"In addition to the many data engineering initiatives at Starbucks, we are also working on many interesting data science initatives. The business scenarios involved in our deep learning initatives include (but are not limited to) planogram analysis (layout of our stores for efficient partner and customer flow) to predicting product pairings (e.g. purchase a caramel machiato and perhaps you would like caramel brownie) via the product components using graph convolutional networks. For this session, we will be focusing on how we can run distributed Keras (TensorFlow backend) training to perform image analytics. This will be combined with MLflow to showcase the data science lifecycle and how Databricks + MLflow simplifies it. "