SlideShare a Scribd company logo
02 , 1 2 202
A9 8
d
• m S rS
• 7 K a
. h i Ob 7P
, N . O y eo P
, N . O AEGB I AFAG 7A IGEGC. G G I K E GP
LIE AG E I K G G G IAL 4 0 I
, - N . ug !
• 7 69 2 wn ~ t
2 839 12 f ::9 w R c a
2 . 4 2 1
2 . 4 2 1
242 2 2 2
3 2 .
2 . 4 2 1
32
Safe Reinforcement Learning
Safe Reinforcement Learning
:
: A@
?I 7 . 3/ / - -
i )
n ( /ooc wu r p h
i n ( 7?? ( @:37 3 ?
:? h [s .? ? t 3? :
e :?b b g [sd [ - A k
:? h R I I [ t
] :? [ a i S
i )
n ( /ooc wu r p h
i n ( 7?? ( @:37 3 ?
:? h [s .? ? t 3? :
e :?b b g [sd [ - A k
:? h R I I [ t
] :? [ a i S
i )
n ( /ooc wu r p h
i n ( 7?? ( @:37 3 ?
:? h [s .? ? t 3? :
e :?b b g [sd [ - A k
:? h R I I [ t
] :? [ a i S
i )
n ( /ooc wu r p h
i n ( 7?? ( @:37 3 ?
:? h [s .? ? t 3? :
e :?b b g [sd [ - A k
:? h R I I [ t
] :? [ a i S
Safe Reinforcement Learning
dp )
( u a Ou a A R
O : ( S i c O A w k y
( : d c lr
e G x t u a!
. B ( P i : On g y m
do u ( uo - n !
+ ? ,
dp )
( u a Ou a A R
O : ( S i c O A w k y
( : d c lr
e G x t u a!
. B ( P i : On g y m
do u ( uo - n !
+ ? ,
dp )
( u a Ou a A R
O : ( S i c O A w k y
( : d c lr
e G x t u a!
. B ( P i : On g y m
do u ( uo - n !
+ ? ,
dp )
( u a Ou a A R
O : ( S i c O A w k y
( : d c lr
e G x t u a!
. B ( P i : On g y m
do u ( uo - n !
+ ? ,
dp )
( u a Ou a A R
O : ( S i c O A w k y
( : d c lr
e G x t u a!
. B ( P i : On g y m
do u ( uo - n !
+ ? ,
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
- / 8.4 1 20 4/ - 4 - 0/
:
Safe Reinforcement Learning
Safe Reinforcement Learning
? ?
!
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
!
Safe Reinforcement Learning
.
.
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
!
Safe Reinforcement Learning
/ / . / . / / ./ . / /
/
/ / - . / -
-,
, /, , , - /, , , / /
, , , , , , - ,
, , -, . /, , .
L
L
L
L
L
L
!" = $"%& + ($"%) + ()
$"%* + ⋯ = ∑-./
0
(-
$"%-%&
L
L
L
L
L
L
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
-1 C E
- 2 .2 2 - 2 2 2
- 2 2
-2 2 2
-1 C E
- 2 .2 2 - 2 2 2
- 2 2
-2 2 2
-1 C E
- 2 .2 2 - 2 2 2
- 2 2
-2 2 2
- 2 E BI C
22
. 2 2
21 2
2 2
2
- 2 E BI C
22
. 2 2
21 2
2 2
2
. - R C E
1B
2
-
P O SLO I W I!
- 2 E BI C
22
. 2 2
21 2
2 2
2
Safe Reinforcement Learning
Safe Reinforcement Learning
!
-
- - - - -
- - - - -
- - - - -
- - - - -
- - - - -
-
-
- - - - -
Ω" " #$, &$, #', &', … C
- C
- - - - -
C !
- C
- C
- C
- C
- C
Safe Reinforcement Learning
-
id , - h , ,.,
c e ., i , ,., Wk
, ,., , l , ,., h
h a . Ch . . Ch
, , b
id , -
c e - i - Wk C
- l . -
a - - . - .
. b
id , -
c e - i - Wk C
- l . -
a - - . - .
. b
Safe Reinforcement Learning
Worst	case
!"#
$(&')
100
0
&'
!"#
High	
Reward
Worst	case
!"#
$(&')
100
0
&'
!"#
High	
Reward
Worst	case
!"#
$(&')
100
0
&'
!"#
High	
Reward
Worst	case
!"#
$(&')
100
0
&'
!"#
High	
Reward
Safe Reinforcement Learning
Safe Reinforcement Learning
!
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
C !
"# $ !
%# &
'#
C !
"# $ !
%# &
'#
C !
"# $ !
%# &
'#
C !
"# $ !
%# &
'#
! C
Safe Reinforcement Learning
.
NO P I K
TS /. BC :? /? :5 . C:=: C:? C B 5 / :
P R TS CC B ? C 5?= C5 ( / )5
O N T KR S !
/ B C ? = / I ? ? : C B : B
P : C 5 :) ( .
a P T cK eO aR aI b a Sd N
/. BC :? /? :5 . C:=: C:? C B 5 / :
CC B ? C 5?= C5 ( / )5
OPS S T KI b a N
/. BC :? /? :5 . C:=: C:? C B 5 / :
R CC B ? C 5?= C5 ( / )5
O b NT S c I dP bK
a /. BC :? /? :5 . C:=: C:? C B 5 / :
R a CC B ? C 5?= C5 ( / )5
N e T O P dR N K e b dR !
ca / B C ? = / I ? ? : C B : B
S ca : C 5 :) ( .
N !!!
PO / B C ? = / I ? ? : C B : B
K PO : C 5 :) ( .
.
E E A
8 !
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
!
- 2 E BI C
22
2 2
2
. 2 2
21 2
. E . K
L L K
.
P ! 2:11 1 3 L D
M a ./:
3 9 5 1 3/:1 71 72- 7 11 9/:
. R
. E
. .
.
Safe Reinforcement Learning
! !
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
!
!
Safe Reinforcement Learning
Safe Reinforcement Learning
Safe Reinforcement Learning
!
!
Safe Reinforcement Learning
. 2
. 2 1
. 2 1
. A 12
A 12
?
- , . 1 21 ?
-: 2 - - , ( 1- - - , (
) )
?
. 1
2
1 ? 2 .
.
. 2 1
) ( 2 . 2 2 1 1 : !", $", !%, $%, …
E )
T?
Safe Reinforcement Learning
: / . : /
A :: : .
: :
.
. : . . . . . / . . : .
A :: : / . ..
: : .
.
: .
:
. .
! = { $%, '% , $(, '( , … }
! = { $%, '% , $(, '( , … }
!(#, %)' = { #*, %* , #+, %+ , … }
!(#, %)' = { #*, %* , #+, %+ , … }
!(#, %)' = { #*, %* , #+, %+ , … }
.
?
ML ? 7 C7 7 ? 7 7? 7 ? ? 4 C7 ? = 7
I ML : C H 47 : . / 2 7 7 H 47 &C
Safe Reinforcement Learning
Safe Reinforcement Learning
O Z I L N E
8 . : . : . :/: ?= 8.
= AAA :? ?/ :8 A.
8
& /= = : ? = : E : 8 E 8 8 8=
H & 7 & E= = 7 ?. ? E=
A
SR 1//8 0 (& ) . G ADA G:G H IKGG D :HN LA=
P Q SR GI MMM N K K D M: L )2=.M8 0 ? : KH N K K D((I
Safe Reinforcement Learning
!"
#"
!"
#"
!
"#
$#
!
"#
$#
!($#|"#)
.
.
.
Safe Reinforcement Learning
!
.
, ) . ( ) C
L D !
:CDCNC ACO
1CCM :CG DLNAC C P 5C N G 1LCO P LNH CP IL 5G H
0L MNC C OGRC NRCT L DC :CG DLNAC C P 5C N G ( ' 9 MCN 5G H
N OP :C GL 9LIGAT 8MPG G PGL ( ' 9 MCN 5G H
:98 N OP :C GL 9LIGAT 8MPG G PGL - 4 BCMP :COC NA 9 MCN :CRGCS L C 5G H
I LNGP O DLN 4 RCNOC :CG DLNAC C P 5C N G ( 9 MCN 5G H
MMNC PGACO GM 5C N G RG 4 RCNOC :CG DLNAC C P 5C N G ( ) 9 MCN 5G H
9: (,- MMNC PGACO GM 5C N G RG 4 RCNOC :CG DLNAC C P 5C N G 99 5G H
DC IPG C P :CG DLNAC C P 5C N G DLN PL L L O 1NGRG 99 5G H
4 PNLB APGL LD 4 RCNOC :CG DLNAC C P 5C N G 99 5G H
4 RCNOC :CG DLNAC C P 5C N G OCB L 0NGPGA I P PC L C 5G H
4 GP PGL 5C N G DLN 8 NL LP OG 4 PC L C 5G H
:L LP IC N O PL MI T P IC PC GO T G GP PGL L C 5G H
422: 9 ( ' - 1CCM G GA M MCN O MMIC C P NT RGBCL L C 5G H
Safe Reinforcement Learning
!
!
Ad

