SlideShare a Scribd company logo
5: CPU-Scheduling 1
OPERATING SYSTEMS
SCHEDULING
5: CPU-Scheduling 2
What Is In This Chapter?
• This chapter is about how to get a process attached to a processor.
• It centers around efficient algorithms that perform well.
• The design of a scheduler is concerned with making sure all users get
their fair share of the resources.
CPU Scheduling
5: CPU-Scheduling 3
What Is In This Chapter?
• Basic Concepts
• Scheduling Criteria
• Scheduling Algorithms
• Multiple-Processor Scheduling
• Real-Time Scheduling
• Thread Scheduling
• Operating Systems Examples
• Java Thread Scheduling
• Algorithm Evaluation
CPU Scheduling
5: CPU-Scheduling 4
CPU SCHEDULING Scheduling
Concepts
Multiprogramming A number of programs can be in
memory at the same time. Allows
overlap of CPU and I/O.
Jobs (batch) are programs that run
without user interaction.
User (time shared) are programs that may
have user interaction.
Process is the common name for both.
CPU - I/O burst cycle Characterizes process execution,
which alternates, between CPU and
I/O activity. CPU times are
generally much shorter than I/O
times.
Preemptive Scheduling An
interrupt causes currently running
process to give up the CPU and be
replaced by another process.
5: CPU-Scheduling 5
CPU SCHEDULING The Scheduler
 Selects from among the processes in memory that are ready to execute, and
allocates the CPU to one of them
 CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4. Terminates
 Scheduling under 1 and 4 is nonpreemptive
 All other scheduling is preemptive
5: CPU-Scheduling 6
CPU SCHEDULING The Dispatcher
 Dispatcher module gives control of the CPU to the process selected by the short-
term scheduler; this involves:
switching context
switching to user mode
jumping to the proper location in the user program to restart that program
 Dispatch latency – time it takes for the dispatcher to stop one process and start
another running
5: CPU-Scheduling 7
Note usage of the words DEVICE, SYSTEM, REQUEST, JOB.
UTILIZATION The fraction of time a device is in use. ( ratio of in-use time / total observation
time )
THROUGHPUT The number of job completions in a period of time. (jobs / second )
SERVICE TIME The time required by a device to handle a request. (seconds)
QUEUEING TIME Time on a queue waiting for service from the device. (seconds)
RESIDENCE TIME The time spent by a request at a device.
RESIDENCE TIME = SERVICE TIME +
QUEUEING TIME.
RESPONSE TIME Time used by a system to respond to a User Job. ( seconds )
THINK TIME The time spent by the user of an interactive system to figure out the next
request. (seconds)
The goal is to optimize both the average and the amount of variation. (but beware the ogre
predictability.)
CPU SCHEDULING
Criteria For
Performance
Evaluation
5: CPU-Scheduling 8
Most Processes Don’t Use Up Their Scheduling Quantum!
CPU SCHEDULING
Scheduling
Behavior
5: CPU-Scheduling 9
FIRST-COME, FIRST SERVED:
 ( FCFS) same as FIFO
 Simple, fair, but poor performance. Average queueing time may be long.
 What are the average queueing and residence times for this scenario?
 How do average queueing and residence times depend on ordering of these
processes in the queue?
CPU SCHEDULING Scheduling
Algorithms
5: CPU-Scheduling 10
EXAMPLE DATA:
Process Arrival Service
Time Time
1 0 8
2 1 4
3 2 9
4 3 5
0 8 12 21 26
P1 P2 P3 P4
FCFS
Average wait = ( (8-0) + (12-1) + (21-2) + (26-3) )/4 = 61/4 = 15.25
CPU SCHEDULING Scheduling
Algorithms
Residence Time
at the CPU
5: CPU-Scheduling 11
SHORTEST JOB FIRST:
 Optimal for minimizing queueing time, but impossible to implement.
Tries to predict the process to schedule based on previous history.
 Predicting the time the process will use on its next schedule:
t( n+1 ) = w * t( n ) + ( 1 - w ) * T( n )
Here: t(n+1) is time of next burst.
t(n) is time of current burst.
T(n) is average of all previous bursts .
W is a weighting factor emphasizing current or previous bursts.
CPU SCHEDULING Scheduling
Algorithms
5: CPU-Scheduling 12
PREEMPTIVE ALGORITHMS:
 Yank the CPU away from the currently executing process when a higher
priority process is ready.
 Can be applied to both Shortest Job First or to Priority scheduling.
 Avoids "hogging" of the CPU
 On time sharing machines, this type of scheme is required because the
CPU must be protected from a run-away low priority process.
 Give short jobs a higher priority – perceived response time is thus better.
 What are average queueing and residence times? Compare with FCFS.
CPU SCHEDULING Scheduling
