SlideShare a Scribd company logo
Thursday, April 14, 2016
Siphon – Near Real Time Databus Using Kafka
Eric Boyd – CVP Engineering – Microsoft
Nitin Kumar – Principal Eng Manager - Microsoft
Siphon - Near Real Time Databus Using Kafka, Eric Boyd, Nitin Kumar
Linux is a
cancer
Thursday, April 14, 2016
Siphon - Near Real Time Databus Using Kafka, Eric Boyd, Nitin Kumar
Ads Oslo Schedule
Ads Oslo Feature List
Siphon - Near Real Time Databus Using Kafka, Eric Boyd, Nitin Kumar
Bing Ads Execution
• Shipped once every 6
months
• Averaged 3 marketplace
experiments per month
• Big bets on marketplace
features that didn’t work.
• Focused teams on 6 tracks with
independent metrics.
• Pushed teams to ship as quickly as they
could, focusing only on moving their
metric.
• Built/borrowed infrastructure to enable
much more rapid experimentation.
• Over 3 years got to a rate of >1000
experiments a month
Profitability!!
Eric joins
MSFT
What drove the turnaround?
• Focus on small teams with clear metrics each team was driving.
• Pushing each team to experiment and iterate as fast as possible. Data
alone determines what gets shipped.
• Iterated on key metrics until we found the ones with the most impact.
• Commitment that we would get 1.5-2% better each month, and ship a
package of experimentally tested improvements each month.
Relationship with Open Source
• From “Linux is a cancer…”
• To contributing to open source
• Storm with C# - SCP.NET (http://www.nuget.org/packages/Microsoft.SCP.Net.SDK/)
• Spark with C# - Mobius (https://github.com/Microsoft/Mobius)
• Kafka with C# - C# Client for Kafka (https://github.com/Microsoft/Kafkanet)
• BOND (https://github.com/Microsoft/bond)
• Across MSFT
• C#
• VSCode
• Hyper-V drivers for Linux
• https://github.com/Microsoft/ with 18 pages of repositories!
Microsoft Big Data History
• Massive batch oriented systems
• Hundreds of thousands of machines
• Exabytes of storage
• SQL-like language with C# extensions
Moving to streaming
Data Bus
Devices Services
Streaming
Processing
Batch
Processing
Applications
Scalable pub/sub for NRT data streams
Interactive analytics
Vision
• A Databus for all Near Real Time (NRT) data in an organization.
• Quick and Easy Publication, Discovery and Subscription of NRT
dataset.
• Compatibility with various Stream Processing systems like
Storm, Spark, Splunk.
Siphon Adoption
15 months since launch
Excel Word Outlook
Windows 10
Usage
Bing Ads Campaign perf
Bing Live site telemetry
Cortana
Office 365
0
10
20
30
40
50
60
70
80
Throughput(inGBps)
Siphon Data Volume (Ingress and Egress)
Volume published (GBps) Volume subscribed (GBps) Total Volume (GBps)
0
2
4
6
8
10
12
14
16
18
Throughput(eventspersec)Millions
Siphon Events per second (Ingress and Egress)
EPS In Eps Out Total EPS
1.3 million
EVENTS PER SECOND INGRESS AT PEAK
~1 trillion
EVENTS PER DAY PROCESSED AT PEAK
3.5 petabytes
PROCESSED PER DAY
100 thousand
UNIQUE DEVICES AND MACHINES
1,300
PRODUCTION KAFKA BROKERS
Scale: Kafka at Microsoft (Ads, Bing, Office)
Kafka Brokers 1300+ across 5 Datacenters
Operating System Windows Server 2012 R2
Hardware Spec 12 Cores, 32 GB RAM, 4x2 TB HDD (JBOD), 10 GB Network
Incoming Events 1.3 million per sec, (112 Billion per day, 500 TB per day)
Outgoing Events 5 million per sec, (~1 Trillion per day, 3.5 PB per day)
Kafka Topics/Partitions 50+/5000+
Kafka version 0.8.1.1 (3 way replication)
Siphon Architecture
Asia DC
Zookeeper Canary
Kafka
Collector
Agent
Services Data Pull (Agent)
Services Data Push
Device Proxy Services
Consumer
API (Push/
Pull)
Europe DC
Zookeeper Canary
Kafka
US DC
Zookeeper Canary
Kafka
Streaming
Batch
Audit Trail
Open Source
Microsoft Internal
Siphon
Multiple sources and schemas
Siphon
Bond
Schema
PartA
Main
Header
MessageId
AuditId
TimeStamp
PartB
Extended
Header
Key-Value[]
PartC
Payload
CSV
XML
JSON
JSON
XML
CSV
Siphon
Bond
Schema
Bond (https://github.com/Microsoft/bond)
 Cross platform framework for working with schematized data.
 Cross language (de) serialization.
 Similar to Protobuf, Thrift and AVRO.
Collector – Data Ingestion (Producer)
• Http(s) Server
• Restful API with SSL support.
• Abstraction from Kafka
internals (Partition, Kafka version)
• Throttling, QPS Monitoring
• PII scrubbing
• Load balancing/failover to multiple DCs
• Supported for both Windows and Linux
servers.
Device Proxy Services
Collector
Kafka Brokers
Broker
Broker
Broker
Broker
P0
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
Collector
Collector
LoadBalancer
Services Data Push
Agent
Services Data Pull (Agent)
Open Source
Microsoft Internal
Siphon
URL : http://localhost/produce/<version>?topic=<toipic>
Method : POST
Pull & Push Consumers
Virtual Network A
HLC
Pull
Kafka Brokers
Broker
Broker
Broker
Broker
P0
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
P1
Collector
Collector
RESTAPI
Virtual
Network B
Pull
• RESTful API with SSL support
• Works for out of network consumers
• Supports metadata and data operation
• Implement Simple consumer APIs
• Spark streaming receiver for Kafka REST
Push
• Configurable push to destinations like HDFS,
Cosmos, Kafka.
• Utilizes KafkaNet - .NET High Level Consumer
(https://github.com/Microsoft/Kafkanet)
High Level
Consumer
Monitoring using Canary
Device Proxy Services
Collector
Kafka Brokers
Broker
Broker
Broker
Broker
P0
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
Collector
Collector
LoadBalancer
Services Data Push
Agent
Services Data Pull (Agent)
Synthetic
message
Audit Trail
Canary - https://github.com/Microsoft/Availability-Monitor-for-Kafka
High Level
Consumer
Device Proxy Services
Collector
Kafka Brokers
Broker
Broker
Broker
Broker
P0
P1
P2
P3
P4
P5
P6
P7
P8
P9
P10
P11
Collector
Collector
LoadBalancer
Services Data Push
Agent
Services Data Pull (Agent)
Audit Trail
Sampled vs Full
Auditing support
Data completeness – Audit Trail
Production Experience – Telemetry Charts
• Monitoring using ELK
• E2E Latency
• Data Completeness
• Processing Lag
• EPS breakdown by data
center.
Key Takeaways
• Scale out with Kafka (50K -> 1M -> multi-million Events Per sec)
• Ability to build tunable Auditing/Monitoring
• Producer/Consumer Restful API provides a nice abstraction
• Config driven Pub/Sub system
Ad