More Related Content

What's hot (20)

안.전.제.일. 강화학습!
안.전.제.일. 강화학습!안.전.제.일. 강화학습!
안.전.제.일. 강화학습!
Dongmin Lee
 
[DL輪読会] Residual Attention Network for Image Classification
[DL輪読会] Residual Attention Network for Image Classification[DL輪読会] Residual Attention Network for Image Classification
[DL輪読会] Residual Attention Network for Image Classification
Deep Learning JP
 
파이썬과 케라스로 배우는 강화학습 저자특강
파이썬과 케라스로 배우는 강화학습 저자특강파이썬과 케라스로 배우는 강화학습 저자특강
파이썬과 케라스로 배우는 강화학습 저자특강
Woong won Lee
 
Doing Deep Reinforcement learning with PPO
Doing Deep Reinforcement learning with PPODoing Deep Reinforcement learning with PPO
Doing Deep Reinforcement learning with PPO
이 의령
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
ディープラーニングによる時系列データの異常検知
ディープラーニングによる時系列データの異常検知ディープラーニングによる時系列データの異常検知
ディープラーニングによる時系列データの異常検知
Core Concept Technologies
 
AlphaGo Zero 解説
AlphaGo Zero 解説AlphaGo Zero 解説
AlphaGo Zero 解説
suckgeun lee
 
Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)
Dongmin Lee
 
順推論と逆推論
順推論と逆推論順推論と逆推論
順推論と逆推論
Junichi Chikazoe
 
[DL輪読会]Pay Attention to MLPs (gMLP)
[DL輪読会]Pay Attention to MLPs	(gMLP)[DL輪読会]Pay Attention to MLPs	(gMLP)
[DL輪読会]Pay Attention to MLPs (gMLP)
Deep Learning JP
 
Introduction to YOLO detection model
Introduction to YOLO detection modelIntroduction to YOLO detection model
Introduction to YOLO detection model
WEBFARMER. ltd.
 
