公開URL:https://openaccess.thecvf.com/content/CVPR2022/papers/Chen_Self-Supervised_Learning_of_Adversarial_Example_Towards_Good_Generalizations_for_Deepfake_CVPR_2022_paper.pdf
出典:Chen, Liang, et al. "Self-supervised Learning of Adversarial Example: Towards Good Generalizations for Deepfake Detection." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
概要:DeepFakeの検出器をより一般化するための学習手法を提案しており、モデルの学習にフェイクの構成を推定するアプローチを組み込むことで、汎化性能の向上を狙っている。学習とは異なるデータセットでテストを行い、従来手法より精度向上したことから、提案手法が汎化性能向上に貢献していることが示されている。