Algorithms
5: CPU-Scheduling 13
EXAMPLE DATA:
Process Arrival Service
Time Time
1 0 8
2 1 4
3 2 9
4 3 5
0 5 10 17 26
P2 P4 P1 P3
Preemptive Shortest Job First
Average wait = ( (5-1) + (10-3) + (17-0) + (26-2) )/4 = 52/4 = 13.0
P1
1
CPU SCHEDULING Scheduling
Algorithms
5: CPU-Scheduling 14
PRIORITY BASED SCHEDULING:
 Assign each process a priority. Schedule highest priority first. All processes within
same priority are FCFS.
 Priority may be determined by user or by some default mechanism. The system
may determine the priority based on memory requirements, time limits, or other
resource usage.
 Starvation occurs if a low priority process never runs. Solution: build aging into a
variable priority.
 Delicate balance between giving favorable response for interactive jobs, but not
starving batch jobs.
CPU SCHEDULING Scheduling
Algorithms
5: CPU-Scheduling 15
ROUND ROBIN:
 Use a timer to cause an interrupt after a predetermined time. Preempts if task
exceeds it’s quantum.
 Train of events
Dispatch
Time slice occurs OR process suspends on event
Put process on some queue and dispatch next
 Use numbers in last example to find queueing and residence times. (Use quantum =
4 sec.)
 Definitions:
– Context Switch Changing the processor from running one task (or
process) to another. Implies changing memory.
– Processor Sharing Use of a small quantum such that each process runs
frequently at speed 1/n.
– Reschedule latency How long it takes from when a process requests to
run, until it finally gets control of the CPU.
CPU SCHEDULING Scheduling
Algorithms
5: CPU-Scheduling 16
ROUND ROBIN:
 Choosing a time quantum
– Too short - inordinate fraction of the time is spent in context switches.
– Too long - reschedule latency is too great. If many processes want
the CPU, then it's a long time before a particular process can get the
CPU. This then acts like FCFS.
– Adjust so most processes won't use their slice. As processors have
become faster, this is less of an issue.
CPU SCHEDULING Scheduling
Algorithms
5: CPU-Scheduling 17
EXAMPLE DATA:
Process Arrival Service
Time Time
1 0 8
2 1 4
3 2 9
4 3 5
0 8 12 16 26
P2 P3 P4 P1
Round Robin, quantum = 4, no priority-based preemption
Average wait = ( (20-0) + (8-1) + (26-2) + (25-3) )/4 = 74/4 = 18.5
P1
4
P3 P4
20 24 25
P3
CPU SCHEDULING Scheduling
Algorithms
Note:
Example violates rules for
quantum size since most
processes don’t finish in one
quantum.
5: CPU-Scheduling 18
MULTI-LEVEL QUEUES:
 Each queue has its scheduling algorithm.
 Then some other algorithm (perhaps priority based) arbitrates between queues.
 Can use feedback to move between queues
 Method is complex but flexible.
 For example, could separate system processes, interactive, batch, favored, unfavored
processes
CPU SCHEDULING Scheduling
Algorithms
5: CPU-Scheduling 19
Here’s how the priorities are used in Windows
CPU SCHEDULING Using Priorities
5: CPU-Scheduling 20
MULTIPLE PROCESSOR SCHEDULING:
 Different rules for homogeneous or heterogeneous processors.
 Load sharing in the distribution of work, such that all processors have an
equal amount to do.
 Each processor can schedule from a common ready queue ( equal
machines ) OR can use a master slave arrangement.
Real Time Scheduling:
• Hard real-time systems – required to complete a critical task within a
guaranteed amount of time.
• Soft real-time computing – requires that critical processes receive priority over
less fortunate ones.
CPU SCHEDULING Scheduling
Algorithms
5: CPU-Scheduling 21
Two algorithms: time-sharing and real-time
• Time-sharing
– Prioritized credit-based – process with most credits is scheduled next
– Credit subtracted when timer interrupt occurs
– When credit = 0, another process chosen
– When all processes have credit = 0, recrediting occurs
• Based on factors including priority and history
• Real-time
– Soft real-time
– Posix.1b compliant – two classes
• FCFS and RR
• Highest priority process runs first
CPU SCHEDULING Linux Scheduling
5: CPU-Scheduling 22
How do we decide which algorithm is best for a particular environment?
• Deterministic modeling – takes a particular predetermined workload and defines
the performance of each algorithm for that workload.
• Queueing models.
CPU SCHEDULING Algorithm Evaluation
5: CPU-Scheduling 23
We’ve looked at a number of different scheduling algorithms.
Which one works the best is application dependent.
General purpose OS will use priority based, round robin, preemptive
Real Time OS will use priority, no preemption.
CPU SCHEDULING
WRAPUP
Ad