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
Preferred Networks
 
입문 Visual SLAM 14강 - 2장 Introduction to slam
입문 Visual SLAM 14강  - 2장 Introduction to slam입문 Visual SLAM 14강  - 2장 Introduction to slam
입문 Visual SLAM 14강 - 2장 Introduction to slam
jdo
 
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
Ryohei Suzuki
 
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
Taiji Suzuki
 
[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANs[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANs
Deep Learning JP
 
(文献紹介)Deep Unrolling: Learned ISTA (LISTA)
(文献紹介)Deep Unrolling: Learned ISTA (LISTA)(文献紹介)Deep Unrolling: Learned ISTA (LISTA)
(文献紹介)Deep Unrolling: Learned ISTA (LISTA)
Morpho, Inc.
 
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
Hiroki Nakahara
 
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
Deep Learning JP
 
파이콘 한국 2019 튜토리얼 - LRP (Part 2)
파이콘 한국 2019 튜토리얼 - LRP (Part 2)파이콘 한국 2019 튜토리얼 - LRP (Part 2)
파이콘 한국 2019 튜토리얼 - LRP (Part 2)
XAIC
 
안.전.제.일. 강화학습!
안.전.제.일. 강화학습!안.전.제.일. 강화학습!
안.전.제.일. 강화학습!
Dongmin Lee
 
[DL輪読会] Residual Attention Network for Image Classification
[DL輪読会] Residual Attention Network for Image Classification[DL輪読会] Residual Attention Network for Image Classification
[DL輪読会] Residual Attention Network for Image Classification
Deep Learning JP
 
파이썬과 케라스로 배우는 강화학습 저자특강
파이썬과 케라스로 배우는 강화학습 저자특강파이썬과 케라스로 배우는 강화학습 저자특강
파이썬과 케라스로 배우는 강화학습 저자특강
Woong won Lee
 
Doing Deep Reinforcement learning with PPO
Doing Deep Reinforcement learning with PPODoing Deep Reinforcement learning with PPO
Doing Deep Reinforcement learning with PPO
이 의령
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
ディープラーニングによる時系列データの異常検知
ディープラーニングによる時系列データの異常検知ディープラーニングによる時系列データの異常検知
ディープラーニングによる時系列データの異常検知
Core Concept Technologies
 
AlphaGo Zero 解説
AlphaGo Zero 解説AlphaGo Zero 解説
AlphaGo Zero 解説
suckgeun lee
 
Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)Maximum Entropy Reinforcement Learning (Stochastic Control)
Maximum Entropy Reinforcement Learning (Stochastic Control)
Dongmin Lee
 
[DL輪読会]Pay Attention to MLPs (gMLP)
[DL輪読会]Pay Attention to MLPs	(gMLP)[DL輪読会]Pay Attention to MLPs	(gMLP)
[DL輪読会]Pay Attention to MLPs (gMLP)
Deep Learning JP
 
Introduction to YOLO detection model
Introduction to YOLO detection modelIntroduction to YOLO detection model
Introduction to YOLO detection model
WEBFARMER. ltd.
 
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
不老におけるOptunaを利用した分散ハイパーパラメータ最適化 - 今村秀明(名古屋大学 Optuna講習会)
Preferred Networks
 
입문 Visual SLAM 14강 - 2장 Introduction to slam
입문 Visual SLAM 14강  - 2장 Introduction to slam입문 Visual SLAM 14강  - 2장 Introduction to slam
입문 Visual SLAM 14강 - 2장 Introduction to slam
jdo
 
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
論文紹介: "MolGAN: An implicit generative model for small molecular graphs"
Ryohei Suzuki
 
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
統計的学習理論チュートリアル: 基礎から応用まで (Ibis2012)
Taiji Suzuki
 
[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANs[DL輪読会]逆強化学習とGANs
[DL輪読会]逆強化学習とGANs
Deep Learning JP
 
(文献紹介)Deep Unrolling: Learned ISTA (LISTA)
(文献紹介)Deep Unrolling: Learned ISTA (LISTA)(文献紹介)Deep Unrolling: Learned ISTA (LISTA)
(文献紹介)Deep Unrolling: Learned ISTA (LISTA)
Morpho, Inc.
 
