Отладка и устранение проблем в PostgreSQL Streaming Replication.Alexey Lesovsky
Потоковая репликация, которая появилась в 2010 году, стала одной из прорывных фич постгреса и в настоящее время практически ни одна инсталляция не обходится без использования потоковой репликации. Она надежна, легка в настройке, нетребовательна к ресурсам. Однако при всех своих положительных качествах, при её эксплуатации могут возникать различные проблемы и неприятные ситуации. Для диагностики и решения проблем, связанных с потоковой репликацией, есть множество инструментов, как встроенных в PostgreSQL, так и сторонних.
В этом докладе я сделаю обзор доступных инструментов и расскажу, как с помощью этих средств диагностировать различные типы проблем и как устранять их. Рассматривая методы решения, мы также рассмотрим проблемы, которые возникают при эксплуатации потоковой репликации.
Доклад будет полезен DBA и системным администраторам.
Структуры данных в разделяемой памяти,
про алгоритмы замещения страниц в буфере и блокировки, которые используются на разных уровнях взаимодействия.
А также средства мониторинга памяти, уже существующие и те, которые ещё только в процессе разработки.
Техносфера Mail.ru Group, МГУ им. М.В. Ломоносова.
Курс "Методы распределенной обработки больших объемов данных в Hadoop"
Видео лекции курса https://www.youtube.com/playlist?list=PLrCZzMib1e9rPxMIgPri9YnOpvyDAL9HD
Франкенштейнизация Voldemort или key-value данные в Одноклассниках. Роман Ан...odnoklassniki.ru
A talk from jokerconf.com conference.
"Frankenstaining of Voldemort" or "key-value storage evolution at Odnoklassniki"
В докладе освещены Java-технологии хранения данных, обслуживающие десятки миллионов пользователей и работающие на сотнях серверов.
На примере социальной сети "Одноклассники" мы рассмотрим эволюцию хранилищ данных с высоким уровнем конкурентного доступа и с соблюдением требования постоянной доступности.
Мы разберём сильные и слабые стороны каждого из решений, начиная от технологии master-slave репликации на основе Berkeley DB и заканчивая симбиозом распределенных хранилищ Voldemort и Cassandra.
Модным ныне словом «виртуализация» сейчас называют различные обёртки аппаратной виртуализации, однако этот термин намного старше и более всеохватывающий. На уровне ознакомления с технологией мы поговорим о виртуализации ресурсов в кластере и на примере pacemaker.
"Кластеры баз данных: делаем сложные вещи просто" Андрей Тихонов (Avito)AvitoTech
Порой в процессе развития высоконагруженного проекта наступает момент, когда необходимо масштабирование. Возможно, ваш проект впервые упёрся в производительность железа (и таким образом перешёл в разряд высоконагруженных); возможно, это уже не первое масштабирование — не важно. Какие же проблемы могут возникнуть?
Во-первых, если вы увеличиваете количество бэкенд-серверов, и, соответственно, количество рабочих процессов, то с ростом количества одновременных клиентских подключений вырастают и накладные расходы на базах данных.
Во-вторых, достаточно быстро может кончиться ресурс in-memory баз данных. Потребуется создать (либо увеличить) кластер, а это каждый раз влечёт за собой необходимость модифицировать логику приложения.
В-третьих, чем больше серверов, тем больше вероятность, что один из них выйдет из строя. Поэтому неплохо задуматься о том, как обеспечить отказоустойчивость, а это, опять же, потребует модифицировать логику приложения.
В этом докладе я расскажу, как и какими инструментами можно легко решить все вышеперечисленные проблемы: уменьшить накладные расходы от большого количества подключений к базам данных, создать/модифицировать кластер БД прозрачно для приложения, а также прозрачно добавить устойчивость к падениям серверов БД.
