SlideShare a Scribd company logo
KAILASH
M.Sc BIOTECHNOLOGY
2nd SEMESTER
SUBMITTED TO:
Dr. S.K. GAHLAWAT
DEPTT. OF BIOTECHNOLOGY
CDLU (SIRSA)
Serum in media
• Serum is a complex mix of
albumins, growth factors and
growth inhibitors.
• Serum is one of the most important
components of cell culture media
and serves as a source for amino
acids, proteins, vitamins
(particularly fat-soluble vitamins
such as A, D, E, and K),
carbohydrates, lipids, hormones,
growth factors, minerals, and trace
elements.
• Serum from fetal and calf bovine sources are commonly used to support the
growth of cells in culture.
• Fetal serum is a rich source of growth factors and is appropriate for cell
cloning and for the growth of fastidious cells.
• Calf serum is used in contact-inhibition studies because of its lower growth-
promoting properties.
• Normal growth media often contain 2-10% of serum.
Supplementation of media with serum serves the following
functions :
• Serum provides the basic nutrients (both in the solution as well as bound to
the proteins) for cells.
• Serum provides several growth factors and hormones involved in growth
promotion and specialized cell function.
• It provides several binding proteins like albumin, transferrin, which can carry
other molecules into the cell. For example: albumin carries lipids, vitamins,
hormones, etc. into cells.
• It also supplies proteins, like fibronectin, which promote the attachment of
cells to the substrate. It also provides spreading factors that help the cells to
spread out before they begin to divide.
• It provides protease inhibitors which protect cells from proteolysis.
• It also provides minerals, like Na+, K+, Zn2+, Fe2+, etc.
• It increases the viscosity of the medium and thus, protects cells from
mechanical damages during agitation of suspension cultures.
• It also acts a buffer.
• Due to the presence of both growth
factors and inhibitors, the role of
serum in cell culture is very
complex.
• Unfortunately, in addition to serving
various functions, the use of serum
in tissue culture applications has
several drawbacks .
proteins
• Although proteins are a major component of serum, the functions of many
proteins in vitro remain obscure;
• it may be that relatively few proteins are required other than as carriers for
minerals, fatty acids, and hormones.
• Those proteins for which requirements have been found are albumin which
may be important as a carrier of lipids, minerals, and globulins which
promotes cell attachment.
• Protein also increases the viscosity of the medium, reducing shear stress
during pipetting and stirring, and may add to the medium’s buffering capacity.
Hormones
• Insulin promotes the uptake of glucose and amino acids.
• Growth hormone may be present in serum—particularly fetal serum—and, in
conjunction with the somatomedins (IGFs), may have a mitogenic effect.
(mitogen: a mitogen is a peptide or small protein that induces a cell to begin
cell division: mitosis.)
• Hydrocortisone is also present in serum—particularly fetal bovine serum—in
varying amounts, and it can promote cell attachment and cell proliferation but
under certain conditions (e.g., at high cell density) may be cytostatic and can
induce cell differentiation
Nutrients and Metabolites
• Serum may also contain amino
acids, glucose, oxo (keto) acids,
nucleosides, and a number of other
nutrients and intermediary
metabolites.
• These may be important in simple
media but less so in complex
media, particularly those with
higher amino acid concentrations
and other defined supplements.
Lipids
• Linoleic acid, oleic acid,
ethanolamine, and
phosphoethanolamine are present
in serum in small amounts, usually
bound to proteins such as albumin.
Minerals
• Serum replacement experiments
have also suggested that trace
elements and iron, copper, and zinc
may be bound to serum protein,
probably albumin.
Inhibitors
• Serum may contain substances that inhibit cell proliferation.
• Some of these may be artifacts of preparation (e.g., bacterial toxins from
contamination before filtration, or antibodies that cross-react with surface
epitopes on the cultured cells)
• but others may be physiological negative growth regulators, such as TGF-β.
Heat inactivation removes complement from the serum and reduces the
cytotoxic action of immunoglobulins without damaging polypeptide growth
factors, but it may also remove some more labile constituents and is not
always as satisfactory as untreated serum.
Constituents of Serum
Role of serum and supplements in culture medium k.s
Role of serum and supplements in culture medium k.s
Advantages of serum in media
• Serum contains various growth
factors and hormones which
stimulates cell growth and
functions.
• Helps in the attachment of cells.
• Acts as a spreading factor.
• Acts as a buffering agent which helps in maintaining the pH of the culture
media.
• Functions as a binding protein.