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
2値ディープニューラルネットワークと組込み機器への応用: 開発中のツール紹介
Hiroki Nakahara
 
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
【DL輪読会】High-Resolution Image Synthesis with Latent Diffusion Models
Deep Learning JP
 
파이콘 한국 2019 튜토리얼 - LRP (Part 2)
파이콘 한국 2019 튜토리얼 - LRP (Part 2)파이콘 한국 2019 튜토리얼 - LRP (Part 2)
파이콘 한국 2019 튜토리얼 - LRP (Part 2)
XAIC
 

Similar to Safe Reinforcement Learning (20)

Google Cloud Dataflowによる データ変換処理入門
Google Cloud Dataflowによる データ変換処理入門Google Cloud Dataflowによる データ変換処理入門
Google Cloud Dataflowによる データ変換処理入門
Takeshi Mikami
 
Kubernetes ネットワーキングのすべて
Kubernetes ネットワーキングのすべてKubernetes ネットワーキングのすべて
Kubernetes ネットワーキングのすべて
LINE Corporation
 
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
VirtualTech Japan Inc.
 
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
OpenStack Korea Community
 
Engaging Consumers - IFAA Conference
Engaging Consumers - IFAA ConferenceEngaging Consumers - IFAA Conference
Engaging Consumers - IFAA Conference
Phillip Smith
 
[さるる勉強会] LTで話したい Amazon Connect
[さるる勉強会] LTで話したい Amazon Connect[さるる勉強会] LTで話したい Amazon Connect
[さるる勉強会] LTで話したい Amazon Connect
Daiki Mori
 
FIWARE Global Summit - FI-Lab India Stepping Stone for Implementing FIWARE Ec...
FIWARE Global Summit - FI-Lab India Stepping Stone for Implementing FIWARE Ec...FIWARE Global Summit - FI-Lab India Stepping Stone for Implementing FIWARE Ec...
FIWARE Global Summit - FI-Lab India Stepping Stone for Implementing FIWARE Ec...
FIWARE
 
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factoryリアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
Ryosuke Otsuya
 
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Takeshi Mikami
 
36thchapter
36thchapter36thchapter
36thchapter
mtalupuru
 
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
IBM Analytics Japan
 
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Yuma Koizumi
 
【ECCV 2018】How good is my GAN?
【ECCV 2018】How good is my GAN?【ECCV 2018】How good is my GAN?
【ECCV 2018】How good is my GAN?
cvpaper. challenge
 
Huang Chinese
Huang ChineseHuang Chinese
Huang Chinese
guest04a5c8
 
Jawsdays2018 180310
Jawsdays2018 180310Jawsdays2018 180310
Jawsdays2018 180310
Daisuke Yoshioka
 
Amazon VPC and Amazon EC2
Amazon VPC and Amazon EC2Amazon VPC and Amazon EC2
Amazon VPC and Amazon EC2
Daiki Mori
 
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみようOSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
Ken Sawada
 
生徒会活動の飛躍的可能性:生徒会活動に関する調査研究と自身の経験から
生徒会活動の飛躍的可能性:生徒会活動に関する調査研究と自身の経験から生徒会活動の飛躍的可能性:生徒会活動に関する調査研究と自身の経験から
生徒会活動の飛躍的可能性:生徒会活動に関する調査研究と自身の経験から
Hiroyuki Kurimoto
 
Moss Jacosbon Ems Pla 182 Final Submission 12 15 08
Moss Jacosbon   Ems Pla 182 Final Submission 12 15 08Moss Jacosbon   Ems Pla 182 Final Submission 12 15 08
Moss Jacosbon Ems Pla 182 Final Submission 12 15 08
mossbmw
 
ESWC 2009 Lightning Talks
ESWC 2009 Lightning TalksESWC 2009 Lightning Talks
ESWC 2009 Lightning Talks
Michael Hausenblas
 
Google Cloud Dataflowによる データ変換処理入門
Google Cloud Dataflowによる データ変換処理入門Google Cloud Dataflowによる データ変換処理入門
Google Cloud Dataflowによる データ変換処理入門
Takeshi Mikami
 
Kubernetes ネットワーキングのすべて
Kubernetes ネットワーキングのすべてKubernetes ネットワーキングのすべて
Kubernetes ネットワーキングのすべて
LINE Corporation
 
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
OpenStack Summit & KubeConからみるコンテナ技術の最新トレンド (更新版) - OpenStack Day Tokyo 2018講演資料
VirtualTech Japan Inc.
 
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
[OpenInfra Days Korea 2018] (Track 4) - Backend.AI: 오픈소스 머신러닝 인프라 프레임워크
OpenStack Korea Community
 
Engaging Consumers - IFAA Conference
Engaging Consumers - IFAA ConferenceEngaging Consumers - IFAA Conference
Engaging Consumers - IFAA Conference
Phillip Smith
 
[さるる勉強会] LTで話したい Amazon Connect
[さるる勉強会] LTで話したい Amazon Connect[さるる勉強会] LTで話したい Amazon Connect
[さるる勉強会] LTで話したい Amazon Connect
Daiki Mori
 
FIWARE Global Summit - FI-Lab India Stepping Stone for Implementing FIWARE Ec...
FIWARE Global Summit - FI-Lab India Stepping Stone for Implementing FIWARE Ec...FIWARE Global Summit - FI-Lab India Stepping Stone for Implementing FIWARE Ec...
FIWARE Global Summit - FI-Lab India Stepping Stone for Implementing FIWARE Ec...
FIWARE
 
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factoryリアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
リアルタイム議事録&翻訳付きのビデオ会議を作ろう ~WebRTCの最新動向~ SkyWay Media Pipeline Factory
Ryosuke Otsuya
 
