This document summarizes a research paper that proposes a robust foreground modeling method to segment and detect multiple moving objects in videos. The proposed method uses a running average technique to model the background and subtract it from video frames to detect foreground objects. Morphological operations like dilation and erosion are applied to reduce noise and merge connected regions. Convex hull processing is also used to define object boundaries more clearly. The method was tested on standard video datasets and achieved better performance than other techniques in segmenting objects under various challenging conditions like illumination changes and occlusion. Experimental results demonstrated high precision, recall and specificity based on comparisons with ground truth data.