• Minimizes mechanical damages or damages caused by viscosity.
Disadvantages of serum in media
• Lack of uniformity in the composition of serum
• Testing needs to be done to maintain the quality of each batch before using
• May contain some of the growth inhibiting factors
• Presence of serum in media may interfere with the purification and isolation
of cell culture products.
• Serum Can Be a Source of Contamination
• Another potential issue with serum is viral or bacterial contamination. Again,
lot-to-lot variability is in play here, and heat inactivation may not wholly
neutralize microbial pathogens.
• Adding contaminated serum to your culture will affect the health and growth
of your cells and render them unusable for experiments.
• Serum Is Highly Variable
• For starters, serum is an animal-derived natural product, and each new lot of
material will vary.
• While serum does contain items important for the health of your cells, it also
contains things like immune complement proteins that can harm your cells.
• To get around this, serum is usually heated to inactivate harmful proteins. Of
course, heat will also denature beneficial proteins too, which can increase the
variability between media preparations.
• While this might not be a big issue for some types of research, variability in
factors critical for cell growth and survival can confound your results if you
are running, for example, a cell-based assay measuring the effect of a growth
factor or drug on a given cellular function.
• In this case, one of the biggest reasons for going serum-free is to increase
the standardization of culture conditions for more consistent results.
• This type of standardization is even more critical in regulated laboratories
and using a defined medium allows greater control over your cell culture and
your experiments.
Media supplements
• In addition to serum, tissue extracts
and digests have traditionally been
used as supplements to tissue
culture media.
• These components, supplements,
help sustain proliferation and
maintain normal cell metabolism.
Amino Acid Hydrolysates
• Many such supplements are derived from microbiological media.
• Bactopeptone, tryptose, and lactalbumin hydrolysate (BD Biosciences) are
proteolytic digests of beef heart or lactalbumin and contain mainly amino
acids and smallpeptides.
• Bactopeptone and tryptose may also contain nucleosides and other heat-
stable tissue constituents, such as fatty acids and carbohydrates.
• Sterility is easily achieved as they are autoclavable.
Embryo Extract
• Embryo extract is a crude homogenate of 10-day-old chick embryo that is
clarified by centrifugation.
• The crude extract was fractionated by Coon and Cahn [1966] to give
fractions of either high or low molecular weight.
• The low-molecular-weight fraction promoted cell proliferation, whereas the
high-molecular-weight fraction promoted pigment and cartilage cell
differentiation.
• Although Coon and Cahn did not fully characterize these fractions, more
recent evidence suggests that the low-molecular-weight fraction may contain
peptide growth factors and the highmolecular- weight fraction proteoglycans
and other matrix constituents.
• Embryo extract was originally used as a component of plasma clots to
promote cell migration from the explant and has been retained in some organ
culture techniques.
• It should always be frozen and thawed at least twice to ensure that there is
no carryover of live cells from the embryo.
Conditioned Medium
• Puck and Marcus [1955] found that
the survival of lowdensity cultures
could be improved by growing the
cells in the presence of feeder
layers.
• In that instance the effect was due
to soluble factors as the clones and
feeder layer were kept separate.
• Hauschka & Konigsberg [1966] showed that the conditioning of culture
medium that was necessary for the growth and differentiation of myoblasts
was due to collagen released by the feeder cells.
• Using feeder layers and conditioning the medium with embryonic fibroblasts
or other cell lines remains a valuable method of culturing difficult cells.
• However, conditioning medium adds undefined components and should be
eliminated if possible after the active constituents are determined.
Precautions to take while adding suppliments:
• since the addition of supplement can change the osmolality of the complete
growth media which can negatively affect the growth of cells, it is always best
to recheck the osmolality after supplements are added.
• For most of the cell lines, optimal osmolality should be between 260
mOSM/kg and 320 mOSM/kg.
• The shelf life of the growth media changes after the addition of supplements.
Complete media containing protein supplement tend to degrade faster than
basal media alone.
Reference:
• Culture of Animal Cells A Manual of Basic Technique and Specialized
Applications by R. Ian Freshney.
• www.labome.com
Role of serum and supplements in culture medium k.s