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Spark MLlib ML Pipelines の概要 及びpysparkからの扱い方
Takeshi Mikami
 
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
Db2 Warehouse v3.0 SMP 導入ガイド 20190104 Db2 Warehouse SMP v3.0 configration Ins...
IBM Analytics Japan
 
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Theory and Methods for Unsupervised Anomaly Detection in Sounds Based on Deep...
Yuma Koizumi
 
【ECCV 2018】How good is my GAN?
【ECCV 2018】How good is my GAN?【ECCV 2018】How good is my GAN?
【ECCV 2018】How good is my GAN?
cvpaper. challenge
 
Amazon VPC and Amazon EC2
Amazon VPC and Amazon EC2Amazon VPC and Amazon EC2
Amazon VPC and Amazon EC2
Daiki Mori
 
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみようOSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
OSC 2018 Nagoya rsyncやシェルでバックアップするよりも簡単にOSSのBaculaでバックアップしてみよう
Ken Sawada
 
生徒会活動の飛躍的可能性:生徒会活動に関する調査研究と自身の経験から
生徒会活動の飛躍的可能性:生徒会活動に関する調査研究と自身の経験から生徒会活動の飛躍的可能性:生徒会活動に関する調査研究と自身の経験から
生徒会活動の飛躍的可能性:生徒会活動に関する調査研究と自身の経験から
Hiroyuki Kurimoto
 
Moss Jacosbon Ems Pla 182 Final Submission 12 15 08
Moss Jacosbon   Ems Pla 182 Final Submission 12 15 08Moss Jacosbon   Ems Pla 182 Final Submission 12 15 08
Moss Jacosbon Ems Pla 182 Final Submission 12 15 08
mossbmw
 
Ad

More from Dongmin Lee (13)

Causal Confusion in Imitation Learning
Causal Confusion in Imitation LearningCausal Confusion in Imitation Learning
Causal Confusion in Imitation Learning
Dongmin Lee
 
Character Controllers using Motion VAEs
Character Controllers using Motion VAEsCharacter Controllers using Motion VAEs
Character Controllers using Motion VAEs
Dongmin Lee
 
Causal Confusion in Imitation Learning
Causal Confusion in Imitation LearningCausal Confusion in Imitation Learning
Causal Confusion in Imitation Learning
Dongmin Lee
 
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Va...
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Va...Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Va...
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Va...
Dongmin Lee
 
PRM-RL: Long-range Robotics Navigation Tasks by Combining Reinforcement Learn...
PRM-RL: Long-range Robotics Navigation Tasks by Combining Reinforcement Learn...PRM-RL: Long-range Robotics Navigation Tasks by Combining Reinforcement Learn...
PRM-RL: Long-range Robotics Navigation Tasks by Combining Reinforcement Learn...
Dongmin Lee
 
Exploration Strategies in Reinforcement Learning
Exploration Strategies in Reinforcement LearningExploration Strategies in Reinforcement Learning
Exploration Strategies in Reinforcement Learning
Dongmin Lee
 
Let's do Inverse RL
Let's do Inverse RLLet's do Inverse RL
Let's do Inverse RL
Dongmin Lee
 
모두를 위한 PG여행 가이드
모두를 위한 PG여행 가이드모두를 위한 PG여행 가이드
모두를 위한 PG여행 가이드
Dongmin Lee
 
Planning and Learning with Tabular Methods
Planning and Learning with Tabular MethodsPlanning and Learning with Tabular Methods
Planning and Learning with Tabular Methods
Dongmin Lee
 
Multi-armed Bandits
Multi-armed BanditsMulti-armed Bandits
Multi-armed Bandits
Dongmin Lee
 
강화학습 알고리즘의 흐름도 Part 2
강화학습 알고리즘의 흐름도 Part 2강화학습 알고리즘의 흐름도 Part 2
강화학습 알고리즘의 흐름도 Part 2
Dongmin Lee
 
강화학습의 흐름도 Part 1
강화학습의 흐름도 Part 1강화학습의 흐름도 Part 1
강화학습의 흐름도 Part 1
Dongmin Lee
 
강화학습의 개요
강화학습의 개요강화학습의 개요
강화학습의 개요
Dongmin Lee
 
Causal Confusion in Imitation Learning
Causal Confusion in Imitation LearningCausal Confusion in Imitation Learning
Causal Confusion in Imitation Learning
Dongmin Lee
 
Character Controllers using Motion VAEs
Character Controllers using Motion VAEsCharacter Controllers using Motion VAEs
Character Controllers using Motion VAEs
Dongmin Lee
 
Causal Confusion in Imitation Learning
Causal Confusion in Imitation LearningCausal Confusion in Imitation Learning
Causal Confusion in Imitation Learning
Dongmin Lee
 
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Va...
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Va...Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Va...
Efficient Off-Policy Meta-Reinforcement Learning via Probabilistic Context Va...
Dongmin Lee
 
PRM-RL: Long-range Robotics Navigation Tasks by Combining Reinforcement Learn...
PRM-RL: Long-range Robotics Navigation Tasks by Combining Reinforcement Learn...PRM-RL: Long-range Robotics Navigation Tasks by Combining Reinforcement Learn...
PRM-RL: Long-range Robotics Navigation Tasks by Combining Reinforcement Learn...
Dongmin Lee
 