More Related Content

What's hot (20)

카프카(kafka) 성능 테스트 환경 구축 (JMeter, ELK)
카프카(kafka) 성능 테스트 환경 구축 (JMeter, ELK)카프카(kafka) 성능 테스트 환경 구축 (JMeter, ELK)
카프카(kafka) 성능 테스트 환경 구축 (JMeter, ELK)
Hyunmin Lee
 
Apache Kafka - Yüksek Performanslı Dağıtık Mesajlaşma Sistemi - Türkçe
Apache Kafka - Yüksek Performanslı Dağıtık Mesajlaşma Sistemi - TürkçeApache Kafka - Yüksek Performanslı Dağıtık Mesajlaşma Sistemi - Türkçe
Apache Kafka - Yüksek Performanslı Dağıtık Mesajlaşma Sistemi - Türkçe
Emre Akış
 
스사모 테크톡 - Apache Flink 둘러보기
스사모 테크톡 - Apache Flink 둘러보기스사모 테크톡 - Apache Flink 둘러보기
스사모 테크톡 - Apache Flink 둘러보기
SangWoo Kim
 
Ai platform at scale
Ai platform at scaleAi platform at scale
Ai platform at scale
Henry Saputra
 
Unified Stream and Batch Processing with Apache Flink
Unified Stream and Batch Processing with Apache FlinkUnified Stream and Batch Processing with Apache Flink
Unified Stream and Batch Processing with Apache Flink
DataWorks Summit/Hadoop Summit
 
Apache spark-the-definitive-guide-excerpts-r1
Apache spark-the-definitive-guide-excerpts-r1Apache spark-the-definitive-guide-excerpts-r1
Apache spark-the-definitive-guide-excerpts-r1
AjayRawat971036
 
Apache Kafka - Martin Podval
Apache Kafka - Martin PodvalApache Kafka - Martin Podval
Apache Kafka - Martin Podval
Martin Podval
 
Delight: An Improved Apache Spark UI, Free, and Cross-Platform
Delight: An Improved Apache Spark UI, Free, and Cross-PlatformDelight: An Improved Apache Spark UI, Free, and Cross-Platform
Delight: An Improved Apache Spark UI, Free, and Cross-Platform
Databricks
 
Schemas Beyond The Edge
Schemas Beyond The EdgeSchemas Beyond The Edge
Schemas Beyond The Edge
confluent
 
Monitoring AI with AI
Monitoring AI with AIMonitoring AI with AI
Monitoring AI with AI
Stepan Pushkarev
 
The delta architecture
The delta architectureThe delta architecture
The delta architecture
Prakash Chockalingam
 
Apache Pulsar Overview
Apache Pulsar OverviewApache Pulsar Overview
Apache Pulsar Overview
Streamlio
 
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Databricks
 
Pinot: Realtime OLAP for 530 Million Users - Sigmod 2018
Pinot: Realtime OLAP for 530 Million Users - Sigmod 2018Pinot: Realtime OLAP for 530 Million Users - Sigmod 2018
Pinot: Realtime OLAP for 530 Million Users - Sigmod 2018
Seunghyun Lee
 
Advanced Flink Training - Design patterns for streaming applications
Advanced Flink Training - Design patterns for streaming applicationsAdvanced Flink Training - Design patterns for streaming applications
Advanced Flink Training - Design patterns for streaming applications
Aljoscha Krettek
 
Kafka presentation
Kafka presentationKafka presentation
Kafka presentation
Mohammed Fazuluddin
 
Modern C++
Modern C++Modern C++
Modern C++
Michael Clark
 
Dr. Elephant for Monitoring and Tuning Apache Spark Jobs on Hadoop with Carl ...
Dr. Elephant for Monitoring and Tuning Apache Spark Jobs on Hadoop with Carl ...Dr. Elephant for Monitoring and Tuning Apache Spark Jobs on Hadoop with Carl ...
Dr. Elephant for Monitoring and Tuning Apache Spark Jobs on Hadoop with Carl ...
Databricks
 
Apache Spark Fundamentals
Apache Spark FundamentalsApache Spark Fundamentals
Apache Spark Fundamentals
Zahra Eskandari
 
Introduction to OpenRefine
Introduction to OpenRefineIntroduction to OpenRefine
Introduction to OpenRefine
Heather Myers
 
카프카(kafka) 성능 테스트 환경 구축 (JMeter, ELK)
카프카(kafka) 성능 테스트 환경 구축 (JMeter, ELK)카프카(kafka) 성능 테스트 환경 구축 (JMeter, ELK)
카프카(kafka) 성능 테스트 환경 구축 (JMeter, ELK)
Hyunmin Lee
 
Apache Kafka - Yüksek Performanslı Dağıtık Mesajlaşma Sistemi - Türkçe
Apache Kafka - Yüksek Performanslı Dağıtık Mesajlaşma Sistemi - TürkçeApache Kafka - Yüksek Performanslı Dağıtık Mesajlaşma Sistemi - Türkçe
Apache Kafka - Yüksek Performanslı Dağıtık Mesajlaşma Sistemi - Türkçe
Emre Akış
 
스사모 테크톡 - Apache Flink 둘러보기
스사모 테크톡 - Apache Flink 둘러보기스사모 테크톡 - Apache Flink 둘러보기
스사모 테크톡 - Apache Flink 둘러보기
SangWoo Kim
 
Ai platform at scale
Ai platform at scaleAi platform at scale
Ai platform at scale
Henry Saputra
 