More Related Content

PPTX
Aseptic Techniques and sterile handling in atc lab
Akshdeep Sharma
 
PPTX
Primary culture and cell line
KAUSHAL SAHU
 
PPTX
Cell culture media
Sakeena Asmi
 
PDF
MODELS OF REPLICATION
Kristu Jayanti College
 
PPT
12. Cell synchronization and Immortalization
Shailendra shera
 
PPTX
Aortic arches in vertebrates
G. S. Gawande Mahavidyalaya, Umarkhed
 
PPT
7.Laboratory safety and Biohazard
Shailendra shera
 
Aseptic Techniques and sterile handling in atc lab
Akshdeep Sharma
 
Primary culture and cell line
KAUSHAL SAHU
 
Cell culture media
Sakeena Asmi
 
MODELS OF REPLICATION
Kristu Jayanti College
 
12. Cell synchronization and Immortalization
Shailendra shera
 
Aortic arches in vertebrates
G. S. Gawande Mahavidyalaya, Umarkhed
 
7.Laboratory safety and Biohazard
Shailendra shera
 

What's hot (20)

PPTX
Cell synchronization
KAUSHAL SAHU
 
PPTX
Histotypic culture
BHAVYA SHREE
 
PPTX
Organ culture- animal tissue culture
kathantrivedi3
 
PPT
5. Cell culture media
Shailendra shera
 
PPT
Cell transformation, by kk
KAUSHAL SAHU
 
PPTX
3D cell cultures
Ayobami Ajisafe
 
PPTX
Tumor formtion , ti ri plasmid , dna trnsfr.
Sukirti Vedula
 
KEY
Somatic cell nuclear_transfer
techfreak101
 
PPT
Measurement growth in cell culture
Shailendra shera
 
PPTX
GENE TRANSFER METHODS IN ANIMALS
HUZAIFA GULZAR
 
PPTX
Transgenic manipulation of animal embryos and its application
DeveshMachhi
 
PPTX
Primary cell culture
MuskaanSharma42
 
PPTX
Animal cell culture, application by kk sahu
KAUSHAL SAHU
 
PPT
8. Biology and characterization of cultured cells
Shailendra shera
 
PPTX
Stem cell culture, its application
KAUSHAL SAHU
 
PPTX
Animal cell culture media
Pankaj Nerkar
 
PPT
Cell cloning, animal cell culture
KAUSHAL SAHU
 
PPTX
Organ culture technique in synthetic media- animal tissue culture
neeru02
 
PPTX
Screenable and Selectable Markers
Shabnam Ameenudeen
 
Cell synchronization
KAUSHAL SAHU
 
Histotypic culture
BHAVYA SHREE
 
Organ culture- animal tissue culture
kathantrivedi3
 
5. Cell culture media
Shailendra shera
 
Cell transformation, by kk
KAUSHAL SAHU
 
3D cell cultures
Ayobami Ajisafe
 
Tumor formtion , ti ri plasmid , dna trnsfr.
Sukirti Vedula
 
Somatic cell nuclear_transfer
techfreak101
 
Measurement growth in cell culture
Shailendra shera
 
GENE TRANSFER METHODS IN ANIMALS
HUZAIFA GULZAR
 
Transgenic manipulation of animal embryos and its application
DeveshMachhi
 
Primary cell culture
MuskaanSharma42
 
Animal cell culture, application by kk sahu
KAUSHAL SAHU
 
8. Biology and characterization of cultured cells
Shailendra shera
 
Stem cell culture, its application
KAUSHAL SAHU
 
Animal cell culture media
Pankaj Nerkar
 
Cell cloning, animal cell culture
KAUSHAL SAHU
 
Organ culture technique in synthetic media- animal tissue culture
neeru02
 
Screenable and Selectable Markers
Shabnam Ameenudeen
 
Ad

Similar to Role of serum and supplements in culture medium k.s (20)