Тюним память и сетевой стек в Linux: история перевода высоконагруженных серве...Ontico
В процессе обновления высоконагруженных серверов раздачи видео (40Gbit/s с каждого сервера) со старого OpenSuSE 10.2 на новый CentOS 7 (время между релизами — 7 лет) мы столкнулись с рядом проблем — необъяснимый свопинг и запуски OOM killer, неравномерное распределение нагрузки по ядрам, обрывы соединений, скачки системной нагрузки на CPU.
В докладе будет рассказано о том, как мы боролись с этими проблемами и какие технологии для этого использовали.
Очереди и блокировки. Теория и практика / Александр Календарев (ad1.ru)Ontico
В докладе будут описаны паттерны использования очередей и блокировок, рассказано, зачем нужны очереди и блокировки, показано на примерах использования в разных архитектурах.
Описано применение синхронных и асинхронных очередей, как построить очереди с приоритетами.
Будет сравнение разных серверов очередей: Redis, Tarantool, RabbitMQ, ZMQ, Kafka, Zookeeper, MemcacheQ и др., их преимущества и недостатки, где и какой брокер лучше использовать.
5 способов деплоя PHP-кода в условиях хайлоада / Юрий Насретдинов (Badoo)Ontico
В дата-центрах нашей компании несколько тысяч серверов, и примерно на половине из них нужно выкладывать PHP-код 2 раза в день. Помимо раскладки на production также не стоит забывать о том, что код нужен на стейджинге, и в стейджинг-кластер у нас входит около 50 машин, код на которых обновляется раз в несколько минут. Также есть «хотфиксы» — небольшие (1-5) наборы файлов, которые выкладываются во внеочередном порядке на все или на выделенную часть серверов, чтобы устранить существующие проблемы на продакшне, не дожидаясь полной выкладки.
В этом докладе я расскажу о том, как мы деплоились в течение 10 лет, о том, какую новую систему для деплоя PHP-кода мы разработали и внедрили в production, а также проведу обзор решений для масштабного деплоя кода на PHP и анализ их производительности.
План доклада:
— Наша старая система деплоя, достоинства и недостатки.
— Существующие решения:
* "svn up" / "git pull".
* rsync.
* phar, hhbc (HHVM-specific), "loop".
* rsync + 2 директории + realpath_root (Rasmus-style).
— Требования для новой системы деплоя.
* быстрый деплой на стейджинг (5-10 секунд на 50 серверов).
* возможность атомарно патчить несколько файлов и быстро их выкладывать (10 секунд на весь кластер).
* совместимость с docker.
* поддержка «долгоиграющих» CLI-скриптов (несколько часов).
* низкое потребление ресурсов на принимающей стороне.
* отсутствие необходимости сбрасывать opcache.
* высокая скорость деплоя на продакшн (1-2 минуты на 1500 серверов).
— MDK — multiversion deployment kit.
— Анализ применимости и производительности способов деплоя.
— Выводы.
Реализация восстановления после аварий / Сергей Бурладян (Avito)Ontico
Базы данных PostgreSQL занимают одно из центральных мест в Авито. Они являются разделяемой платформой, вокруг которой построено множество дополнительных сервисов. Одной из основных задач при их администрировании является задача восстановления после аварий как самих баз, так и связанной с ними инфраструктуры.
В своём докладе я постараюсь рассказать про:
+ общую схему связей баз данных между собой и с другими компонентами;
+ точки отказа и виды аварий, затрагиваемые связи;
+ бинарную репликацию и архив;
+ логическую репликацию, pgq, londiste, UNDO (REDO), пересоздание репки;
+ скрипт и процедуру переключения при аварии;
+ планы: развитие «восстановлений» по всем связям, автоматика на основе системы zookeeper (etcd и т.п.).
Структуры данных в разделяемой памяти,
про алгоритмы замещения страниц в буфере и блокировки, которые используются на разных уровнях взаимодействия.
А также средства мониторинга памяти, уже существующие и те, которые ещё только в процессе разработки.
Техносфера Mail.ru Group, МГУ им. М.В. Ломоносова.