Apache spark-the-definitive-guide-excerpts-r1
Apache spark-the-definitive-guide-excerpts-r1Apache spark-the-definitive-guide-excerpts-r1
Apache spark-the-definitive-guide-excerpts-r1
AjayRawat971036
 
Apache Kafka - Martin Podval
Apache Kafka - Martin PodvalApache Kafka - Martin Podval
Apache Kafka - Martin Podval
Martin Podval
 
Delight: An Improved Apache Spark UI, Free, and Cross-Platform
Delight: An Improved Apache Spark UI, Free, and Cross-PlatformDelight: An Improved Apache Spark UI, Free, and Cross-Platform
Delight: An Improved Apache Spark UI, Free, and Cross-Platform
Databricks
 
Schemas Beyond The Edge
Schemas Beyond The EdgeSchemas Beyond The Edge
Schemas Beyond The Edge
confluent
 
Apache Pulsar Overview
Apache Pulsar OverviewApache Pulsar Overview
Apache Pulsar Overview
Streamlio
 
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Building Data Product Based on Apache Spark at Airbnb with Jingwei Lu and Liy...
Databricks
 
Pinot: Realtime OLAP for 530 Million Users - Sigmod 2018
Pinot: Realtime OLAP for 530 Million Users - Sigmod 2018Pinot: Realtime OLAP for 530 Million Users - Sigmod 2018
Pinot: Realtime OLAP for 530 Million Users - Sigmod 2018
Seunghyun Lee
 
Advanced Flink Training - Design patterns for streaming applications
Advanced Flink Training - Design patterns for streaming applicationsAdvanced Flink Training - Design patterns for streaming applications
Advanced Flink Training - Design patterns for streaming applications
Aljoscha Krettek
 
Dr. Elephant for Monitoring and Tuning Apache Spark Jobs on Hadoop with Carl ...
Dr. Elephant for Monitoring and Tuning Apache Spark Jobs on Hadoop with Carl ...Dr. Elephant for Monitoring and Tuning Apache Spark Jobs on Hadoop with Carl ...
Dr. Elephant for Monitoring and Tuning Apache Spark Jobs on Hadoop with Carl ...
Databricks
 
Apache Spark Fundamentals
Apache Spark FundamentalsApache Spark Fundamentals
Apache Spark Fundamentals
Zahra Eskandari
 
Introduction to OpenRefine
Introduction to OpenRefineIntroduction to OpenRefine
Introduction to OpenRefine
Heather Myers
 

Viewers also liked (20)

Stream Processing with Kafka in Uber, Danny Yuan
Stream Processing with Kafka in Uber, Danny Yuan Stream Processing with Kafka in Uber, Danny Yuan
Stream Processing with Kafka in Uber, Danny Yuan
confluent
 
The Rise of Real Time
The Rise of Real TimeThe Rise of Real Time
The Rise of Real Time
confluent
 
Kafka + Uber- The World’s Realtime Transit Infrastructure, Aaron Schildkrout
Kafka + Uber- The World’s Realtime Transit Infrastructure, Aaron SchildkroutKafka + Uber- The World’s Realtime Transit Infrastructure, Aaron Schildkrout
Kafka + Uber- The World’s Realtime Transit Infrastructure, Aaron Schildkrout
confluent
 
Building Event-Driven Systems with Apache Kafka
Building Event-Driven Systems with Apache KafkaBuilding Event-Driven Systems with Apache Kafka
Building Event-Driven Systems with Apache Kafka
Brian Ritchie
 
Microservices in the Apache Kafka Ecosystem
Microservices in the Apache Kafka EcosystemMicroservices in the Apache Kafka Ecosystem
Microservices in the Apache Kafka Ecosystem
confluent
 
Real-Time Analytics Visualized w/ Kafka + Streamliner + MemSQL + ZoomData, An...
Real-Time Analytics Visualized w/ Kafka + Streamliner + MemSQL + ZoomData, An...Real-Time Analytics Visualized w/ Kafka + Streamliner + MemSQL + ZoomData, An...
Real-Time Analytics Visualized w/ Kafka + Streamliner + MemSQL + ZoomData, An...
confluent
 
Building an Event-oriented Data Platform with Kafka, Eric Sammer
Building an Event-oriented Data Platform with Kafka, Eric Sammer Building an Event-oriented Data Platform with Kafka, Eric Sammer
Building an Event-oriented Data Platform with Kafka, Eric Sammer
confluent
 
Deploying Kafka at Dropbox, Mark Smith, Sean Fellows
Deploying Kafka at Dropbox, Mark Smith, Sean FellowsDeploying Kafka at Dropbox, Mark Smith, Sean Fellows
Deploying Kafka at Dropbox, Mark Smith, Sean Fellows
confluent
 
Introducing Kafka Streams: Large-scale Stream Processing with Kafka, Neha Nar...
Introducing Kafka Streams: Large-scale Stream Processing with Kafka, Neha Nar...Introducing Kafka Streams: Large-scale Stream Processing with Kafka, Neha Nar...
Introducing Kafka Streams: Large-scale Stream Processing with Kafka, Neha Nar...
confluent
 
Fundamentals of Stream Processing with Apache Beam, Tyler Akidau, Frances Perry
Fundamentals of Stream Processing with Apache Beam, Tyler Akidau, Frances Perry Fundamentals of Stream Processing with Apache Beam, Tyler Akidau, Frances Perry
Fundamentals of Stream Processing with Apache Beam, Tyler Akidau, Frances Perry
confluent
 
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache KafkaStrata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
confluent
 
Reducing Microservice Complexity with Kafka and Reactive Streams
Reducing Microservice Complexity with Kafka and Reactive StreamsReducing Microservice Complexity with Kafka and Reactive Streams
Reducing Microservice Complexity with Kafka and Reactive Streams
jimriecken
 
The Data Dichotomy- Rethinking the Way We Treat Data and Services
The Data Dichotomy- Rethinking the Way We Treat Data and ServicesThe Data Dichotomy- Rethinking the Way We Treat Data and Services
The Data Dichotomy- Rethinking the Way We Treat Data and Services
confluent
 
Monitoring Apache Kafka with Confluent Control Center
Monitoring Apache Kafka with Confluent Control Center   Monitoring Apache Kafka with Confluent Control Center
Monitoring Apache Kafka with Confluent Control Center
confluent
 