PPTX
Animal cell culture
Ruchira Agarwal
 
PPTX
Cell culture, Different type of cell culture media, types of media
Rajashekar Baldhu
 
PPTX
Cell culture practices-I(Media preparation,cell.pptx
SouravSwarnakar4
 
PPTX
cell_culture techniques with pictorial representation
chauhansakshi130
 
PPTX
cell_cutlure_0.pptx
AliElmehdawi2
 
PPTX
Maximizing the efficiency of fermentation process
University of Mumbai
 
PPTX
Animal Cell Culture: Growth of animal cells in culture. PHARMACEUTICAL MICROB...
Ms. Pooja Bhandare
 
PPTX
Dr. Saraswathi_ Assistant professor, Kristujayanti College_Animal Cell Cultur...
Saraswathi29574
 
PPTX
Human Nutrition new presentation for.pptx
denbushe39
 
PPTX
A Comprehensive Review of Cell Culture Media
Creative-Bioarray
 
PPTX
Basic of Animal cell culture part II
Fahad Khan
 
PPTX
Cell culture media
Pharmacy Slides
 
PPTX
Tissue culture for natural product
IjazAhmad120
 
PPTX
Production of enzymes
Adarsh Patil
 
PDF
Decoding Cell Culture: Evolution, Components & Media Optimization
Kosheeka : Primary Cells for Research
 
PDF
nutrients for human health_64.pdf
mai Vijit
 
PPTX
Culture and bioreactor plant cell.pptx
bionicart
 
PPTX
Different host vector systems for recombinant cell cultivation By D Gnanasing...
Gnanasingh Arputhadas
 
PPTX
bioprocess parameter of therapeutic protein production
Shiv Kumar
 
PPTX
Animal cell, tissue culture
Bahauddin Zakariya University lahore
 
Animal cell culture
Ruchira Agarwal
 
Cell culture, Different type of cell culture media, types of media
Rajashekar Baldhu
 
Cell culture practices-I(Media preparation,cell.pptx
SouravSwarnakar4
 
cell_culture techniques with pictorial representation
chauhansakshi130
 
cell_cutlure_0.pptx
AliElmehdawi2
 
Maximizing the efficiency of fermentation process
University of Mumbai
 
Animal Cell Culture: Growth of animal cells in culture. PHARMACEUTICAL MICROB...
Ms. Pooja Bhandare
 
Dr. Saraswathi_ Assistant professor, Kristujayanti College_Animal Cell Cultur...
Saraswathi29574
 
Human Nutrition new presentation for.pptx
denbushe39
 
A Comprehensive Review of Cell Culture Media
Creative-Bioarray
 
Basic of Animal cell culture part II
Fahad Khan
 
Cell culture media
Pharmacy Slides
 
Tissue culture for natural product
IjazAhmad120
 
Production of enzymes
Adarsh Patil
 
Decoding Cell Culture: Evolution, Components & Media Optimization
Kosheeka : Primary Cells for Research
 
nutrients for human health_64.pdf
mai Vijit
 
Culture and bioreactor plant cell.pptx
bionicart
 
Different host vector systems for recombinant cell cultivation By D Gnanasing...
Gnanasingh Arputhadas
 
bioprocess parameter of therapeutic protein production
Shiv Kumar
 
Animal cell, tissue culture
Bahauddin Zakariya University lahore
 
Ad

Recently uploaded (20)

PDF
N-enhancement in GN-z11: First evidence for supermassive stars nucleosynthesi...
Sérgio Sacani
 
PPTX
Qualification of.UV visible spectrophotometer pptx
shrutipandit17
 
PDF
Vera C. Rubin Observatory of interstellar Comet 3I ATLAS - July 21, 2025.pdf
SOCIEDAD JULIO GARAVITO
 