Курс "Методы распределенной обработки больших объемов данных в Hadoop"
Видео лекции курса https://www.youtube.com/playlist?list=PLrCZzMib1e9rPxMIgPri9YnOpvyDAL9HD
Франкенштейнизация Voldemort или key-value данные в Одноклассниках. Роман Ан...odnoklassniki.ru
A talk from jokerconf.com conference.
"Frankenstaining of Voldemort" or "key-value storage evolution at Odnoklassniki"
В докладе освещены Java-технологии хранения данных, обслуживающие десятки миллионов пользователей и работающие на сотнях серверов.
На примере социальной сети "Одноклассники" мы рассмотрим эволюцию хранилищ данных с высоким уровнем конкурентного доступа и с соблюдением требования постоянной доступности.
Мы разберём сильные и слабые стороны каждого из решений, начиная от технологии master-slave репликации на основе Berkeley DB и заканчивая симбиозом распределенных хранилищ Voldemort и Cassandra.
Модным ныне словом «виртуализация» сейчас называют различные обёртки аппаратной виртуализации, однако этот термин намного старше и более всеохватывающий. На уровне ознакомления с технологией мы поговорим о виртуализации ресурсов в кластере и на примере pacemaker.
"Кластеры баз данных: делаем сложные вещи просто" Андрей Тихонов (Avito)AvitoTech
Порой в процессе развития высоконагруженного проекта наступает момент, когда необходимо масштабирование. Возможно, ваш проект впервые упёрся в производительность железа (и таким образом перешёл в разряд высоконагруженных); возможно, это уже не первое масштабирование — не важно. Какие же проблемы могут возникнуть?
Во-первых, если вы увеличиваете количество бэкенд-серверов, и, соответственно, количество рабочих процессов, то с ростом количества одновременных клиентских подключений вырастают и накладные расходы на базах данных.
Во-вторых, достаточно быстро может кончиться ресурс in-memory баз данных. Потребуется создать (либо увеличить) кластер, а это каждый раз влечёт за собой необходимость модифицировать логику приложения.
В-третьих, чем больше серверов, тем больше вероятность, что один из них выйдет из строя. Поэтому неплохо задуматься о том, как обеспечить отказоустойчивость, а это, опять же, потребует модифицировать логику приложения.
В этом докладе я расскажу, как и какими инструментами можно легко решить все вышеперечисленные проблемы: уменьшить накладные расходы от большого количества подключений к базам данных, создать/модифицировать кластер БД прозрачно для приложения, а также прозрачно добавить устойчивость к падениям серверов БД.
Тюним память и сетевой стек в Linux: история перевода высоконагруженных серве...Ontico
В процессе обновления высоконагруженных серверов раздачи видео (40Gbit/s с каждого сервера) со старого OpenSuSE 10.2 на новый CentOS 7 (время между релизами — 7 лет) мы столкнулись с рядом проблем — необъяснимый свопинг и запуски OOM killer, неравномерное распределение нагрузки по ядрам, обрывы соединений, скачки системной нагрузки на CPU.
В докладе будет рассказано о том, как мы боролись с этими проблемами и какие технологии для этого использовали.
Очереди и блокировки. Теория и практика / Александр Календарев (ad1.ru)Ontico
В докладе будут описаны паттерны использования очередей и блокировок, рассказано, зачем нужны очереди и блокировки, показано на примерах использования в разных архитектурах.
Описано применение синхронных и асинхронных очередей, как построить очереди с приоритетами.
Будет сравнение разных серверов очередей: Redis, Tarantool, RabbitMQ, ZMQ, Kafka, Zookeeper, MemcacheQ и др., их преимущества и недостатки, где и какой брокер лучше использовать.
5 способов деплоя PHP-кода в условиях хайлоада / Юрий Насретдинов (Badoo)Ontico
В дата-центрах нашей компании несколько тысяч серверов, и примерно на половине из них нужно выкладывать PHP-код 2 раза в день. Помимо раскладки на production также не стоит забывать о том, что код нужен на стейджинге, и в стейджинг-кластер у нас входит около 50 машин, код на которых обновляется раз в несколько минут. Также есть «хотфиксы» — небольшие (1-5) наборы файлов, которые выкладываются во внеочередном порядке на все или на выделенную часть серверов, чтобы устранить существующие проблемы на продакшне, не дожидаясь полной выкладки.