More Related Content

Similar to Scheduling.ppt with operating system slides (20)

LM10,11,12 - CPU SCHEDULING algorithms and its processes
LM10,11,12 - CPU SCHEDULING algorithms and its processesLM10,11,12 - CPU SCHEDULING algorithms and its processes
LM10,11,12 - CPU SCHEDULING algorithms and its processes
manideepakc
 
DISEÑO DE MEMORIA EN SISTEMAS DE INFORMACION DIGITALES
DISEÑO DE MEMORIA EN SISTEMAS DE INFORMACION DIGITALESDISEÑO DE MEMORIA EN SISTEMAS DE INFORMACION DIGITALES
DISEÑO DE MEMORIA EN SISTEMAS DE INFORMACION DIGITALES
2021207019est
 
Operating System Scheduling
Operating System SchedulingOperating System Scheduling
Operating System Scheduling
Vishnu Prasad
 
Cpu scheduling final
Cpu scheduling finalCpu scheduling final
Cpu scheduling final
marangburu42
 
Process scheduling (CPU Scheduling)
Process scheduling (CPU Scheduling)Process scheduling (CPU Scheduling)
Process scheduling (CPU Scheduling)
Mukesh Chinta
 
Cpu scheduling
Cpu schedulingCpu scheduling
Cpu scheduling
marangburu42
 
Cpu scheduling pre final formatting
Cpu scheduling pre final formattingCpu scheduling pre final formatting
Cpu scheduling pre final formatting
marangburu42
 
Osy ppt - Copy.pptx
Osy ppt - Copy.pptxOsy ppt - Copy.pptx
Osy ppt - Copy.pptx
NikhilShinde253288
 
Lecture 3 CPU scheduling_2.pdflllllllllll
Lecture 3 CPU scheduling_2.pdflllllllllllLecture 3 CPU scheduling_2.pdflllllllllll
Lecture 3 CPU scheduling_2.pdflllllllllll
MohamedPalastine
 
Lecture 3 CPU scheduling.pdfvgukgiolphpiphjp
Lecture 3 CPU scheduling.pdfvgukgiolphpiphjpLecture 3 CPU scheduling.pdfvgukgiolphpiphjp
Lecture 3 CPU scheduling.pdfvgukgiolphpiphjp
MohamedPalastine
 
May14ProcessScheduling.ppt
May14ProcessScheduling.pptMay14ProcessScheduling.ppt
May14ProcessScheduling.ppt
ansariparveen06
 
pscheduling.ppt
pscheduling.pptpscheduling.ppt
pscheduling.ppt
ansariparveen06
 
Process scheduling
Process schedulingProcess scheduling
Process scheduling
Riya Choudhary
 
Operating System.pptx
Operating System.pptxOperating System.pptx
Operating System.pptx
VanshikaRajput33
 
Do2644844490
Do2644844490Do2644844490
Do2644844490
IJMER
 
ch_scheduling (1).ppt
ch_scheduling (1).pptch_scheduling (1).ppt
ch_scheduling (1).ppt
Farhanahmad540205
 
exp 3.docx
exp 3.docxexp 3.docx
exp 3.docx
Ganesh Chavan
 
Scheduling algorithms
Scheduling algorithmsScheduling algorithms
Scheduling algorithms
Paurav Shah
 
cpu scheduling.pdfoieheoirwuojorkjp;ooooo
cpu scheduling.pdfoieheoirwuojorkjp;ooooocpu scheduling.pdfoieheoirwuojorkjp;ooooo
cpu scheduling.pdfoieheoirwuojorkjp;ooooo
baijusurya7
 
