Machine Learning becomes more and more common practice in many companies. ML teams size is growing and collaboration goes out of office and personal laptops. The complexity of ML projects leads to adopting distributed team collaboration, cloud based infrastructure and distributed machine learning. Well defined and manageable process for ML experiments becomes a central issue. Practices to apply automated pipelines, models and data set versioning helps to establish a good manageable process in project and provide reproducible results. This speech helps to start with handling models and datasets versioning using open source tools: DVC, mlflow, Luigi, etc.