В этом докладе я расскажу о том, как мы деплоились в течение 10 лет, о том, какую новую систему для деплоя PHP-кода мы разработали и внедрили в production, а также проведу обзор решений для масштабного деплоя кода на PHP и анализ их производительности.
План доклада:
— Наша старая система деплоя, достоинства и недостатки.
— Существующие решения:
* "svn up" / "git pull".
* rsync.
* phar, hhbc (HHVM-specific), "loop".
* rsync + 2 директории + realpath_root (Rasmus-style).
— Требования для новой системы деплоя.
* быстрый деплой на стейджинг (5-10 секунд на 50 серверов).
* возможность атомарно патчить несколько файлов и быстро их выкладывать (10 секунд на весь кластер).
* совместимость с docker.
* поддержка «долгоиграющих» CLI-скриптов (несколько часов).
* низкое потребление ресурсов на принимающей стороне.
* отсутствие необходимости сбрасывать opcache.
* высокая скорость деплоя на продакшн (1-2 минуты на 1500 серверов).
— MDK — multiversion deployment kit.
— Анализ применимости и производительности способов деплоя.
— Выводы.
Реализация восстановления после аварий / Сергей Бурладян (Avito)Ontico
Базы данных PostgreSQL занимают одно из центральных мест в Авито. Они являются разделяемой платформой, вокруг которой построено множество дополнительных сервисов. Одной из основных задач при их администрировании является задача восстановления после аварий как самих баз, так и связанной с ними инфраструктуры.
В своём докладе я постараюсь рассказать про:
+ общую схему связей баз данных между собой и с другими компонентами;
+ точки отказа и виды аварий, затрагиваемые связи;
+ бинарную репликацию и архив;
+ логическую репликацию, pgq, londiste, UNDO (REDO), пересоздание репки;
+ скрипт и процедуру переключения при аварии;
+ планы: развитие «восстановлений» по всем связям, автоматика на основе системы zookeeper (etcd и т.п.).
Кластеры баз данных делаем сложные вещи просто / Андрей Тихонов (Avito)Ontico
Порой в процессе развития высоконагруженного проекта наступает момент, когда необходимо масштабирование. Возможно, ваш проект впервые упёрся в производительность железа (и таким образом перешёл в разряд высоконагруженных); возможно, это уже не первое масштабирование — не важно. Какие же проблемы могут возникнуть?
Во-первых, если вы увеличиваете количество бэкенд-серверов, и, соответственно, количество рабочих процессов, то с ростом количества одновременных клиентских подключений вырастают и накладные расходы на базах данных.
Во-вторых, достаточно быстро может кончиться ресурс in-memory баз данных. Потребуется создать (либо увеличить) кластер, а это каждый раз влечёт за собой необходимость модифицировать логику приложения.
В-третьих, чем больше серверов, тем больше вероятность, что один из них выйдет из строя. Поэтому неплохо задуматься о том, как обеспечить отказоустойчивость, а это, опять же, потребует модифицировать логику приложения.
В этом докладе я расскажу, как и какими инструментами можно легко решить все вышеперечисленные проблемы: уменьшить накладные расходы от большого количества подключений к базам данных, создать/модифицировать кластер БД прозрачно для приложения, а также прозрачно добавить устойчивость к падениям серверов БД.
План доклада:
- Введение. Методы масштабирования БД: репликация, шардирование.
- Создаём шардированные кластеры in-memory БД прозрачно для приложений: Twemproxy, Redis-proxy, Mcrouter.
- Уменьшаем накладные расходы от большого количества одновременных подключений на PostgreSQL с помощью PgBouncer.
- Создаём шардированный кластер PostgreSQL с помощью PL/Proxy.