Distributed stream processing with Apache Kafka
Distributed stream processing with Apache KafkaDistributed stream processing with Apache Kafka
Distributed stream processing with Apache Kafka
confluent
 
What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2 What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2
confluent
 
The Enterprise Service Bus is Dead! Long live the Enterprise Service Bus, Rim...
The Enterprise Service Bus is Dead! Long live the Enterprise Service Bus, Rim...The Enterprise Service Bus is Dead! Long live the Enterprise Service Bus, Rim...
The Enterprise Service Bus is Dead! Long live the Enterprise Service Bus, Rim...
confluent
 
Kafka At Scale in the Cloud
Kafka At Scale in the CloudKafka At Scale in the Cloud
Kafka At Scale in the Cloud
confluent
 
Power of the Log: LSM & Append Only Data Structures
Power of the Log: LSM & Append Only Data StructuresPower of the Log: LSM & Append Only Data Structures
Power of the Log: LSM & Append Only Data Structures
confluent
 
Seattle kafka meetup nov 2015 published siphon
Seattle kafka meetup nov 2015 published  siphonSeattle kafka meetup nov 2015 published  siphon
Seattle kafka meetup nov 2015 published siphon
Nitin Kumar
 
Stream Processing with Kafka in Uber, Danny Yuan
Stream Processing with Kafka in Uber, Danny Yuan Stream Processing with Kafka in Uber, Danny Yuan
Stream Processing with Kafka in Uber, Danny Yuan
confluent
 
The Rise of Real Time
The Rise of Real TimeThe Rise of Real Time
The Rise of Real Time
confluent
 
Kafka + Uber- The World’s Realtime Transit Infrastructure, Aaron Schildkrout
Kafka + Uber- The World’s Realtime Transit Infrastructure, Aaron SchildkroutKafka + Uber- The World’s Realtime Transit Infrastructure, Aaron Schildkrout
Kafka + Uber- The World’s Realtime Transit Infrastructure, Aaron Schildkrout
confluent
 
Building Event-Driven Systems with Apache Kafka
Building Event-Driven Systems with Apache KafkaBuilding Event-Driven Systems with Apache Kafka
Building Event-Driven Systems with Apache Kafka
Brian Ritchie
 
Microservices in the Apache Kafka Ecosystem
Microservices in the Apache Kafka EcosystemMicroservices in the Apache Kafka Ecosystem
Microservices in the Apache Kafka Ecosystem
confluent
 
Real-Time Analytics Visualized w/ Kafka + Streamliner + MemSQL + ZoomData, An...
Real-Time Analytics Visualized w/ Kafka + Streamliner + MemSQL + ZoomData, An...Real-Time Analytics Visualized w/ Kafka + Streamliner + MemSQL + ZoomData, An...
Real-Time Analytics Visualized w/ Kafka + Streamliner + MemSQL + ZoomData, An...
confluent
 
Building an Event-oriented Data Platform with Kafka, Eric Sammer
Building an Event-oriented Data Platform with Kafka, Eric Sammer Building an Event-oriented Data Platform with Kafka, Eric Sammer
Building an Event-oriented Data Platform with Kafka, Eric Sammer
confluent
 
Deploying Kafka at Dropbox, Mark Smith, Sean Fellows
Deploying Kafka at Dropbox, Mark Smith, Sean FellowsDeploying Kafka at Dropbox, Mark Smith, Sean Fellows
Deploying Kafka at Dropbox, Mark Smith, Sean Fellows
confluent
 
Introducing Kafka Streams: Large-scale Stream Processing with Kafka, Neha Nar...
Introducing Kafka Streams: Large-scale Stream Processing with Kafka, Neha Nar...Introducing Kafka Streams: Large-scale Stream Processing with Kafka, Neha Nar...
Introducing Kafka Streams: Large-scale Stream Processing with Kafka, Neha Nar...
confluent
 
Fundamentals of Stream Processing with Apache Beam, Tyler Akidau, Frances Perry
Fundamentals of Stream Processing with Apache Beam, Tyler Akidau, Frances Perry Fundamentals of Stream Processing with Apache Beam, Tyler Akidau, Frances Perry
Fundamentals of Stream Processing with Apache Beam, Tyler Akidau, Frances Perry
confluent
 
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache KafkaStrata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
Strata+Hadoop 2017 San Jose: Lessons from a year of supporting Apache Kafka
confluent
 
Reducing Microservice Complexity with Kafka and Reactive Streams
Reducing Microservice Complexity with Kafka and Reactive StreamsReducing Microservice Complexity with Kafka and Reactive Streams
Reducing Microservice Complexity with Kafka and Reactive Streams
jimriecken
 
The Data Dichotomy- Rethinking the Way We Treat Data and Services
The Data Dichotomy- Rethinking the Way We Treat Data and ServicesThe Data Dichotomy- Rethinking the Way We Treat Data and Services
The Data Dichotomy- Rethinking the Way We Treat Data and Services
confluent
 
Monitoring Apache Kafka with Confluent Control Center
Monitoring Apache Kafka with Confluent Control Center   Monitoring Apache Kafka with Confluent Control Center
Monitoring Apache Kafka with Confluent Control Center
confluent
 
Distributed stream processing with Apache Kafka
Distributed stream processing with Apache KafkaDistributed stream processing with Apache Kafka
Distributed stream processing with Apache Kafka
confluent
 
What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2 What's new in Confluent 3.2 and Apache Kafka 0.10.2
What's new in Confluent 3.2 and Apache Kafka 0.10.2
confluent
 
The Enterprise Service Bus is Dead! Long live the Enterprise Service Bus, Rim...
The Enterprise Service Bus is Dead! Long live the Enterprise Service Bus, Rim...The Enterprise Service Bus is Dead! Long live the Enterprise Service Bus, Rim...
The Enterprise Service Bus is Dead! Long live the Enterprise Service Bus, Rim...
confluent
 
Kafka At Scale in the Cloud
Kafka At Scale in the CloudKafka At Scale in the Cloud
Kafka At Scale in the Cloud
confluent
 
Power of the Log: LSM & Append Only Data Structures
Power of the Log: LSM & Append Only Data StructuresPower of the Log: LSM & Append Only Data Structures
Power of the Log: LSM & Append Only Data Structures
confluent
 
Seattle kafka meetup nov 2015 published siphon
Seattle kafka meetup nov 2015 published  siphonSeattle kafka meetup nov 2015 published  siphon
Seattle kafka meetup nov 2015 published siphon
Nitin Kumar
 