PPTX
Feeding stratagey for climate change dairy animals.
Dr.Zulfy haq
 
PDF
Microbial Biofilms and Their Role in Chronic Infections
Prachi Virat
 
PDF
Package-Aware Approach for Repository-Level Code Completion in Pharo
ESUG
 
PDF
Integrating Executable Requirements in Prototyping
ESUG
 
PDF
A water-rich interior in the temperate sub-Neptune K2-18 b revealed by JWST
Sérgio Sacani
 
PPTX
How to Add SBCGlobal.net Email to MacBook Air in Minutes
raymondjones7273
 
PPTX
Excretory System in insects ( PPT Presentation)
Dr Showkat Ahmad Wani
 
PPTX
Unit 4 - Astronomy and Astrophysics - Milky Way And External Galaxies
RDhivya6
 
PDF
A deep Search for Ethylene Glycol and Glycolonitrile in the V883 Ori Protopla...
Sérgio Sacani
 
PDF
study of microbiologically influenced corrosion of 2205 duplex stainless stee...
ahmadfreak180
 
PPTX
General Characters and Classification of Su class Apterygota.pptx
Dr Showkat Ahmad Wani
 
PDF
JADESreveals a large population of low mass black holes at high redshift
Sérgio Sacani
 
PPTX
Introduction to biochemistry.ppt-pdf_shotrs!
Vishnukanchi darade
 
PDF
Evaluating Benchmark Quality: a Mutation-Testing- Based Methodology
ESUG
 
PPTX
Discovery of Novel Antibiotics from Uncultured Microbes.pptx
SaakshiSharma26
 
PPTX
Embark on a journey of cell division and it's stages
sakyierhianmontero
 
PDF
Paleoseismic activity in the moon’s Taurus-Littrowvalley inferred from boulde...
Sérgio Sacani
 
N-enhancement in GN-z11: First evidence for supermassive stars nucleosynthesi...
Sérgio Sacani
 
Qualification of.UV visible spectrophotometer pptx
shrutipandit17
 
Vera C. Rubin Observatory of interstellar Comet 3I ATLAS - July 21, 2025.pdf
SOCIEDAD JULIO GARAVITO
 
Feeding stratagey for climate change dairy animals.
Dr.Zulfy haq
 
Microbial Biofilms and Their Role in Chronic Infections
Prachi Virat
 
Package-Aware Approach for Repository-Level Code Completion in Pharo
ESUG
 
Integrating Executable Requirements in Prototyping
ESUG
 
A water-rich interior in the temperate sub-Neptune K2-18 b revealed by JWST
Sérgio Sacani
 
How to Add SBCGlobal.net Email to MacBook Air in Minutes
raymondjones7273
 
Excretory System in insects ( PPT Presentation)
Dr Showkat Ahmad Wani
 
Unit 4 - Astronomy and Astrophysics - Milky Way And External Galaxies
RDhivya6
 
A deep Search for Ethylene Glycol and Glycolonitrile in the V883 Ori Protopla...
Sérgio Sacani
 
study of microbiologically influenced corrosion of 2205 duplex stainless stee...
ahmadfreak180
 
General Characters and Classification of Su class Apterygota.pptx
Dr Showkat Ahmad Wani
 
JADESreveals a large population of low mass black holes at high redshift
Sérgio Sacani
 
Introduction to biochemistry.ppt-pdf_shotrs!
Vishnukanchi darade
 
Evaluating Benchmark Quality: a Mutation-Testing- Based Methodology
ESUG
 
Discovery of Novel Antibiotics from Uncultured Microbes.pptx
SaakshiSharma26
 
Embark on a journey of cell division and it's stages
sakyierhianmontero
 
Paleoseismic activity in the moon’s Taurus-Littrowvalley inferred from boulde...
Sérgio Sacani
 