- Добавляем прозрачную для приложения отказо�
В ногу со временем, или как делать upgrade PostgreSQL / Андрей Сальников (Dat...Ontico
HighLoad++ 2017
Зал «Кейптаун», 7 ноября, 14:00
Тезисы:
http://www.highload.ru/2017/abstracts/3082.html
Любое обновление чего-либо в продакшне - это проблема для администраторов, да и для всей компании в общем. И это особенная проблема, когда необходимо обновлять версию базы данных, и самый пик проблематичности, когда эта база - основное место хранения всех критически важных данных для проекта.
...
Технопарк Mail.ru Group, МГТУ им. Н.Э. Баумана. Курс "Базы данных".
Лекция №9 "Безопасность баз данных". Лектор - Павел Щербинин.
Открывается лекция рассказом о резервном копировании (о логических и физических резервных копиях, о выборе данных для копирования). Затем определяется терминология для обсуждения дальнейших вопросов. После этого рассматриваются основы учётных записей: таблицы доступа, привилегии, виды записей. Обсуждаются SQL-injection, список смежных вершин (Adjacency Set), вложенное множество (Nested Set), материализованный путь (Materialized Path) и комбинированный подход.
Видео лекции курса https://www.youtube.com/playlist?list=PLrCZzMib1e9obOz5K695ugYuiOOCBciEi
Максим Трегубов, CUSTIS. Миграция данных из Oracle в Postgres. Доклад о том, как мы для одного из заказчиков тестировали переход с СУБД Oracle на Postgres. Расскажем о выборе инструмента миграции данных, настройке тестовой среды и о полученных результатах. Также немного затронем модную тему DevOps и покажем роль Ansible в миграции данных.
Open Source SQL-базы данных вступили в эру миллионов запросов в секунду / Фед...Ontico
Широко распространено мнение, что SQL СУБД обречены быть медлительными и неповоротливыми, поскольку несут груз совместимости с предыдущими версиями. Это расхожее мнение широко эксплуатируется маркетингом NoSQL СУБД. Однако, это не всегда действительно так.
Разработка в Open Source сообществе позволяет продукту развиваться достаточно гибко, чтобы отвечать требованиям времени. В MySQL и PostgreSQL – самых популярных Open Source СУБД – недавно были проведены оптимизации для работы на больших серверах, что позволило им выполнять более миллиона SQL-запросов в секунду на одном экземпляре БД.
В данном докладе будут рассмотрены конкретные оптимизации, которые позволили добиться таких результатов, которые раньше могли бы показаться фантастическими. И можно сказать, что Open Source СУБД вошли в эру миллионов запросов в секунду.
SECON'2017, LAZADA Effartlrss Shopping, Как мы тестируем?SECON
Тестирование заказов в ecommerce международного масштаба/ Order Lifecycle - Жизненный цикл заказа vs QA / Lazada. Азиатская кухня ecommerce тестирования.
The document provides an overview of Go as a programming language and its use for building servers. Some key points covered include:
- Go encourages a certain programming style with features like error handling, concurrency, and static typing.
- Utilities for working with Go like go get, gofmt, golint, go vet, and go test are discussed.
- Examples of using Go for building chat servers, distributed systems, and profiling/monitoring Go applications are provided.
- Common errors when programming in Go like data races, channel sends to closed channels, variable reuse, and WaitGroup reuse are mentioned.
The document serves as an introduction to Go and outlines some of its features and common patterns for
SECON'2017, Макарычев Костантин, Использование Spark для машинного обученияSECON
This document discusses machine learning in Apache Spark. It describes how Spark can be used for large-scale machine learning tasks through libraries like MLlib. It provides an example machine learning pipeline that preprocesses text data using tokenization and hashing, trains a logistic regression model, and saves the model for later use. The document also discusses serving machine learning models and different approaches for deploying Spark and machine learning applications in production.
2. dataegret.com
Введение
• Что такое репликация и зачем.
• Какая бывает репликация.
• Как устроена потоковая репликация в PostgreSQL.
Настройка
• Настройка потоковой репликации.
• Проверка результата.
• Особенности эксплуатации.