Ad

Similar to Siphon - Near Real Time Databus Using Kafka, Eric Boyd, Nitin Kumar (20)

Liveperson DLD 2015
Liveperson DLD 2015 Liveperson DLD 2015
Liveperson DLD 2015
LivePerson
 
Presto @ Treasure Data - Presto Meetup Boston 2015
Presto @ Treasure Data - Presto Meetup Boston 2015Presto @ Treasure Data - Presto Meetup Boston 2015
Presto @ Treasure Data - Presto Meetup Boston 2015
Taro L. Saito
 
DATA SUMMIT 24 Building Real-Time Pipelines With FLaNK
DATA SUMMIT 24  Building Real-Time Pipelines With FLaNKDATA SUMMIT 24  Building Real-Time Pipelines With FLaNK
DATA SUMMIT 24 Building Real-Time Pipelines With FLaNK
Timothy Spann
 
Building a company-wide data pipeline on Apache Kafka - engineering for 150 b...
Building a company-wide data pipeline on Apache Kafka - engineering for 150 b...Building a company-wide data pipeline on Apache Kafka - engineering for 150 b...
Building a company-wide data pipeline on Apache Kafka - engineering for 150 b...
LINE Corporation
 
Using Apache Kafka to Analyze Session Windows
Using Apache Kafka to Analyze Session WindowsUsing Apache Kafka to Analyze Session Windows
Using Apache Kafka to Analyze Session Windows
confluent
 
Spark + AI Summit 2019: Apache Spark Listeners: A Crash Course in Fast, Easy ...
Spark + AI Summit 2019: Apache Spark Listeners: A Crash Course in Fast, Easy ...Spark + AI Summit 2019: Apache Spark Listeners: A Crash Course in Fast, Easy ...
Spark + AI Summit 2019: Apache Spark Listeners: A Crash Course in Fast, Easy ...
Landon Robinson
 
Data Streaming with Apache Kafka & MongoDB - EMEA
Data Streaming with Apache Kafka & MongoDB - EMEAData Streaming with Apache Kafka & MongoDB - EMEA
Data Streaming with Apache Kafka & MongoDB - EMEA
Andrew Morgan
 
Webinar: Data Streaming with Apache Kafka & MongoDB
Webinar: Data Streaming with Apache Kafka & MongoDBWebinar: Data Streaming with Apache Kafka & MongoDB
Webinar: Data Streaming with Apache Kafka & MongoDB
MongoDB
 
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams APIuser Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
confluent
 
Introducing Events and Stream Processing into Nationwide Building Society (Ro...
Introducing Events and Stream Processing into Nationwide Building Society (Ro...Introducing Events and Stream Processing into Nationwide Building Society (Ro...
Introducing Events and Stream Processing into Nationwide Building Society (Ro...
confluent
 
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Maya Lumbroso
 
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Dataconomy Media
 
Apache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Apache Spark Listeners: A Crash Course in Fast, Easy MonitoringApache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Apache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Databricks
 
The Netflix Way to deal with Big Data Problems
The Netflix Way to deal with Big Data ProblemsThe Netflix Way to deal with Big Data Problems
The Netflix Way to deal with Big Data Problems
Monal Daxini
 
Mesoscon 2015
Mesoscon 2015Mesoscon 2015
Mesoscon 2015
Skand Gupta
 
From Monoliths to Microservices - A Journey With Confluent With Gayathri Veal...
From Monoliths to Microservices - A Journey With Confluent With Gayathri Veal...From Monoliths to Microservices - A Journey With Confluent With Gayathri Veal...
From Monoliths to Microservices - A Journey With Confluent With Gayathri Veal...
HostedbyConfluent
 
Streaming in the Wild with Apache Flink
Streaming in the Wild with Apache FlinkStreaming in the Wild with Apache Flink
Streaming in the Wild with Apache Flink
DataWorks Summit/Hadoop Summit
 
Streaming in the Wild with Apache Flink
Streaming in the Wild with Apache FlinkStreaming in the Wild with Apache Flink
Streaming in the Wild with Apache Flink
Kostas Tzoumas
 
Building real time data-driven products
Building real time data-driven productsBuilding real time data-driven products
Building real time data-driven products
Lars Albertsson
 
Observing Intraday Indicators Using Real-Time Tick Data on Apache Superset an...
Observing Intraday Indicators Using Real-Time Tick Data on Apache Superset an...Observing Intraday Indicators Using Real-Time Tick Data on Apache Superset an...
Observing Intraday Indicators Using Real-Time Tick Data on Apache Superset an...
DataWorks Summit
 
Liveperson DLD 2015
Liveperson DLD 2015 Liveperson DLD 2015
Liveperson DLD 2015
LivePerson
 
Presto @ Treasure Data - Presto Meetup Boston 2015
Presto @ Treasure Data - Presto Meetup Boston 2015Presto @ Treasure Data - Presto Meetup Boston 2015
Presto @ Treasure Data - Presto Meetup Boston 2015
Taro L. Saito
 
DATA SUMMIT 24 Building Real-Time Pipelines With FLaNK
DATA SUMMIT 24  Building Real-Time Pipelines With FLaNKDATA SUMMIT 24  Building Real-Time Pipelines With FLaNK
DATA SUMMIT 24 Building Real-Time Pipelines With FLaNK
Timothy Spann
 
Building a company-wide data pipeline on Apache Kafka - engineering for 150 b...
Building a company-wide data pipeline on Apache Kafka - engineering for 150 b...Building a company-wide data pipeline on Apache Kafka - engineering for 150 b...
Building a company-wide data pipeline on Apache Kafka - engineering for 150 b...
LINE Corporation
 
Using Apache Kafka to Analyze Session Windows
Using Apache Kafka to Analyze Session WindowsUsing Apache Kafka to Analyze Session Windows
Using Apache Kafka to Analyze Session Windows
confluent
 
Spark + AI Summit 2019: Apache Spark Listeners: A Crash Course in Fast, Easy ...
Spark + AI Summit 2019: Apache Spark Listeners: A Crash Course in Fast, Easy ...Spark + AI Summit 2019: Apache Spark Listeners: A Crash Course in Fast, Easy ...
Spark + AI Summit 2019: Apache Spark Listeners: A Crash Course in Fast, Easy ...
Landon Robinson
 