Role of serum and supplements in culture medium k.s

  • 1. KAILASH M.Sc BIOTECHNOLOGY 2nd SEMESTER SUBMITTED TO: Dr. S.K. GAHLAWAT DEPTT. OF BIOTECHNOLOGY CDLU (SIRSA)
  • 2. Serum in media • Serum is a complex mix of albumins, growth factors and growth inhibitors. • Serum is one of the most important components of cell culture media and serves as a source for amino acids, proteins, vitamins (particularly fat-soluble vitamins such as A, D, E, and K), carbohydrates, lipids, hormones, growth factors, minerals, and trace elements.
  • 3. • Serum from fetal and calf bovine sources are commonly used to support the growth of cells in culture. • Fetal serum is a rich source of growth factors and is appropriate for cell cloning and for the growth of fastidious cells. • Calf serum is used in contact-inhibition studies because of its lower growth- promoting properties. • Normal growth media often contain 2-10% of serum.
  • 4. Supplementation of media with serum serves the following functions : • Serum provides the basic nutrients (both in the solution as well as bound to the proteins) for cells. • Serum provides several growth factors and hormones involved in growth promotion and specialized cell function. • It provides several binding proteins like albumin, transferrin, which can carry other molecules into the cell. For example: albumin carries lipids, vitamins, hormones, etc. into cells.
  • 5. • It also supplies proteins, like fibronectin, which promote the attachment of cells to the substrate. It also provides spreading factors that help the cells to spread out before they begin to divide. • It provides protease inhibitors which protect cells from proteolysis. • It also provides minerals, like Na+, K+, Zn2+, Fe2+, etc. • It increases the viscosity of the medium and thus, protects cells from mechanical damages during agitation of suspension cultures.
  • 6. • It also acts a buffer. • Due to the presence of both growth factors and inhibitors, the role of serum in cell culture is very complex. • Unfortunately, in addition to serving various functions, the use of serum in tissue culture applications has several drawbacks .
  • 7. proteins • Although proteins are a major component of serum, the functions of many proteins in vitro remain obscure; • it may be that relatively few proteins are required other than as carriers for minerals, fatty acids, and hormones. • Those proteins for which requirements have been found are albumin which may be important as a carrier of lipids, minerals, and globulins which promotes cell attachment. • Protein also increases the viscosity of the medium, reducing shear stress during pipetting and stirring, and may add to the medium’s buffering capacity.
  • 8. Hormones • Insulin promotes the uptake of glucose and amino acids. • Growth hormone may be present in serum—particularly fetal serum—and, in conjunction with the somatomedins (IGFs), may have a mitogenic effect. (mitogen: a mitogen is a peptide or small protein that induces a cell to begin cell division: mitosis.) • Hydrocortisone is also present in serum—particularly fetal bovine serum—in varying amounts, and it can promote cell attachment and cell proliferation but under certain conditions (e.g., at high cell density) may be cytostatic and can induce cell differentiation
  • 9. Nutrients and Metabolites • Serum may also contain amino acids, glucose, oxo (keto) acids, nucleosides, and a number of other nutrients and intermediary metabolites. • These may be important in simple media but less so in complex media, particularly those with higher amino acid concentrations and other defined supplements.
  • 10. Lipids • Linoleic acid, oleic acid, ethanolamine, and phosphoethanolamine are present in serum in small amounts, usually bound to proteins such as albumin.
  • 11. Minerals • Serum replacement experiments have also suggested that trace elements and iron, copper, and zinc may be bound to serum protein, probably albumin.
  • 12. Inhibitors • Serum may contain substances that inhibit cell proliferation. • Some of these may be artifacts of preparation (e.g., bacterial toxins from contamination before filtration, or antibodies that cross-react with surface epitopes on the cultured cells) • but others may be physiological negative growth regulators, such as TGF-β. Heat inactivation removes complement from the serum and reduces the cytotoxic action of immunoglobulins without damaging polypeptide growth factors, but it may also remove some more labile constituents and is not always as satisfactory as untreated serum.
  • 16. Advantages of serum in media • Serum contains various growth factors and hormones which stimulates cell growth and functions. • Helps in the attachment of cells. • Acts as a spreading factor.
  • 17. • Acts as a buffering agent which helps in maintaining the pH of the culture media. • Functions as a binding protein. • Minimizes mechanical damages or damages caused by viscosity.
