SlideShare a Scribd company logo
Simple. Precise.
Competent.
Reproducibility and
experiments management in
ML projects
D1 EXPO 2019, Alicante
Rozhkov Mikhail
Senior Data Scientist
Raiffeisen Bank Russia
Topics
• Difference of ML projects from IT
projects
• ML experiments management
• Agile ML
• ML reproducibility and why it’s
important?
• Approaches and tools
2
1. Different from IT projects
2. Longer dev cycle
3. Experiments driven
4. Not easy to test and validate
3
ML projects
IT projects development processes
4
Source: https://online.husson.edu/software-development-cycle/ Source: https://en.wikipedia.org/wiki/Software_development_process
ML project workflow is experiments driven
5
Problem
Statement
MVP
design
Get data
Prepare data
Train model
Evaluate
modelTest &
Integrate
Serve /
Predict
Monitor
1. Analyze &
Plan
2. Prototype
4. Monitor &
Maintain
3. Productionize
Inspired by Uber’s workflow of a machine learning project diagram. Scaling Machine Learning at Uber with Michelangelo https://eng.uber.com/scaling-michelangelo/
Solution
development
Experiment = code + dataset + outputs
6
Algorithm
Data
Hyperpara
meters
Evaluation
Measure
Model
ETL
tasks
test
dataset
train
dataset
evaluate
train
Experiment
config - artifacts
- pipelines
- code
- configs
ML project requires more factors to take into account
7
Software ML
Architecture design
tasks, UI/UX
integrations
+ nature and quality of data
Quality measures working code
+ model quality metrics
+ performance in production
Version control
code
environment
+ pipelines
+ datasets
+ models & artifacts
Testing code
+ data and features
+ model development methods
+ ML infrastructure
+ ML systems
Inspired by Dmitry Petrov, Ivan Shcheklein. Open source tools for machine learning model and dataset versioning.
1. Satisfy customer
2. Early fail
3. Fail safe
4. Frequent code updates
5. Constant changing requirements
6. Team = Business + DS/ML
7. Frequent team meetings/statuses
8. Measure of progress=working
code
9. Technical excellence and good
design
10. Reproducibility
8
Agile ML
Inspired by: Andrew Kelleher, Adam Kelleher. Machine Learning in Production:
Developing and Optimizing Data Science Workflows and Applications. 2019
ML reproducibility is a dimension of quality
9
What is Reproducibility?
● using the original methods applied to
the original data to produce the
original results [Gardner]
Why should you care?
● Trust
● Consistent Results
● Versioned History
● Team Performance
● Pain Less Production
Josh Gardner, Yuming Yang, Ryan S. Baker, Christopher Brooks. Enabling End-To-End Machine
Learning Replicability: A Case Study in Educational Data Mining
● Code, models and data version
control
● Automated pipelines
● Tests
● Control environment
● Experiments management
● Methodology and procedures
documentation
10
Reproducible ML
11
Use case
Onsite Recommendation System
12
Purpose: improve conversion rate on landing page
send online
user data
get promo
User History
DataCV prediction
model
Promo
recommendati
on model
Promo DB
{uid, cv_pred, promo_id}
Tracking project statuses and issues, documentation
13
Code
14
● Version control
● Re-usable .py modules
● Tests...
Source: https://www.bitbull.it/en/blog/how-git-flow-works/
Data and artifacts
15
● Version Control
● Store / share
● Access
Pipelines
16
● One button run
● End-to-end or selected steps
● Configs (i.e. random seeds)
load/
transform raw
data
evaluate
train
split train/test
prepare train
dataset
select best
model
prepare test
dataset
predict
Experiments Management
17
● Browse history
● Compare results
● Share results
● Methodology and
procedures
Data Model
pipelines
MetricsConfig
pipelines
pipelines
Data Model
pipelines
MetricsConfig
pipelines
pipelines
experiment X (dd.mm.2018)
experiment Y (dd.mm.2019)
Environment
18
● Libraries
● OS
● Hardware
Gronenschild EHBM, Habets P, Jacobs HIL, Mengelers R, Rozendaal N, et al. (2012) The Effects of FreeSurfer Version, Workstation Type, and Macintosh
Operating System Version on Anatomical Volume and Cortical Thickness Measurements. PLOS ONE 7(6): e38234. https://doi.org/10.1371/journal.pone.0038234
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038234
Example: Effects of data processing conditions on the voxel volumes for a subsample of
(sub)cortical structures
Test ML
● Tests for data and features
● Tests for model development
● Tests for ML infrastructure
● Test for running ML systems
19
Conclusions
1. ML projects requires different
approach
2. Data and experiments are crucial
3. Agility is driven by fast
experimenting and reproducibility
4. Experiments are versioned,
browsable, comparable,
documented, reproducible
5. Reproducibility is a dimension of
quality and maturity
20
raiffeisen.ru
Simple. Precise.
Competent.
Thank you
21
Rozhkov Mikhail
Senior Data Scientist
Raiffeisen Bank Russia
mikhail.rozhkov@raiffeisen.ru
Ad