Data Streaming with Apache Kafka & MongoDB - EMEA
Data Streaming with Apache Kafka & MongoDB - EMEAData Streaming with Apache Kafka & MongoDB - EMEA
Data Streaming with Apache Kafka & MongoDB - EMEA
Andrew Morgan
 
Webinar: Data Streaming with Apache Kafka & MongoDB
Webinar: Data Streaming with Apache Kafka & MongoDBWebinar: Data Streaming with Apache Kafka & MongoDB
Webinar: Data Streaming with Apache Kafka & MongoDB
MongoDB
 
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams APIuser Behavior Analysis with Session Windows and Apache Kafka's Streams API
user Behavior Analysis with Session Windows and Apache Kafka's Streams API
confluent
 
Introducing Events and Stream Processing into Nationwide Building Society (Ro...
Introducing Events and Stream Processing into Nationwide Building Society (Ro...Introducing Events and Stream Processing into Nationwide Building Society (Ro...
Introducing Events and Stream Processing into Nationwide Building Society (Ro...
confluent
 
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Maya Lumbroso
 
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Ronan Corkery, kdb+ developer at Kx Systems: “Kdb+: How Wall Street Tech can ...
Dataconomy Media
 
Apache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Apache Spark Listeners: A Crash Course in Fast, Easy MonitoringApache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Apache Spark Listeners: A Crash Course in Fast, Easy Monitoring
Databricks
 
The Netflix Way to deal with Big Data Problems
The Netflix Way to deal with Big Data ProblemsThe Netflix Way to deal with Big Data Problems
The Netflix Way to deal with Big Data Problems
Monal Daxini
 
From Monoliths to Microservices - A Journey With Confluent With Gayathri Veal...
From Monoliths to Microservices - A Journey With Confluent With Gayathri Veal...From Monoliths to Microservices - A Journey With Confluent With Gayathri Veal...
From Monoliths to Microservices - A Journey With Confluent With Gayathri Veal...
HostedbyConfluent
 
Streaming in the Wild with Apache Flink
Streaming in the Wild with Apache FlinkStreaming in the Wild with Apache Flink
Streaming in the Wild with Apache Flink
Kostas Tzoumas
 
Building real time data-driven products
Building real time data-driven productsBuilding real time data-driven products
Building real time data-driven products
Lars Albertsson
 
Observing Intraday Indicators Using Real-Time Tick Data on Apache Superset an...
Observing Intraday Indicators Using Real-Time Tick Data on Apache Superset an...Observing Intraday Indicators Using Real-Time Tick Data on Apache Superset an...
Observing Intraday Indicators Using Real-Time Tick Data on Apache Superset an...
DataWorks Summit
 
Ad

More from confluent (20)

Webinar Think Right - Shift Left - 19-03-2025.pptx
Webinar Think Right - Shift Left - 19-03-2025.pptxWebinar Think Right - Shift Left - 19-03-2025.pptx
Webinar Think Right - Shift Left - 19-03-2025.pptx
confluent
 
Migration, backup and restore made easy using Kannika
Migration, backup and restore made easy using KannikaMigration, backup and restore made easy using Kannika
Migration, backup and restore made easy using Kannika
confluent
 
Five Things You Need to Know About Data Streaming in 2025
Five Things You Need to Know About Data Streaming in 2025Five Things You Need to Know About Data Streaming in 2025
Five Things You Need to Know About Data Streaming in 2025
confluent
 
Data in Motion Tour Seoul 2024 - Keynote
Data in Motion Tour Seoul 2024 - KeynoteData in Motion Tour Seoul 2024 - Keynote
Data in Motion Tour Seoul 2024 - Keynote
confluent
 
Data in Motion Tour Seoul 2024 - Roadmap Demo
Data in Motion Tour Seoul 2024  - Roadmap DemoData in Motion Tour Seoul 2024  - Roadmap Demo
Data in Motion Tour Seoul 2024 - Roadmap Demo
confluent
 
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
confluent
 
Confluent per il settore FSI: Accelerare l'Innovazione con il Data Streaming...
Confluent per il settore FSI:  Accelerare l'Innovazione con il Data Streaming...Confluent per il settore FSI:  Accelerare l'Innovazione con il Data Streaming...
Confluent per il settore FSI: Accelerare l'Innovazione con il Data Streaming...
confluent
 
Data in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi ArabiaData in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi Arabia
confluent
 
Build a Real-Time Decision Support Application for Financial Market Traders w...
Build a Real-Time Decision Support Application for Financial Market Traders w...Build a Real-Time Decision Support Application for Financial Market Traders w...
Build a Real-Time Decision Support Application for Financial Market Traders w...
confluent
 
Strumenti e Strategie di Stream Governance con Confluent Platform
Strumenti e Strategie di Stream Governance con Confluent PlatformStrumenti e Strategie di Stream Governance con Confluent Platform
Strumenti e Strategie di Stream Governance con Confluent Platform
confluent
 
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not WeeksCompose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
confluent
 
Building Real-Time Gen AI Applications with SingleStore and Confluent
Building Real-Time Gen AI Applications with SingleStore and ConfluentBuilding Real-Time Gen AI Applications with SingleStore and Confluent
Building Real-Time Gen AI Applications with SingleStore and Confluent
confluent
 
Unlocking value with event-driven architecture by Confluent
Unlocking value with event-driven architecture by ConfluentUnlocking value with event-driven architecture by Confluent
Unlocking value with event-driven architecture by Confluent
confluent
 
Il Data Streaming per un’AI real-time di nuova generazione
Il Data Streaming per un’AI real-time di nuova generazioneIl Data Streaming per un’AI real-time di nuova generazione
Il Data Streaming per un’AI real-time di nuova generazione
confluent
 
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
confluent
 
Break data silos with real-time connectivity using Confluent Cloud Connectors
Break data silos with real-time connectivity using Confluent Cloud ConnectorsBreak data silos with real-time connectivity using Confluent Cloud Connectors
Break data silos with real-time connectivity using Confluent Cloud Connectors
confluent
 
Building API data products on top of your real-time data infrastructure
Building API data products on top of your real-time data infrastructureBuilding API data products on top of your real-time data infrastructure
Building API data products on top of your real-time data infrastructure
confluent
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
confluent
 
Evolving Data Governance for the Real-time Streaming and AI Era
Evolving Data Governance for the Real-time Streaming and AI EraEvolving Data Governance for the Real-time Streaming and AI Era
Evolving Data Governance for the Real-time Streaming and AI Era
confluent
 