Preemptive process example.pptx
Preemptive process example.pptxPreemptive process example.pptx
Preemptive process example.pptx
jamilaltiti1
 
LM10,11,12 - CPU SCHEDULING algorithms and its processes
LM10,11,12 - CPU SCHEDULING algorithms and its processesLM10,11,12 - CPU SCHEDULING algorithms and its processes
LM10,11,12 - CPU SCHEDULING algorithms and its processes
manideepakc
 
DISEÑO DE MEMORIA EN SISTEMAS DE INFORMACION DIGITALES
DISEÑO DE MEMORIA EN SISTEMAS DE INFORMACION DIGITALESDISEÑO DE MEMORIA EN SISTEMAS DE INFORMACION DIGITALES
DISEÑO DE MEMORIA EN SISTEMAS DE INFORMACION DIGITALES
2021207019est
 
Operating System Scheduling
Operating System SchedulingOperating System Scheduling
Operating System Scheduling
Vishnu Prasad
 
Cpu scheduling final
Cpu scheduling finalCpu scheduling final
Cpu scheduling final
marangburu42
 
Process scheduling (CPU Scheduling)
Process scheduling (CPU Scheduling)Process scheduling (CPU Scheduling)
Process scheduling (CPU Scheduling)
Mukesh Chinta
 
Cpu scheduling pre final formatting
Cpu scheduling pre final formattingCpu scheduling pre final formatting
Cpu scheduling pre final formatting
marangburu42
 
Lecture 3 CPU scheduling_2.pdflllllllllll
Lecture 3 CPU scheduling_2.pdflllllllllllLecture 3 CPU scheduling_2.pdflllllllllll
Lecture 3 CPU scheduling_2.pdflllllllllll
MohamedPalastine
 
Lecture 3 CPU scheduling.pdfvgukgiolphpiphjp
Lecture 3 CPU scheduling.pdfvgukgiolphpiphjpLecture 3 CPU scheduling.pdfvgukgiolphpiphjp
Lecture 3 CPU scheduling.pdfvgukgiolphpiphjp
MohamedPalastine
 
May14ProcessScheduling.ppt
May14ProcessScheduling.pptMay14ProcessScheduling.ppt
May14ProcessScheduling.ppt
ansariparveen06
 
Do2644844490
Do2644844490Do2644844490
Do2644844490
IJMER
 
Scheduling algorithms
Scheduling algorithmsScheduling algorithms
Scheduling algorithms
Paurav Shah
 
cpu scheduling.pdfoieheoirwuojorkjp;ooooo
cpu scheduling.pdfoieheoirwuojorkjp;ooooocpu scheduling.pdfoieheoirwuojorkjp;ooooo
cpu scheduling.pdfoieheoirwuojorkjp;ooooo
baijusurya7
 
Preemptive process example.pptx
Preemptive process example.pptxPreemptive process example.pptx
Preemptive process example.pptx
jamilaltiti1
 

More from lovepreet33653 (8)

CAQA5e_ch2.pptx memory hierarchy design storage
CAQA5e_ch2.pptx memory hierarchy design storageCAQA5e_ch2.pptx memory hierarchy design storage
CAQA5e_ch2.pptx memory hierarchy design storage
lovepreet33653
 
Intro Ch 06A.ppt operating system of computer
Intro Ch 06A.ppt operating system of computerIntro Ch 06A.ppt operating system of computer
Intro Ch 06A.ppt operating system of computer
lovepreet33653
 
Robot PPT.ppt this will define the robots
Robot PPT.ppt this will define the robotsRobot PPT.ppt this will define the robots
Robot PPT.ppt this will define the robots
lovepreet33653
 
Data Exploration and Transformation.pptx
Data Exploration and Transformation.pptxData Exploration and Transformation.pptx
Data Exploration and Transformation.pptx
lovepreet33653
 