  • 18. Disadvantages of serum in media • Lack of uniformity in the composition of serum • Testing needs to be done to maintain the quality of each batch before using • May contain some of the growth inhibiting factors • Presence of serum in media may interfere with the purification and isolation of cell culture products.
  • 19. • Serum Can Be a Source of Contamination • Another potential issue with serum is viral or bacterial contamination. Again, lot-to-lot variability is in play here, and heat inactivation may not wholly neutralize microbial pathogens. • Adding contaminated serum to your culture will affect the health and growth of your cells and render them unusable for experiments.
  • 20. • Serum Is Highly Variable • For starters, serum is an animal-derived natural product, and each new lot of material will vary. • While serum does contain items important for the health of your cells, it also contains things like immune complement proteins that can harm your cells. • To get around this, serum is usually heated to inactivate harmful proteins. Of course, heat will also denature beneficial proteins too, which can increase the variability between media preparations.
  • 21. • While this might not be a big issue for some types of research, variability in factors critical for cell growth and survival can confound your results if you are running, for example, a cell-based assay measuring the effect of a growth factor or drug on a given cellular function. • In this case, one of the biggest reasons for going serum-free is to increase the standardization of culture conditions for more consistent results. • This type of standardization is even more critical in regulated laboratories and using a defined medium allows greater control over your cell culture and your experiments.
  • 22. Media supplements • In addition to serum, tissue extracts and digests have traditionally been used as supplements to tissue culture media. • These components, supplements, help sustain proliferation and maintain normal cell metabolism.
  • 23. Amino Acid Hydrolysates • Many such supplements are derived from microbiological media. • Bactopeptone, tryptose, and lactalbumin hydrolysate (BD Biosciences) are proteolytic digests of beef heart or lactalbumin and contain mainly amino acids and smallpeptides. • Bactopeptone and tryptose may also contain nucleosides and other heat- stable tissue constituents, such as fatty acids and carbohydrates. • Sterility is easily achieved as they are autoclavable.
  • 24. Embryo Extract • Embryo extract is a crude homogenate of 10-day-old chick embryo that is clarified by centrifugation. • The crude extract was fractionated by Coon and Cahn [1966] to give fractions of either high or low molecular weight. • The low-molecular-weight fraction promoted cell proliferation, whereas the high-molecular-weight fraction promoted pigment and cartilage cell differentiation.
  • 25. • Although Coon and Cahn did not fully characterize these fractions, more recent evidence suggests that the low-molecular-weight fraction may contain peptide growth factors and the highmolecular- weight fraction proteoglycans and other matrix constituents. • Embryo extract was originally used as a component of plasma clots to promote cell migration from the explant and has been retained in some organ culture techniques. • It should always be frozen and thawed at least twice to ensure that there is no carryover of live cells from the embryo.
  • 26. Conditioned Medium • Puck and Marcus [1955] found that the survival of lowdensity cultures could be improved by growing the cells in the presence of feeder layers. • In that instance the effect was due to soluble factors as the clones and feeder layer were kept separate.
  • 27. • Hauschka & Konigsberg [1966] showed that the conditioning of culture medium that was necessary for the growth and differentiation of myoblasts was due to collagen released by the feeder cells. • Using feeder layers and conditioning the medium with embryonic fibroblasts or other cell lines remains a valuable method of culturing difficult cells. • However, conditioning medium adds undefined components and should be eliminated if possible after the active constituents are determined.
  • 28. Precautions to take while adding suppliments: • since the addition of supplement can change the osmolality of the complete growth media which can negatively affect the growth of cells, it is always best to recheck the osmolality after supplements are added. • For most of the cell lines, optimal osmolality should be between 260 mOSM/kg and 320 mOSM/kg. • The shelf life of the growth media changes after the addition of supplements. Complete media containing protein supplement tend to degrade faster than basal media alone.
  • 29. Reference: • Culture of Animal Cells A Manual of Basic Technique and Specialized Applications by R. Ian Freshney. • www.labome.com