More Related Content

Similar to Reproducibility and experiments management in Machine Learning (20)

From Machine Learning Scientist to Full Stack Data Scientist: Lessons learned...
From Machine Learning Scientist to Full Stack Data Scientist: Lessons learned...From Machine Learning Scientist to Full Stack Data Scientist: Lessons learned...
From Machine Learning Scientist to Full Stack Data Scientist: Lessons learned...
Paris Women in Machine Learning and Data Science
 
Bridging the Gap: from Data Science to Production
Bridging the Gap: from Data Science to ProductionBridging the Gap: from Data Science to Production
Bridging the Gap: from Data Science to Production
Florian Wilhelm
 
Start with version control and experiments management in machine learning
Start with version control and experiments management in machine learningStart with version control and experiments management in machine learning
Start with version control and experiments management in machine learning
Mikhail Rozhkov
 
C2_W1---.pdf
C2_W1---.pdfC2_W1---.pdf
C2_W1---.pdf
Humayun Kabir
 
AI projects - Lifecyle & Best Practices
AI projects - Lifecyle & Best PracticesAI projects - Lifecyle & Best Practices
AI projects - Lifecyle & Best Practices
Vincent de Stoecklin
 
StarWest 2019 - End to end testing: Stupid or Legit?
StarWest 2019 - End to end testing: Stupid or Legit?StarWest 2019 - End to end testing: Stupid or Legit?
StarWest 2019 - End to end testing: Stupid or Legit?
mabl
 
End to-end test automation at scale
End to-end test automation at scaleEnd to-end test automation at scale
End to-end test automation at scale
mabl
 
Scaling Ride-Hailing with Machine Learning on MLflow
Scaling Ride-Hailing with Machine Learning on MLflowScaling Ride-Hailing with Machine Learning on MLflow
Scaling Ride-Hailing with Machine Learning on MLflow
Databricks
 
Moving from BI to AI : For decision makers
Moving from BI to AI : For decision makersMoving from BI to AI : For decision makers
Moving from BI to AI : For decision makers
zekeLabs Technologies
 
Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Provectus
 
Monitoring AI with AI
Monitoring AI with AIMonitoring AI with AI
Monitoring AI with AI
Stepan Pushkarev
 
Ml ops intro session
Ml ops   intro sessionMl ops   intro session
Ml ops intro session
Avinash Patil
 
DevOps Days Rockies MLOps
DevOps Days Rockies MLOpsDevOps Days Rockies MLOps
DevOps Days Rockies MLOps
Matthew Reynolds
 
MLOps and Data Quality: Deploying Reliable ML Models in Production
MLOps and Data Quality: Deploying Reliable ML Models in ProductionMLOps and Data Quality: Deploying Reliable ML Models in Production
MLOps and Data Quality: Deploying Reliable ML Models in Production
Provectus
 
vodQA Pune (2019) - Testing AI,ML applications
vodQA Pune (2019) - Testing AI,ML applicationsvodQA Pune (2019) - Testing AI,ML applications
vodQA Pune (2019) - Testing AI,ML applications
vodQA
 
prod-dev-management.pptx
prod-dev-management.pptxprod-dev-management.pptx
prod-dev-management.pptx
Michael Ming Lei
 