Exploration Strategies in Reinforcement Learning
Exploration Strategies in Reinforcement LearningExploration Strategies in Reinforcement Learning
Exploration Strategies in Reinforcement Learning
Dongmin Lee
 
Let's do Inverse RL
Let's do Inverse RLLet's do Inverse RL
Let's do Inverse RL
Dongmin Lee
 
모두를 위한 PG여행 가이드
모두를 위한 PG여행 가이드모두를 위한 PG여행 가이드
모두를 위한 PG여행 가이드
Dongmin Lee
 
Planning and Learning with Tabular Methods
Planning and Learning with Tabular MethodsPlanning and Learning with Tabular Methods
Planning and Learning with Tabular Methods
Dongmin Lee
 
Multi-armed Bandits
Multi-armed BanditsMulti-armed Bandits
Multi-armed Bandits
Dongmin Lee
 
강화학습 알고리즘의 흐름도 Part 2
강화학습 알고리즘의 흐름도 Part 2강화학습 알고리즘의 흐름도 Part 2
강화학습 알고리즘의 흐름도 Part 2
Dongmin Lee
 
강화학습의 흐름도 Part 1
강화학습의 흐름도 Part 1강화학습의 흐름도 Part 1
강화학습의 흐름도 Part 1
Dongmin Lee
 
강화학습의 개요
강화학습의 개요강화학습의 개요
강화학습의 개요
Dongmin Lee
 
Ad

Recently uploaded (20)

DNA Profiling and STR Typing in Forensics: From Molecular Techniques to Real-...
DNA Profiling and STR Typing in Forensics: From Molecular Techniques to Real-...DNA Profiling and STR Typing in Forensics: From Molecular Techniques to Real-...
DNA Profiling and STR Typing in Forensics: From Molecular Techniques to Real-...
home
 
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdfBotany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
JseleBurgos
 
06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx
LanaQadumii
 
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptxQuiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
NutriGen
 
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
muralinath2
 
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptxPresentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
muralinath2
 
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptxVERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
hipachi8
 
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Ali Raei
 
biochemistry amino acid from chemistry to life machinery
biochemistry amino acid from chemistry to life machinerybiochemistry amino acid from chemistry to life machinery
biochemistry amino acid from chemistry to life machinery
chaitanyaa4444
 
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Sérgio Sacani
 
Metallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda PathakMetallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda Pathak
GovindaPathak6
 
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Yasasi Abeysinghe
 
Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025
Shiva Nejati
 
Skin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _ControlSkin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _Control
muralinath2
 
Polytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptxPolytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Chromatography, types, techniques, ppt.pptx
Chromatography, types, techniques, ppt.pptxChromatography, types, techniques, ppt.pptx
Chromatography, types, techniques, ppt.pptx
Dr Showkat Ahmad Wani
 
Nutritional Diseases in poultry.........
Nutritional Diseases in poultry.........Nutritional Diseases in poultry.........
Nutritional Diseases in poultry.........
Bangladesh Agricultural University,Mymemsingh
 
Causes of mortalities of eggs and spawn and remedies.pptx
Causes of mortalities of eggs and spawn and remedies.pptxCauses of mortalities of eggs and spawn and remedies.pptx
Causes of mortalities of eggs and spawn and remedies.pptx
anshumanmohanty9090
 
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptxRAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
nietakam
 
Influenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptxInfluenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptx
diyapadhiyar
 
DNA Profiling and STR Typing in Forensics: From Molecular Techniques to Real-...
DNA Profiling and STR Typing in Forensics: From Molecular Techniques to Real-...DNA Profiling and STR Typing in Forensics: From Molecular Techniques to Real-...
DNA Profiling and STR Typing in Forensics: From Molecular Techniques to Real-...
home
 
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdfBotany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
Botany-Finals-Patterns-of-Inheritance-DNA-Synthesis.pdf
JseleBurgos
 
06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx06-Molecular basis of transformation.pptx
06-Molecular basis of transformation.pptx
LanaQadumii
 
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptxQuiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
Quiz 3 Basic Nutrition 1ST Yearcmcmc.pptx
NutriGen
 
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
Body temperature_chemical thermogenesis_hypothermia_hypothermiaMetabolic acti...
muralinath2
 
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptxPresentatation_SM_muscle_structpes_funtionre_ty.pptx
Presentatation_SM_muscle_structpes_funtionre_ty.pptx
muralinath2
 
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptxVERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
VERMICOMPOSTING A STEP TOWARDS SUSTAINABILITY.pptx
hipachi8
 
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Turkey Diseases and Disorders Volume 2 Infectious and Nutritional Diseases, D...
Ali Raei
 
biochemistry amino acid from chemistry to life machinery
biochemistry amino acid from chemistry to life machinerybiochemistry amino acid from chemistry to life machinery
biochemistry amino acid from chemistry to life machinery
chaitanyaa4444
 
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Direct Evidence for r-process Nucleosynthesis in Delayed MeV Emission from th...
Sérgio Sacani
 
Metallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda PathakMetallurgical process class 11_Govinda Pathak
Metallurgical process class 11_Govinda Pathak
GovindaPathak6
 