MODERN DATABASES (2).pptx in which modern types of data bases
MODERN DATABASES (2).pptx in which modern types of data basesMODERN DATABASES (2).pptx in which modern types of data bases
MODERN DATABASES (2).pptx in which modern types of data bases
lovepreet33653
 
komal (distance and similarity measure).pptx
komal (distance and similarity measure).pptxkomal (distance and similarity measure).pptx
komal (distance and similarity measure).pptx
lovepreet33653
 
ch6.ppt operating System batch Processing
ch6.ppt operating System batch Processingch6.ppt operating System batch Processing
ch6.ppt operating System batch Processing
lovepreet33653
 
Operating System CPU Scheduling slide with OS
Operating System CPU Scheduling slide with OSOperating System CPU Scheduling slide with OS
Operating System CPU Scheduling slide with OS
lovepreet33653
 
CAQA5e_ch2.pptx memory hierarchy design storage
CAQA5e_ch2.pptx memory hierarchy design storageCAQA5e_ch2.pptx memory hierarchy design storage
CAQA5e_ch2.pptx memory hierarchy design storage
lovepreet33653
 
Intro Ch 06A.ppt operating system of computer
Intro Ch 06A.ppt operating system of computerIntro Ch 06A.ppt operating system of computer
Intro Ch 06A.ppt operating system of computer
lovepreet33653
 
Robot PPT.ppt this will define the robots
Robot PPT.ppt this will define the robotsRobot PPT.ppt this will define the robots
Robot PPT.ppt this will define the robots
lovepreet33653
 
Data Exploration and Transformation.pptx
Data Exploration and Transformation.pptxData Exploration and Transformation.pptx
Data Exploration and Transformation.pptx
lovepreet33653
 
MODERN DATABASES (2).pptx in which modern types of data bases
MODERN DATABASES (2).pptx in which modern types of data basesMODERN DATABASES (2).pptx in which modern types of data bases
MODERN DATABASES (2).pptx in which modern types of data bases
lovepreet33653
 
komal (distance and similarity measure).pptx
komal (distance and similarity measure).pptxkomal (distance and similarity measure).pptx
komal (distance and similarity measure).pptx
lovepreet33653
 
ch6.ppt operating System batch Processing
ch6.ppt operating System batch Processingch6.ppt operating System batch Processing
ch6.ppt operating System batch Processing
lovepreet33653
 
Operating System CPU Scheduling slide with OS
Operating System CPU Scheduling slide with OSOperating System CPU Scheduling slide with OS
Operating System CPU Scheduling slide with OS
lovepreet33653
 
Ad

Recently uploaded (20)

Machine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptxMachine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptx
rajeswari89780
 
Value Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous SecurityValue Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous Security
Marc Hornbeek
 
comparison of motors.pptx 1. Motor Terminology.ppt
comparison of motors.pptx 1. Motor Terminology.pptcomparison of motors.pptx 1. Motor Terminology.ppt
comparison of motors.pptx 1. Motor Terminology.ppt
yadavmrr7
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
Kamal Acharya
 
Basic Principles for Electronics Students
Basic Principles for Electronics StudentsBasic Principles for Electronics Students
Basic Principles for Electronics Students
cbdbizdev04
 
Degree_of_Automation.pdf for Instrumentation and industrial specialist
Degree_of_Automation.pdf for  Instrumentation  and industrial specialistDegree_of_Automation.pdf for  Instrumentation  and industrial specialist
Degree_of_Automation.pdf for Instrumentation and industrial specialist
shreyabhosale19
 
Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
Unit III.pptx IT3401 web essentials presentatio
Unit III.pptx IT3401 web essentials presentatioUnit III.pptx IT3401 web essentials presentatio
Unit III.pptx IT3401 web essentials presentatio
lakshitakumar291
 
vlsi digital circuits full power point presentation
vlsi digital circuits full power point presentationvlsi digital circuits full power point presentation
vlsi digital circuits full power point presentation
DrSunitaPatilUgaleKK
 
Artificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptxArtificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptx
aditichinar
 
Gas Power Plant for Power Generation System
Gas Power Plant for Power Generation SystemGas Power Plant for Power Generation System
Gas Power Plant for Power Generation System
JourneyWithMe1
 
Mathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdfMathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdf
TalhaShahid49
 
railway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forgingrailway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forging
Javad Kadkhodapour
 