Managing an Experimentation Platform by LinkedIn Product Leader
Managing an Experimentation Platform by LinkedIn Product LeaderManaging an Experimentation Platform by LinkedIn Product Leader
Managing an Experimentation Platform by LinkedIn Product Leader
Product School
 
CNCF-Istanbul-MLOps for Devops Engineers.pptx
CNCF-Istanbul-MLOps for Devops Engineers.pptxCNCF-Istanbul-MLOps for Devops Engineers.pptx
CNCF-Istanbul-MLOps for Devops Engineers.pptx
cansukavili1
 
Real world machine learning with Java for Fumankaitori.com
Real world machine learning with Java for Fumankaitori.comReal world machine learning with Java for Fumankaitori.com
Real world machine learning with Java for Fumankaitori.com
Mathieu Dumoulin
 
Slides-Артем Коваль-Cloud-Native MLOps Framework - DataFest 2021.pdf
Slides-Артем Коваль-Cloud-Native MLOps Framework - DataFest 2021.pdfSlides-Артем Коваль-Cloud-Native MLOps Framework - DataFest 2021.pdf
Slides-Артем Коваль-Cloud-Native MLOps Framework - DataFest 2021.pdf
vitm11
 
Bridging the Gap: from Data Science to Production
Bridging the Gap: from Data Science to ProductionBridging the Gap: from Data Science to Production
Bridging the Gap: from Data Science to Production
Florian Wilhelm
 
Start with version control and experiments management in machine learning
Start with version control and experiments management in machine learningStart with version control and experiments management in machine learning
Start with version control and experiments management in machine learning
Mikhail Rozhkov
 
AI projects - Lifecyle & Best Practices
AI projects - Lifecyle & Best PracticesAI projects - Lifecyle & Best Practices
AI projects - Lifecyle & Best Practices
Vincent de Stoecklin
 
StarWest 2019 - End to end testing: Stupid or Legit?
StarWest 2019 - End to end testing: Stupid or Legit?StarWest 2019 - End to end testing: Stupid or Legit?
StarWest 2019 - End to end testing: Stupid or Legit?
mabl
 
End to-end test automation at scale
End to-end test automation at scaleEnd to-end test automation at scale
End to-end test automation at scale
mabl
 
Scaling Ride-Hailing with Machine Learning on MLflow
Scaling Ride-Hailing with Machine Learning on MLflowScaling Ride-Hailing with Machine Learning on MLflow
Scaling Ride-Hailing with Machine Learning on MLflow
Databricks
 
Moving from BI to AI : For decision makers
Moving from BI to AI : For decision makersMoving from BI to AI : For decision makers
Moving from BI to AI : For decision makers
zekeLabs Technologies
 
Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Data Summer Conf 2018, “Monitoring AI with AI (RUS)” — Stepan Pushkarev, CTO ...
Provectus
 
Ml ops intro session
Ml ops   intro sessionMl ops   intro session
Ml ops intro session
Avinash Patil
 
MLOps and Data Quality: Deploying Reliable ML Models in Production
MLOps and Data Quality: Deploying Reliable ML Models in ProductionMLOps and Data Quality: Deploying Reliable ML Models in Production
MLOps and Data Quality: Deploying Reliable ML Models in Production
Provectus
 
vodQA Pune (2019) - Testing AI,ML applications
vodQA Pune (2019) - Testing AI,ML applicationsvodQA Pune (2019) - Testing AI,ML applications
vodQA Pune (2019) - Testing AI,ML applications
vodQA
 
Managing an Experimentation Platform by LinkedIn Product Leader
Managing an Experimentation Platform by LinkedIn Product LeaderManaging an Experimentation Platform by LinkedIn Product Leader
Managing an Experimentation Platform by LinkedIn Product Leader
Product School
 