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Examining Visual Attention in Gaze-Driven VR Learning: An Eye-Tracking Study ...
Yasasi Abeysinghe
 
Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025Keynote presentation at DeepTest Workshop 2025
Keynote presentation at DeepTest Workshop 2025
Shiva Nejati
 
Skin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _ControlSkin_Glands_Structure_Secretion _Control
Skin_Glands_Structure_Secretion _Control
muralinath2
 
Polytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptxPolytene chromosomes. A Practical Lecture.pptx
Polytene chromosomes. A Practical Lecture.pptx
Dr Showkat Ahmad Wani
 
Chromatography, types, techniques, ppt.pptx
Chromatography, types, techniques, ppt.pptxChromatography, types, techniques, ppt.pptx
Chromatography, types, techniques, ppt.pptx
Dr Showkat Ahmad Wani
 
Causes of mortalities of eggs and spawn and remedies.pptx
Causes of mortalities of eggs and spawn and remedies.pptxCauses of mortalities of eggs and spawn and remedies.pptx
Causes of mortalities of eggs and spawn and remedies.pptx
anshumanmohanty9090
 
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptxRAPID DIAGNOSTIC TEST (RDT)  overviewppt.pptx
RAPID DIAGNOSTIC TEST (RDT) overviewppt.pptx
nietakam
 
Influenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptxInfluenza-Understanding-the-Deadly-Virus.pptx
Influenza-Understanding-the-Deadly-Virus.pptx
diyapadhiyar
 