Mirada a 12 proyectos desarrollados con BIM.pdf
Mirada a 12 proyectos desarrollados con BIM.pdfMirada a 12 proyectos desarrollados con BIM.pdf
Mirada a 12 proyectos desarrollados con BIM.pdf
topitodosmasdos
 
QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)
rccbatchplant
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
Avnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights FlyerAvnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights Flyer
WillDavies22
 
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design ThinkingDT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DhruvChotaliya2
 
Machine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptxMachine learning project on employee attrition detection using (2).pptx
Machine learning project on employee attrition detection using (2).pptx
rajeswari89780
 
Value Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous SecurityValue Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous Security
Marc Hornbeek
 
comparison of motors.pptx 1. Motor Terminology.ppt
comparison of motors.pptx 1. Motor Terminology.pptcomparison of motors.pptx 1. Motor Terminology.ppt
comparison of motors.pptx 1. Motor Terminology.ppt
yadavmrr7
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
RESORT MANAGEMENT AND RESERVATION SYSTEM PROJECT REPORT.
Kamal Acharya
 
Basic Principles for Electronics Students
Basic Principles for Electronics StudentsBasic Principles for Electronics Students
Basic Principles for Electronics Students
cbdbizdev04
 
Degree_of_Automation.pdf for Instrumentation and industrial specialist
Degree_of_Automation.pdf for  Instrumentation  and industrial specialistDegree_of_Automation.pdf for  Instrumentation  and industrial specialist
Degree_of_Automation.pdf for Instrumentation and industrial specialist
shreyabhosale19
 
Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
Unit III.pptx IT3401 web essentials presentatio
Unit III.pptx IT3401 web essentials presentatioUnit III.pptx IT3401 web essentials presentatio
Unit III.pptx IT3401 web essentials presentatio
lakshitakumar291
 
vlsi digital circuits full power point presentation
vlsi digital circuits full power point presentationvlsi digital circuits full power point presentation
vlsi digital circuits full power point presentation
DrSunitaPatilUgaleKK
 
Artificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptxArtificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptx
aditichinar
 
Gas Power Plant for Power Generation System
Gas Power Plant for Power Generation SystemGas Power Plant for Power Generation System
Gas Power Plant for Power Generation System
JourneyWithMe1
 
Mathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdfMathematical foundation machine learning.pdf
Mathematical foundation machine learning.pdf
TalhaShahid49
 
railway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forgingrailway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forging
Javad Kadkhodapour
 
Mirada a 12 proyectos desarrollados con BIM.pdf
Mirada a 12 proyectos desarrollados con BIM.pdfMirada a 12 proyectos desarrollados con BIM.pdf
Mirada a 12 proyectos desarrollados con BIM.pdf
topitodosmasdos
 
QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)QA/QC Manager (Quality management Expert)
QA/QC Manager (Quality management Expert)
rccbatchplant
 
Data Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptxData Structures_Searching and Sorting.pptx
Data Structures_Searching and Sorting.pptx
RushaliDeshmukh2
 
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdfMAQUINARIA MINAS CEMA 6th Edition (1).pdf
MAQUINARIA MINAS CEMA 6th Edition (1).pdf
ssuser562df4
 
Avnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights FlyerAvnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights Flyer
WillDavies22
 
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design ThinkingDT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DhruvChotaliya2
 