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
confluent
 
Webinar Think Right - Shift Left - 19-03-2025.pptx
Webinar Think Right - Shift Left - 19-03-2025.pptxWebinar Think Right - Shift Left - 19-03-2025.pptx
Webinar Think Right - Shift Left - 19-03-2025.pptx
confluent
 
Migration, backup and restore made easy using Kannika
Migration, backup and restore made easy using KannikaMigration, backup and restore made easy using Kannika
Migration, backup and restore made easy using Kannika
confluent
 
Five Things You Need to Know About Data Streaming in 2025
Five Things You Need to Know About Data Streaming in 2025Five Things You Need to Know About Data Streaming in 2025
Five Things You Need to Know About Data Streaming in 2025
confluent
 
Data in Motion Tour Seoul 2024 - Keynote
Data in Motion Tour Seoul 2024 - KeynoteData in Motion Tour Seoul 2024 - Keynote
Data in Motion Tour Seoul 2024 - Keynote
confluent
 
Data in Motion Tour Seoul 2024 - Roadmap Demo
Data in Motion Tour Seoul 2024  - Roadmap DemoData in Motion Tour Seoul 2024  - Roadmap Demo
Data in Motion Tour Seoul 2024 - Roadmap Demo
confluent
 
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
From Stream to Screen: Real-Time Data Streaming to Web Frontends with Conflue...
confluent
 
Confluent per il settore FSI: Accelerare l'Innovazione con il Data Streaming...
Confluent per il settore FSI:  Accelerare l'Innovazione con il Data Streaming...Confluent per il settore FSI:  Accelerare l'Innovazione con il Data Streaming...
Confluent per il settore FSI: Accelerare l'Innovazione con il Data Streaming...
confluent
 
Data in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi ArabiaData in Motion Tour 2024 Riyadh, Saudi Arabia
Data in Motion Tour 2024 Riyadh, Saudi Arabia
confluent
 
Build a Real-Time Decision Support Application for Financial Market Traders w...
Build a Real-Time Decision Support Application for Financial Market Traders w...Build a Real-Time Decision Support Application for Financial Market Traders w...
Build a Real-Time Decision Support Application for Financial Market Traders w...
confluent
 
Strumenti e Strategie di Stream Governance con Confluent Platform
Strumenti e Strategie di Stream Governance con Confluent PlatformStrumenti e Strategie di Stream Governance con Confluent Platform
Strumenti e Strategie di Stream Governance con Confluent Platform
confluent
 
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not WeeksCompose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
Compose Gen-AI Apps With Real-Time Data - In Minutes, Not Weeks
confluent
 
Building Real-Time Gen AI Applications with SingleStore and Confluent
Building Real-Time Gen AI Applications with SingleStore and ConfluentBuilding Real-Time Gen AI Applications with SingleStore and Confluent
Building Real-Time Gen AI Applications with SingleStore and Confluent
confluent
 
Unlocking value with event-driven architecture by Confluent
Unlocking value with event-driven architecture by ConfluentUnlocking value with event-driven architecture by Confluent
Unlocking value with event-driven architecture by Confluent
confluent
 
Il Data Streaming per un’AI real-time di nuova generazione
Il Data Streaming per un’AI real-time di nuova generazioneIl Data Streaming per un’AI real-time di nuova generazione
Il Data Streaming per un’AI real-time di nuova generazione
confluent
 
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
Unleashing the Future: Building a Scalable and Up-to-Date GenAI Chatbot with ...
confluent
 
Break data silos with real-time connectivity using Confluent Cloud Connectors
Break data silos with real-time connectivity using Confluent Cloud ConnectorsBreak data silos with real-time connectivity using Confluent Cloud Connectors
Break data silos with real-time connectivity using Confluent Cloud Connectors
confluent
 
Building API data products on top of your real-time data infrastructure
Building API data products on top of your real-time data infrastructureBuilding API data products on top of your real-time data infrastructure
Building API data products on top of your real-time data infrastructure
confluent
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
confluent
 
Evolving Data Governance for the Real-time Streaming and AI Era
Evolving Data Governance for the Real-time Streaming and AI EraEvolving Data Governance for the Real-time Streaming and AI Era
Evolving Data Governance for the Real-time Streaming and AI Era
confluent
 
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
Catch the Wave: SAP Event-Driven and Data Streaming for the Intelligence Ente...
confluent
 

Recently uploaded (20)

The Gaussian Process Modeling Module in UQLab
The Gaussian Process Modeling Module in UQLabThe Gaussian Process Modeling Module in UQLab
The Gaussian Process Modeling Module in UQLab
Journal of Soft Computing in Civil Engineering
 
New Microsoft PowerPoint Presentation.pdf
New Microsoft PowerPoint Presentation.pdfNew Microsoft PowerPoint Presentation.pdf
New Microsoft PowerPoint Presentation.pdf
mohamedezzat18803
 
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptxExplainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
MahaveerVPandit
 
theory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptxtheory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptx
sanchezvanessa7896
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
ELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdfELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdf
Shiju Jacob
 
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E..."Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
Infopitaara
 
Development of MLR, ANN and ANFIS Models for Estimation of PCUs at Different ...
Development of MLR, ANN and ANFIS Models for Estimation of PCUs at Different ...Development of MLR, ANN and ANFIS Models for Estimation of PCUs at Different ...
Development of MLR, ANN and ANFIS Models for Estimation of PCUs at Different ...
Journal of Soft Computing in Civil Engineering
 
AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)
Vəhid Gəruslu
 
Degree_of_Automation.pdf for Instrumentation and industrial specialist
Degree_of_Automation.pdf for  Instrumentation  and industrial specialistDegree_of_Automation.pdf for  Instrumentation  and industrial specialist
Degree_of_Automation.pdf for Instrumentation and industrial specialist
shreyabhosale19
 
IntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdfIntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdf
Luiz Carneiro
 
15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...
IJCSES Journal
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITYADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ijscai
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
lecture5.pptxJHKGJFHDGTFGYIUOIUIPIOIPUOHIYGUYFGIH
lecture5.pptxJHKGJFHDGTFGYIUOIUIPIOIPUOHIYGUYFGIHlecture5.pptxJHKGJFHDGTFGYIUOIUIPIOIPUOHIYGUYFGIH
lecture5.pptxJHKGJFHDGTFGYIUOIUIPIOIPUOHIYGUYFGIH
Abodahab
 
