrating how existing and emerging high-throughput genomic technologies are being used to understand cancer, a mindnumbingly complex and disregulated biologic process.
  • #3: The first karyotypes were produced in 1956. Shown here is a comparison of a normal karyotype of a normal female and one from a tumor. By 1960, a karyotype of a cancer genome revealed the presence of the Philadelphia chromosome. Now known to represent the BCR-ABL fusion protein, it was not until 33 years later in 1993 that a drug, gleevec, become available that targeted the fusion product. By applying high-throughput microarray technologies, the Cancer Genetics Branch is striving to make observations of the cancer genome that will provide deeper understandings of the biology of cancer, to develop prognostic and diagnostic markers to improve patient-specific treatments, and to find promising targets for directed drug therapy.
  • #5: Since Knudson’s famous hypothesis proposing the two-hit model, our understanding of cancer as a genetic disease has progressed to the realization that cancer is not often a function of a single gene gone awry, but probably represents a complex interaction of multiple processes in the genome including altered copy number, gene expression, transcriptional regulation, chromatin modification, sequence variation, and DNA methylation. It is vital to the goal of producing better patient outcomes to understand not only what genes are involved in a certain type of cancer, but also how these other processes affect gene regulation. In short, an integrated view of the cancer genome is necessary and is now becoming possible.