CNCF-Istanbul-MLOps for Devops Engineers.pptx
CNCF-Istanbul-MLOps for Devops Engineers.pptxCNCF-Istanbul-MLOps for Devops Engineers.pptx
CNCF-Istanbul-MLOps for Devops Engineers.pptx
cansukavili1
 
Real world machine learning with Java for Fumankaitori.com
Real world machine learning with Java for Fumankaitori.comReal world machine learning with Java for Fumankaitori.com
Real world machine learning with Java for Fumankaitori.com
Mathieu Dumoulin
 
Slides-Артем Коваль-Cloud-Native MLOps Framework - DataFest 2021.pdf
Slides-Артем Коваль-Cloud-Native MLOps Framework - DataFest 2021.pdfSlides-Артем Коваль-Cloud-Native MLOps Framework - DataFest 2021.pdf
Slides-Артем Коваль-Cloud-Native MLOps Framework - DataFest 2021.pdf
vitm11
 

More from Mikhail Rozhkov (15)

Школа Tech-In.RU: Cеминар 1. Основы работы с Ардуино (Аrduino) и Обзор hardwa...
Школа Tech-In.RU: Cеминар 1. Основы работы с Ардуино (Аrduino) и Обзор hardwa...Школа Tech-In.RU: Cеминар 1. Основы работы с Ардуино (Аrduino) и Обзор hardwa...
Школа Tech-In.RU: Cеминар 1. Основы работы с Ардуино (Аrduino) и Обзор hardwa...
Mikhail Rozhkov
 
How to improve performance of team members? Consider competencies and context!
How to improve performance of team members? Consider competencies and context! How to improve performance of team members? Consider competencies and context!
How to improve performance of team members? Consider competencies and context!
Mikhail Rozhkov
 
Применение Arduino (Ардуино) в школе. Сообщество Tech-In.ru
Применение Arduino (Ардуино) в школе. Сообщество Tech-In.ruПрименение Arduino (Ардуино) в школе. Сообщество Tech-In.ru
Применение Arduino (Ардуино) в школе. Сообщество Tech-In.ru
Mikhail Rozhkov
 
Tech in.ru Опыт проведения семинаров по ардуино, электронике и робототехнике ...
Tech in.ru Опыт проведения семинаров по ардуино, электронике и робототехнике ...Tech in.ru Опыт проведения семинаров по ардуино, электронике и робототехнике ...
Tech in.ru Опыт проведения семинаров по ардуино, электронике и робототехнике ...
Mikhail Rozhkov
 
Slides_Workplace context and its effect on individual competencies and perfor...
Slides_Workplace context and its effect on individual competencies and perfor...Slides_Workplace context and its effect on individual competencies and perfor...
Slides_Workplace context and its effect on individual competencies and perfor...
Mikhail Rozhkov
 
Study summary_Workplace context and its effect on individual competencies and...
Study summary_Workplace context and its effect on individual competencies and...Study summary_Workplace context and its effect on individual competencies and...
Study summary_Workplace context and its effect on individual competencies and...
Mikhail Rozhkov
 
An initial framework of competency-based knowledge management
An initial framework of competency-based knowledge managementAn initial framework of competency-based knowledge management
An initial framework of competency-based knowledge management
Mikhail Rozhkov
 
Отчет о конференции "Управление знаниями: практика" 2011
Отчет о конференции "Управление знаниями: практика" 2011Отчет о конференции "Управление знаниями: практика" 2011
Отчет о конференции "Управление знаниями: практика" 2011
Mikhail Rozhkov
 
Роль знаний в организации
Роль знаний в организацииРоль знаний в организации
Роль знаний в организации
Mikhail Rozhkov
 
Влияние управления знаниями на конкурентоспособность организаций
Влияние управления знаниями на конкурентоспособность организацийВлияние управления знаниями на конкурентоспособность организаций
Влияние управления знаниями на конкурентоспособность организаций
Mikhail Rozhkov
 