Ad

Scheduling.ppt with operating system slides

  • 1. 5: CPU-Scheduling 1 OPERATING SYSTEMS SCHEDULING
  • 2. 5: CPU-Scheduling 2 What Is In This Chapter? • This chapter is about how to get a process attached to a processor. • It centers around efficient algorithms that perform well. • The design of a scheduler is concerned with making sure all users get their fair share of the resources. CPU Scheduling
  • 3. 5: CPU-Scheduling 3 What Is In This Chapter? • Basic Concepts • Scheduling Criteria • Scheduling Algorithms • Multiple-Processor Scheduling • Real-Time Scheduling • Thread Scheduling • Operating Systems Examples • Java Thread Scheduling • Algorithm Evaluation CPU Scheduling
  • 4. 5: CPU-Scheduling 4 CPU SCHEDULING Scheduling Concepts Multiprogramming A number of programs can be in memory at the same time. Allows overlap of CPU and I/O. Jobs (batch) are programs that run without user interaction. User (time shared) are programs that may have user interaction. Process is the common name for both. CPU - I/O burst cycle Characterizes process execution, which alternates, between CPU and I/O activity. CPU times are generally much shorter than I/O times. Preemptive Scheduling An interrupt causes currently running process to give up the CPU and be replaced by another process.
  • 5. 5: CPU-Scheduling 5 CPU SCHEDULING The Scheduler  Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them  CPU scheduling decisions may take place when a process: 1. Switches from running to waiting state 2. Switches from running to ready state 3. Switches from waiting to ready 4. Terminates  Scheduling under 1 and 4 is nonpreemptive  All other scheduling is preemptive
  • 6. 5: CPU-Scheduling 6 CPU SCHEDULING The Dispatcher  Dispatcher module gives control of the CPU to the process selected by the short- term scheduler; this involves: switching context switching to user mode jumping to the proper location in the user program to restart that program  Dispatch latency – time it takes for the dispatcher to stop one process and start another running
  • 7. 5: CPU-Scheduling 7 Note usage of the words DEVICE, SYSTEM, REQUEST, JOB. UTILIZATION The fraction of time a device is in use. ( ratio of in-use time / total observation time ) THROUGHPUT The number of job completions in a period of time. (jobs / second ) SERVICE TIME The time required by a device to handle a request. (seconds) QUEUEING TIME Time on a queue waiting for service from the device. (seconds) RESIDENCE TIME The time spent by a request at a device. RESIDENCE TIME = SERVICE TIME + QUEUEING TIME. RESPONSE TIME Time used by a system to respond to a User Job. ( seconds ) THINK TIME The time spent by the user of an interactive system to figure out the next request. (seconds) The goal is to optimize both the average and the amount of variation. (but beware the ogre predictability.) CPU SCHEDULING Criteria For Performance Evaluation
  • 8. 5: CPU-Scheduling 8 Most Processes Don’t Use Up Their Scheduling Quantum! CPU SCHEDULING Scheduling Behavior
  • 9. 5: CPU-Scheduling 9 FIRST-COME, FIRST SERVED:  ( FCFS) same as FIFO  Simple, fair, but poor performance. Average queueing time may be long.  What are the average queueing and residence times for this scenario?  How do average queueing and residence times depend on ordering of these processes in the queue? CPU SCHEDULING Scheduling Algorithms
  • 10. 5: CPU-Scheduling 10 EXAMPLE DATA: Process Arrival Service Time Time 1 0 8 2 1 4 3 2 9 4 3 5 0 8 12 21 26 P1 P2 P3 P4 FCFS Average wait = ( (8-0) + (12-1) + (21-2) + (26-3) )/4 = 61/4 = 15.25 CPU SCHEDULING Scheduling Algorithms Residence Time at the CPU
  • 11. 5: CPU-Scheduling 11 SHORTEST JOB FIRST:  Optimal for minimizing queueing time, but impossible to implement. Tries to predict the process to schedule based on previous history.  Predicting the time the process will use on its next schedule: t( n+1 ) = w * t( n ) + ( 1 - w ) * T( n ) Here: t(n+1) is time of next burst. t(n) is time of current burst. T(n) is average of all previous bursts . W is a weighting factor emphasizing current or previous bursts. CPU SCHEDULING Scheduling Algorithms
  • 12. 5: CPU-Scheduling 12 PREEMPTIVE ALGORITHMS:  Yank the CPU away from the currently executing process when a higher priority process is ready.  Can be applied to both Shortest Job First or to Priority scheduling.  Avoids "hogging" of the CPU  On time sharing machines, this type of scheme is required because the CPU must be protected from a run-away low priority process.  Give short jobs a higher priority – perceived response time is thus better.  What are average queueing and residence times? Compare with FCFS. CPU SCHEDULING Scheduling Algorithms