Safe Reinforcement Learning

  • 1. 02 , 1 2 202 A9 8
  • 2. d • m S rS • 7 K a . h i Ob 7P , N . O y eo P , N . O AEGB I AFAG 7A IGEGC. G G I K E GP LIE AG E I K G G G IAL 4 0 I , - N . ug ! • 7 69 2 wn ~ t 2 839 12 f ::9 w R c a
  • 3. 2 . 4 2 1 2 . 4 2 1 242 2 2 2 3 2 . 2 . 4 2 1 32
  • 6. : : A@ ?I 7 . 3/ / - -
  • 7. i ) n ( /ooc wu r p h i n ( 7?? ( @:37 3 ? :? h [s .? ? t 3? : e :?b b g [sd [ - A k :? h R I I [ t ] :? [ a i S
  • 8. i ) n ( /ooc wu r p h i n ( 7?? ( @:37 3 ? :? h [s .? ? t 3? : e :?b b g [sd [ - A k :? h R I I [ t ] :? [ a i S
  • 9. i ) n ( /ooc wu r p h i n ( 7?? ( @:37 3 ? :? h [s .? ? t 3? : e :?b b g [sd [ - A k :? h R I I [ t ] :? [ a i S
  • 10. i ) n ( /ooc wu r p h i n ( 7?? ( @:37 3 ? :? h [s .? ? t 3? : e :?b b g [sd [ - A k :? h R I I [ t ] :? [ a i S
  • 12. dp ) ( u a Ou a A R O : ( S i c O A w k y ( : d c lr e G x t u a! . B ( P i : On g y m do u ( uo - n ! + ? ,
  • 13. dp ) ( u a Ou a A R O : ( S i c O A w k y ( : d c lr e G x t u a! . B ( P i : On g y m do u ( uo - n ! + ? ,
  • 14. dp ) ( u a Ou a A R O : ( S i c O A w k y ( : d c lr e G x t u a! . B ( P i : On g y m do u ( uo - n ! + ? ,
  • 15. dp ) ( u a Ou a A R O : ( S i c O A w k y ( : d c lr e G x t u a! . B ( P i : On g y m do u ( uo - n ! + ? ,
  • 16. dp ) ( u a Ou a A R O : ( S i c O A w k y ( : d c lr e G x t u a! . B ( P i : On g y m do u ( uo - n ! + ? ,
  • 20. - / 8.4 1 20 4/ - 4 - 0/ :
  • 23. ? ?
  • 24. !
  • 28. !
  • 30. .
  • 31. .
  • 37. !
  • 39. / / . / . / / ./ . / / / / / - . / -
  • 40. -, , /, , , - /, , , / / , , , , , , - , , , -, . /, , .
  • 41. L L L
  • 42. L L L !" = $"%& + ($"%) + () $"%* + ⋯ = ∑-./ 0 (- $"%-%&
  • 43. L L L
  • 44. L L L
  • 49. -1 C E - 2 .2 2 - 2 2 2 - 2 2 -2 2 2
  • 50. -1 C E - 2 .2 2 - 2 2 2 - 2 2 -2 2 2
  • 51. -1 C E - 2 .2 2 - 2 2 2 - 2 2 -2 2 2
  • 52. - 2 E BI C 22 . 2 2 21 2 2 2 2
  • 53. - 2 E BI C 22 . 2 2 21 2 2 2 2
  • 54. . - R C E 1B 2 - P O SLO I W I!
  • 55. - 2 E BI C 22 . 2 2 21 2 2 2 2
  • 58. !
  • 59. -
  • 60. - - - - - - - - - -
  • 61. - - - - - - - - - - - - - - -
  • 62. -
  • 63. -
  • 64. - - - - -
  • 65. Ω" " #$, &$, #', &', … C - C
  • 66. - - - - - C !
  • 67. - C
  • 68. - C
  • 69. - C
  • 70. - C
  • 71. - C
  • 73. -
  • 74. id , - h , ,., c e ., i , ,., Wk , ,., , l , ,., h h a . Ch . . Ch , , b
  • 75. id , - c e - i - Wk C - l . - a - - . - . . b
  • 76. id , - c e - i - Wk C - l . - a - - . - . . b
  • 84. !
  • 89. C ! "# $ ! %# & '#
  • 90. C ! "# $ ! %# & '#
  • 91. C ! "# $ ! %# & '#
  • 92. C ! "# $ ! %# & '#
  • 93. ! C
  • 95. .
  • 96. NO P I K TS /. BC :? /? :5 . C:=: C:? C B 5 / : P R TS CC B ? C 5?= C5 ( / )5
  • 97. O N T KR S ! / B C ? = / I ? ? : C B : B P : C 5 :) ( .
  • 98. a P T cK eO aR aI b a Sd N /. BC :? /? :5 . C:=: C:? C B 5 / : CC B ? C 5?= C5 ( / )5
  • 99. OPS S T KI b a N /. BC :? /? :5 . C:=: C:? C B 5 / : R CC B ? C 5?= C5 ( / )5
  • 100. O b NT S c I dP bK a /. BC :? /? :5 . C:=: C:? C B 5 / : R a CC B ? C 5?= C5 ( / )5
  • 101. N e T O P dR N K e b dR ! ca / B C ? = / I ? ? : C B : B S ca : C 5 :) ( .
  • 102. N !!! PO / B C ? = / I ? ? : C B : B K PO : C 5 :) ( .
  • 103. .
  • 104. E E A 8 !
  • 108. !
  • 109. - 2 E BI C 22 2 2 2 . 2 2 21 2
  • 110. . E . K L L K
  • 111. .
  • 112. P ! 2:11 1 3 L D M a ./: 3 9 5 1 3/:1 71 72- 7 11 9/:
  • 114. . .
  • 115. .
  • 117. ! !
  • 121. ! !
  • 125. ! !
  • 127. . 2 . 2 1
  • 128. . 2 1
  • 129. . A 12 A 12 ?
  • 130. - , . 1 21 ? -: 2 - - , ( 1- - - , ( ) )
  • 132. 1 ? 2 . .
  • 133. . 2 1
  • 134. ) ( 2 . 2 2 1 1 : !", $", !%, $%, … E ) T?
  • 136. : / . : / A :: : . : :
  • 137. . . : . . . . . / . . : . A :: : / . .. : : . . : . : . .
  • 138. ! = { $%, '% , $(, '( , … }
  • 139. ! = { $%, '% , $(, '( , … }
  • 140. !(#, %)' = { #*, %* , #+, %+ , … }
  • 141. !(#, %)' = { #*, %* , #+, %+ , … }
  • 142. !(#, %)' = { #*, %* , #+, %+ , … } .
  • 143. ? ML ? 7 C7 7 ? 7 7? 7 ? ? 4 C7 ? = 7 I ML : C H 47 : . / 2 7 7 H 47 &C
  • 146. O Z I L N E 8 . : . : . :/: ?= 8. = AAA :? ?/ :8 A.
  • 147. 8 & /= = : ? = : E : 8 E 8 8 8= H & 7 & E= = 7 ?. ? E=
  • 148. A SR 1//8 0 (& ) . G ADA G:G H IKGG D :HN LA= P Q SR GI MMM N K K D M: L )2=.M8 0 ? : KH N K K D((I
  • 150. !" #"
  • 151. !" #"
  • 154. .
  • 155. .
  • 156. .
  • 158. !
  • 159. .
  • 160. , ) . ( ) C
  • 161. L D !
  • 162. :CDCNC ACO 1CCM :CG DLNAC C P 5C N G 1LCO P LNH CP IL 5G H 0L MNC C OGRC NRCT L DC :CG DLNAC C P 5C N G ( ' 9 MCN 5G H N OP :C GL 9LIGAT 8MPG G PGL ( ' 9 MCN 5G H :98 N OP :C GL 9LIGAT 8MPG G PGL - 4 BCMP :COC NA 9 MCN :CRGCS L C 5G H I LNGP O DLN 4 RCNOC :CG DLNAC C P 5C N G ( 9 MCN 5G H MMNC PGACO GM 5C N G RG 4 RCNOC :CG DLNAC C P 5C N G ( ) 9 MCN 5G H 9: (,- MMNC PGACO GM 5C N G RG 4 RCNOC :CG DLNAC C P 5C N G 99 5G H DC IPG C P :CG DLNAC C P 5C N G DLN PL L L O 1NGRG 99 5G H 4 PNLB APGL LD 4 RCNOC :CG DLNAC C P 5C N G 99 5G H 4 RCNOC :CG DLNAC C P 5C N G OCB L 0NGPGA I P PC L C 5G H 4 GP PGL 5C N G DLN 8 NL LP OG 4 PC L C 5G H :L LP IC N O PL MI T P IC PC GO T G GP PGL L C 5G H 422: 9 ( ' - 1CCM G GA M MCN O MMIC C P NT RGBCL L C 5G H
  • 164. !
  • 165. !