концепция поликтики уз в современном вузе
концепция поликтики уз в современном вузеконцепция поликтики уз в современном вузе
концепция поликтики уз в современном вузе
Mikhail Rozhkov
 
организационно-управленческие семинары как инструмент управления знаниями
организационно-управленческие семинары как инструмент управления знаниямиорганизационно-управленческие семинары как инструмент управления знаниями
организационно-управленческие семинары как инструмент управления знаниями
Mikhail Rozhkov
 
Implementation of work-based learning approach in partnership of universities...
Implementation of work-based learning approach in partnership of universities...Implementation of work-based learning approach in partnership of universities...
Implementation of work-based learning approach in partnership of universities...
Mikhail Rozhkov
 
Управление знаниями в университете
Управление знаниями в университетеУправление знаниями в университете
Управление знаниями в университете
Mikhail Rozhkov
 
Интернет в образовании: путеводитель
Интернет в образовании: путеводительИнтернет в образовании: путеводитель
Интернет в образовании: путеводитель
Mikhail Rozhkov
 
Школа Tech-In.RU: Cеминар 1. Основы работы с Ардуино (Аrduino) и Обзор hardwa...
Школа Tech-In.RU: Cеминар 1. Основы работы с Ардуино (Аrduino) и Обзор hardwa...Школа Tech-In.RU: Cеминар 1. Основы работы с Ардуино (Аrduino) и Обзор hardwa...
Школа Tech-In.RU: Cеминар 1. Основы работы с Ардуино (Аrduino) и Обзор hardwa...
Mikhail Rozhkov
 
How to improve performance of team members? Consider competencies and context!
How to improve performance of team members? Consider competencies and context! How to improve performance of team members? Consider competencies and context!
How to improve performance of team members? Consider competencies and context!
Mikhail Rozhkov
 
Применение Arduino (Ардуино) в школе. Сообщество Tech-In.ru
Применение Arduino (Ардуино) в школе. Сообщество Tech-In.ruПрименение Arduino (Ардуино) в школе. Сообщество Tech-In.ru
Применение Arduino (Ардуино) в школе. Сообщество Tech-In.ru
Mikhail Rozhkov
 
Tech in.ru Опыт проведения семинаров по ардуино, электронике и робототехнике ...
Tech in.ru Опыт проведения семинаров по ардуино, электронике и робототехнике ...Tech in.ru Опыт проведения семинаров по ардуино, электронике и робототехнике ...
Tech in.ru Опыт проведения семинаров по ардуино, электронике и робототехнике ...
Mikhail Rozhkov
 
Slides_Workplace context and its effect on individual competencies and perfor...
Slides_Workplace context and its effect on individual competencies and perfor...Slides_Workplace context and its effect on individual competencies and perfor...
Slides_Workplace context and its effect on individual competencies and perfor...
Mikhail Rozhkov
 
Study summary_Workplace context and its effect on individual competencies and...
Study summary_Workplace context and its effect on individual competencies and...Study summary_Workplace context and its effect on individual competencies and...
Study summary_Workplace context and its effect on individual competencies and...
Mikhail Rozhkov
 
An initial framework of competency-based knowledge management
An initial framework of competency-based knowledge managementAn initial framework of competency-based knowledge management
An initial framework of competency-based knowledge management
Mikhail Rozhkov
 
Отчет о конференции "Управление знаниями: практика" 2011
Отчет о конференции "Управление знаниями: практика" 2011Отчет о конференции "Управление знаниями: практика" 2011
Отчет о конференции "Управление знаниями: практика" 2011
Mikhail Rozhkov
 
Роль знаний в организации
Роль знаний в организацииРоль знаний в организации
Роль знаний в организации
Mikhail Rozhkov
 
Влияние управления знаниями на конкурентоспособность организаций
Влияние управления знаниями на конкурентоспособность организацийВлияние управления знаниями на конкурентоспособность организаций
Влияние управления знаниями на конкурентоспособность организаций
Mikhail Rozhkov
 
концепция поликтики уз в современном вузе
концепция поликтики уз в современном вузеконцепция поликтики уз в современном вузе
концепция поликтики уз в современном вузе
Mikhail Rozhkov
 