02
01
6. Логическая репликация01
dataegret.com
Плюсы:
● Работает между разными версиями и архитектурами.
● Позволяет реплицировать отдельные наборы таблиц.
Минусы:
● Сложность в реализации синхронной репликации.
● Утилизация CPU (триггеры, преобразование текста, ...).
Примеры:
● Slony, Londiste (Skytools), Bucardo, Pglogical.
7. Физическая репликация01
dataegret.com
Плюсы:
● Небольшие накладные расходы на использование ресурсов.
● Легкость установки и обслуживания.
Минусы:
● Запасные узлы доступны только для чтения.
● Не работает между разными версиями и архитектурами.
● Не умеет реплицировать наборы таблиц.
8. REDO журнал01
dataegret.com
Необходимость подтверждать все изменения (Durability в ACID).
Все (почти) изменения записываются в REDO журнал.
REDO журнал это история «последних» изменений.
REDO журнал используется:
● При аварийном восстановлении;
● При резервном копировании;
● При репликации.
9. REDO журнал в PostgreSQL01
dataegret.com
В PostgreSQL, REDO журнал называется Write Ahead Log (WAL).
WAL гарантирует что информация об изменениях будет
зафиксирована ДО реальных изменений.
Как это работает:
● LSN (log sequence number) – положение записи внутри WAL;
● Страницы маркируются LSN;
● Перед записью страницы на диск, проверяем что LSN уже
записан в журнал.
11. Startup процесс01
dataegret.com
Главный компонент который запускает СУБД.
Запускается восстановление по WAL журналу.
Чтение конфигурации и определение источника WAL.
REDO цикл:
● Чтение WAL из pg_xlog/ или WAL архива;
● Установка соединения с upstream.
12. WAL Receiver процесс01
dataegret.com
WAL receiver:
● Определение с какого места начать прием WAL;
● Подключение к мастеру и отправка LSN отметки;
● Принимает WAL и записывает на диск;
● Обновляет особую переменную в shared memory;
● Отправляет статистику на мастер.
Startup процесс использует особую переменную чтобы
воспроизвести WAL до этого места.
13. WAL Sender процесс01
dataegret.com
Для каждого клиента, создается отдельный backend-процесс.
WAL sender это тоже backend.
WAL sender запускает репликацию.
Отправляет WAL журнал клиенту.
Или спит если нет новых журналов.
14. Упрощенный порядок работы01
dataegret.com
Мастер Реплика
Запуск WAL sender и получение позиции
Проверка наличия журнала
Отправка журнала
Обновление статистики
Проверка источника XLOG
Запуск WAL receiver
Вычисление стартовой позиции
Подключение к мастеру, отправка
позиции
Запись журнала на диск
Обновление «отметки»
Отправка статистики
Воспроизведение журнала
Начальная фаза
Цикл репликации
20. Настройка мастера02
dataegret.com
Отдельный пользователь для репликации (psql или createuser).
● CREATE ROLE replica WITH LOGIN REPLICATION PASSWORD '123';
Правка postgresql.conf.
Правка pg_hba.conf.
Создание слота репликации (необязательно).
31. Проверка результата02
dataegret.com
Наличие процессов WAL sender и WAL receiver.
master $ ps aux |grep -i wal
postgres: wal sender process postgres [10.1.0.99] streaming 4/EA000060
standby $ ps aux |grep -i wal
postgres: wal receiver process streaming 4/EA000060
32. Проверка результата02
dataegret.com
Проверка системного журнала.
LOG: database system was interrupted; last known up at 2017-02-10 12:28:54
LOG: entering standby mode
LOG: redo starts at 4/E9000028
LOG: consistent recovery state reached at 4/E9000130
LOG: database system is ready to accept read only connections
LOG: started streaming WAL from primary at 4/EA000000 on timeline 1
39. Особенности эксплуатации02
dataegret.com
DDL и autovacuum может аффектить запросы на реплике:
● Конфликты репликации.
● pg_stat_database_conflicts.
● hot_standby_feedback = on.
● max_standby_streaming_delay = ...