  • 13. 5: CPU-Scheduling 13 EXAMPLE DATA: Process Arrival Service Time Time 1 0 8 2 1 4 3 2 9 4 3 5 0 5 10 17 26 P2 P4 P1 P3 Preemptive Shortest Job First Average wait = ( (5-1) + (10-3) + (17-0) + (26-2) )/4 = 52/4 = 13.0 P1 1 CPU SCHEDULING Scheduling Algorithms
  • 14. 5: CPU-Scheduling 14 PRIORITY BASED SCHEDULING:  Assign each process a priority. Schedule highest priority first. All processes within same priority are FCFS.  Priority may be determined by user or by some default mechanism. The system may determine the priority based on memory requirements, time limits, or other resource usage.  Starvation occurs if a low priority process never runs. Solution: build aging into a variable priority.  Delicate balance between giving favorable response for interactive jobs, but not starving batch jobs. CPU SCHEDULING Scheduling Algorithms
  • 15. 5: CPU-Scheduling 15 ROUND ROBIN:  Use a timer to cause an interrupt after a predetermined time. Preempts if task exceeds it’s quantum.  Train of events Dispatch Time slice occurs OR process suspends on event Put process on some queue and dispatch next  Use numbers in last example to find queueing and residence times. (Use quantum = 4 sec.)  Definitions: – Context Switch Changing the processor from running one task (or process) to another. Implies changing memory. – Processor Sharing Use of a small quantum such that each process runs frequently at speed 1/n. – Reschedule latency How long it takes from when a process requests to run, until it finally gets control of the CPU. CPU SCHEDULING Scheduling Algorithms
  • 16. 5: CPU-Scheduling 16 ROUND ROBIN:  Choosing a time quantum – Too short - inordinate fraction of the time is spent in context switches. – Too long - reschedule latency is too great. If many processes want the CPU, then it's a long time before a particular process can get the CPU. This then acts like FCFS. – Adjust so most processes won't use their slice. As processors have become faster, this is less of an issue. CPU SCHEDULING Scheduling Algorithms
  • 17. 5: CPU-Scheduling 17 EXAMPLE DATA: Process Arrival Service Time Time 1 0 8 2 1 4 3 2 9 4 3 5 0 8 12 16 26 P2 P3 P4 P1 Round Robin, quantum = 4, no priority-based preemption Average wait = ( (20-0) + (8-1) + (26-2) + (25-3) )/4 = 74/4 = 18.5 P1 4 P3 P4 20 24 25 P3 CPU SCHEDULING Scheduling Algorithms Note: Example violates rules for quantum size since most processes don’t finish in one quantum.
  • 18. 5: CPU-Scheduling 18 MULTI-LEVEL QUEUES:  Each queue has its scheduling algorithm.  Then some other algorithm (perhaps priority based) arbitrates between queues.  Can use feedback to move between queues  Method is complex but flexible.  For example, could separate system processes, interactive, batch, favored, unfavored processes CPU SCHEDULING Scheduling Algorithms
  • 19. 5: CPU-Scheduling 19 Here’s how the priorities are used in Windows CPU SCHEDULING Using Priorities
  • 20. 5: CPU-Scheduling 20 MULTIPLE PROCESSOR SCHEDULING:  Different rules for homogeneous or heterogeneous processors.  Load sharing in the distribution of work, such that all processors have an equal amount to do.  Each processor can schedule from a common ready queue ( equal machines ) OR can use a master slave arrangement. Real Time Scheduling: • Hard real-time systems – required to complete a critical task within a guaranteed amount of time. • Soft real-time computing – requires that critical processes receive priority over less fortunate ones. CPU SCHEDULING Scheduling Algorithms
  • 21. 5: CPU-Scheduling 21 Two algorithms: time-sharing and real-time • Time-sharing – Prioritized credit-based – process with most credits is scheduled next – Credit subtracted when timer interrupt occurs – When credit = 0, another process chosen – When all processes have credit = 0, recrediting occurs • Based on factors including priority and history • Real-time – Soft real-time – Posix.1b compliant – two classes • FCFS and RR • Highest priority process runs first CPU SCHEDULING Linux Scheduling
  • 22. 5: CPU-Scheduling 22 How do we decide which algorithm is best for a particular environment? • Deterministic modeling – takes a particular predetermined workload and defines the performance of each algorithm for that workload. • Queueing models. CPU SCHEDULING Algorithm Evaluation
  • 23. 5: CPU-Scheduling 23 We’ve looked at a number of different scheduling algorithms. Which one works the best is application dependent. General purpose OS will use priority based, round robin, preemptive Real Time OS will use priority, no preemption. CPU SCHEDULING WRAPUP