организационно-управленческие семинары как инструмент управления знаниями
организационно-управленческие семинары как инструмент управления знаниямиорганизационно-управленческие семинары как инструмент управления знаниями
организационно-управленческие семинары как инструмент управления знаниями
Mikhail Rozhkov
 
Implementation of work-based learning approach in partnership of universities...
Implementation of work-based learning approach in partnership of universities...Implementation of work-based learning approach in partnership of universities...
Implementation of work-based learning approach in partnership of universities...
Mikhail Rozhkov
 
Управление знаниями в университете
Управление знаниями в университетеУправление знаниями в университете
Управление знаниями в университете
Mikhail Rozhkov
 
Интернет в образовании: путеводитель
Интернет в образовании: путеводительИнтернет в образовании: путеводитель
Интернет в образовании: путеводитель
Mikhail Rozhkov
 
Ad

Recently uploaded (20)

C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia03 Daniel 2-notes.ppt seminario escatologia
03 Daniel 2-notes.ppt seminario escatologia
Alexander Romero Arosquipa
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
C++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptxC++_OOPs_DSA1_Presentation_Template.pptx
C++_OOPs_DSA1_Presentation_Template.pptx
aquibnoor22079
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
VKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptxVKS-Python-FIe Handling text CSV Binary.pptx
VKS-Python-FIe Handling text CSV Binary.pptx
Vinod Srivastava
 
Digilocker under workingProcess Flow.pptx
Digilocker  under workingProcess Flow.pptxDigilocker  under workingProcess Flow.pptx
Digilocker under workingProcess Flow.pptx
satnamsadguru491
 
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptxPerencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
Perencanaan Pengendalian-Proyek-Konstruksi-MS-PROJECT.pptx
PareaRusan
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
How iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost FundsHow iCode cybertech Helped Me Recover My Lost Funds
How iCode cybertech Helped Me Recover My Lost Funds
ireneschmid345
 
Cleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdfCleaned_Lecture 6666666_Simulation_I.pdf
Cleaned_Lecture 6666666_Simulation_I.pdf
alcinialbob1234
 
Data Science Courses in India iim skills
Data Science Courses in India iim skillsData Science Courses in India iim skills
Data Science Courses in India iim skills
dharnathakur29
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.pptJust-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
Just-In-Timeasdfffffffghhhhhhhhhhj Systems.ppt
ssuser5f8f49
 
VKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptxVKS-Python Basics for Beginners and advance.pptx
VKS-Python Basics for Beginners and advance.pptx
Vinod Srivastava
 
Medical Dataset including visualizations
Medical Dataset including visualizationsMedical Dataset including visualizations
Medical Dataset including visualizations
vishrut8750588758
 
chapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.pptchapter3 Central Tendency statistics.ppt
chapter3 Central Tendency statistics.ppt
justinebandajbn
 
Principles of information security Chapter 5.ppt
Principles of information security Chapter 5.pptPrinciples of information security Chapter 5.ppt
Principles of information security Chapter 5.ppt
EstherBaguma
 
Ad

Reproducibility and experiments management in Machine Learning

  • 1. Simple. Precise. Competent. Reproducibility and experiments management in ML projects D1 EXPO 2019, Alicante Rozhkov Mikhail Senior Data Scientist Raiffeisen Bank Russia
  • 2. Topics • Difference of ML projects from IT projects • ML experiments management • Agile ML • ML reproducibility and why it’s important? • Approaches and tools 2
  • 3. 1. Different from IT projects 2. Longer dev cycle 3. Experiments driven 4. Not easy to test and validate 3 ML projects
  • 4. IT projects development processes 4 Source: https://online.husson.edu/software-development-cycle/ Source: https://en.wikipedia.org/wiki/Software_development_process
  • 5. ML project workflow is experiments driven 5 Problem Statement MVP design Get data Prepare data Train model Evaluate modelTest & Integrate Serve / Predict Monitor 1. Analyze & Plan 2. Prototype 4. Monitor & Maintain 3. Productionize Inspired by Uber’s workflow of a machine learning project diagram. Scaling Machine Learning at Uber with Michelangelo https://eng.uber.com/scaling-michelangelo/ Solution development
  • 6. Experiment = code + dataset + outputs 6 Algorithm Data Hyperpara meters Evaluation Measure Model ETL tasks test dataset train dataset evaluate train Experiment config - artifacts - pipelines - code - configs
  • 7. ML project requires more factors to take into account 7 Software ML Architecture design tasks, UI/UX integrations + nature and quality of data Quality measures working code + model quality metrics + performance in production Version control code environment + pipelines + datasets + models & artifacts Testing code + data and features + model development methods + ML infrastructure + ML systems Inspired by Dmitry Petrov, Ivan Shcheklein. Open source tools for machine learning model and dataset versioning.
  • 8. 1. Satisfy customer 2. Early fail 3. Fail safe 4. Frequent code updates 5. Constant changing requirements 6. Team = Business + DS/ML 7. Frequent team meetings/statuses 8. Measure of progress=working code 9. Technical excellence and good design 10. Reproducibility 8 Agile ML Inspired by: Andrew Kelleher, Adam Kelleher. Machine Learning in Production: Developing and Optimizing Data Science Workflows and Applications. 2019
  • 9. ML reproducibility is a dimension of quality 9 What is Reproducibility? ● using the original methods applied to the original data to produce the original results [Gardner] Why should you care? ● Trust ● Consistent Results ● Versioned History ● Team Performance ● Pain Less Production Josh Gardner, Yuming Yang, Ryan S. Baker, Christopher Brooks. Enabling End-To-End Machine Learning Replicability: A Case Study in Educational Data Mining
  • 10. ● Code, models and data version control ● Automated pipelines ● Tests ● Control environment ● Experiments management ● Methodology and procedures documentation 10 Reproducible ML
  • 12. Onsite Recommendation System 12 Purpose: improve conversion rate on landing page send online user data get promo User History DataCV prediction model Promo recommendati on model Promo DB {uid, cv_pred, promo_id}
  • 13. Tracking project statuses and issues, documentation 13
  • 14. Code 14 ● Version control ● Re-usable .py modules ● Tests... Source: https://www.bitbull.it/en/blog/how-git-flow-works/
  • 15. Data and artifacts 15 ● Version Control ● Store / share ● Access
  • 16. Pipelines 16 ● One button run ● End-to-end or selected steps ● Configs (i.e. random seeds) load/ transform raw data evaluate train split train/test prepare train dataset select best model prepare test dataset predict
  • 17. Experiments Management 17 ● Browse history ● Compare results ● Share results ● Methodology and procedures Data Model pipelines MetricsConfig pipelines pipelines Data Model pipelines MetricsConfig pipelines pipelines experiment X (dd.mm.2018) experiment Y (dd.mm.2019)
  • 18. Environment 18 ● Libraries ● OS ● Hardware Gronenschild EHBM, Habets P, Jacobs HIL, Mengelers R, Rozendaal N, et al. (2012) The Effects of FreeSurfer Version, Workstation Type, and Macintosh Operating System Version on Anatomical Volume and Cortical Thickness Measurements. PLOS ONE 7(6): e38234. https://doi.org/10.1371/journal.pone.0038234 https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0038234 Example: Effects of data processing conditions on the voxel volumes for a subsample of (sub)cortical structures
  • 19. Test ML ● Tests for data and features ● Tests for model development ● Tests for ML infrastructure ● Test for running ML systems 19
  • 20. Conclusions 1. ML projects requires different approach 2. Data and experiments are crucial 3. Agility is driven by fast experimenting and reproducibility 4. Experiments are versioned, browsable, comparable, documented, reproducible 5. Reproducibility is a dimension of quality and maturity 20
  • 21. raiffeisen.ru Simple. Precise. Competent. Thank you 21 Rozhkov Mikhail Senior Data Scientist Raiffeisen Bank Russia [email protected]