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design ThinkingDT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DhruvChotaliya2
 
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfRICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
MohamedAbdelkader115
 
new ppt artificial intelligence historyyy
new ppt artificial intelligence historyyynew ppt artificial intelligence historyyy
new ppt artificial intelligence historyyy
PianoPianist
 
Compiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptxCompiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptx
RushaliDeshmukh2
 
New Microsoft PowerPoint Presentation.pdf
New Microsoft PowerPoint Presentation.pdfNew Microsoft PowerPoint Presentation.pdf
New Microsoft PowerPoint Presentation.pdf
mohamedezzat18803
 
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptxExplainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
Explainable-Artificial-Intelligence-XAI-A-Deep-Dive (1).pptx
MahaveerVPandit
 
theory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptxtheory-slides-for react for beginners.pptx
theory-slides-for react for beginners.pptx
sanchezvanessa7896
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
ELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdfELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdf
Shiju Jacob
 
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E..."Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
Infopitaara
 
AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)
Vəhid Gəruslu
 
Degree_of_Automation.pdf for Instrumentation and industrial specialist
Degree_of_Automation.pdf for  Instrumentation  and industrial specialistDegree_of_Automation.pdf for  Instrumentation  and industrial specialist
Degree_of_Automation.pdf for Instrumentation and industrial specialist
shreyabhosale19
 
IntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdfIntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdf
Luiz Carneiro
 
15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...
IJCSES Journal
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITYADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ADVXAI IN MALWARE ANALYSIS FRAMEWORK: BALANCING EXPLAINABILITY WITH SECURITY
ijscai
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
lecture5.pptxJHKGJFHDGTFGYIUOIUIPIOIPUOHIYGUYFGIH
lecture5.pptxJHKGJFHDGTFGYIUOIUIPIOIPUOHIYGUYFGIHlecture5.pptxJHKGJFHDGTFGYIUOIUIPIOIPUOHIYGUYFGIH
lecture5.pptxJHKGJFHDGTFGYIUOIUIPIOIPUOHIYGUYFGIH
Abodahab
 
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design ThinkingDT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DhruvChotaliya2
 
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfRICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
MohamedAbdelkader115
 
new ppt artificial intelligence historyyy
new ppt artificial intelligence historyyynew ppt artificial intelligence historyyy
new ppt artificial intelligence historyyy
PianoPianist
 
Compiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptxCompiler Design Unit1 PPT Phases of Compiler.pptx
Compiler Design Unit1 PPT Phases of Compiler.pptx
RushaliDeshmukh2
 

Siphon - Near Real Time Databus Using Kafka, Eric Boyd, Nitin Kumar

  • 1. Thursday, April 14, 2016 Siphon – Near Real Time Databus Using Kafka Eric Boyd – CVP Engineering – Microsoft Nitin Kumar – Principal Eng Manager - Microsoft
  • 9. Bing Ads Execution • Shipped once every 6 months • Averaged 3 marketplace experiments per month • Big bets on marketplace features that didn’t work. • Focused teams on 6 tracks with independent metrics. • Pushed teams to ship as quickly as they could, focusing only on moving their metric. • Built/borrowed infrastructure to enable much more rapid experimentation. • Over 3 years got to a rate of >1000 experiments a month
  • 11. What drove the turnaround? • Focus on small teams with clear metrics each team was driving. • Pushing each team to experiment and iterate as fast as possible. Data alone determines what gets shipped. • Iterated on key metrics until we found the ones with the most impact. • Commitment that we would get 1.5-2% better each month, and ship a package of experimentally tested improvements each month.
  • 12. Relationship with Open Source • From “Linux is a cancer…” • To contributing to open source • Storm with C# - SCP.NET (http://www.nuget.org/packages/Microsoft.SCP.Net.SDK/) • Spark with C# - Mobius (https://github.com/Microsoft/Mobius) • Kafka with C# - C# Client for Kafka (https://github.com/Microsoft/Kafkanet) • BOND (https://github.com/Microsoft/bond) • Across MSFT • C# • VSCode • Hyper-V drivers for Linux • https://github.com/Microsoft/ with 18 pages of repositories!
  • 13. Microsoft Big Data History • Massive batch oriented systems • Hundreds of thousands of machines • Exabytes of storage • SQL-like language with C# extensions
  • 16. Vision • A Databus for all Near Real Time (NRT) data in an organization. • Quick and Easy Publication, Discovery and Subscription of NRT dataset. • Compatibility with various Stream Processing systems like Storm, Spark, Splunk.
  • 17. Siphon Adoption 15 months since launch Excel Word Outlook Windows 10
  • 18. Usage Bing Ads Campaign perf Bing Live site telemetry Cortana Office 365 0 10 20 30 40 50 60 70 80 Throughput(inGBps) Siphon Data Volume (Ingress and Egress) Volume published (GBps) Volume subscribed (GBps) Total Volume (GBps) 0 2 4 6 8 10 12 14 16 18 Throughput(eventspersec)Millions Siphon Events per second (Ingress and Egress) EPS In Eps Out Total EPS 1.3 million EVENTS PER SECOND INGRESS AT PEAK ~1 trillion EVENTS PER DAY PROCESSED AT PEAK 3.5 petabytes PROCESSED PER DAY 100 thousand UNIQUE DEVICES AND MACHINES 1,300 PRODUCTION KAFKA BROKERS
  • 19. Scale: Kafka at Microsoft (Ads, Bing, Office) Kafka Brokers 1300+ across 5 Datacenters Operating System Windows Server 2012 R2 Hardware Spec 12 Cores, 32 GB RAM, 4x2 TB HDD (JBOD), 10 GB Network Incoming Events 1.3 million per sec, (112 Billion per day, 500 TB per day) Outgoing Events 5 million per sec, (~1 Trillion per day, 3.5 PB per day) Kafka Topics/Partitions 50+/5000+ Kafka version 0.8.1.1 (3 way replication)
  • 20. Siphon Architecture Asia DC Zookeeper Canary Kafka Collector Agent Services Data Pull (Agent) Services Data Push Device Proxy Services Consumer API (Push/ Pull) Europe DC Zookeeper Canary Kafka US DC Zookeeper Canary Kafka Streaming Batch Audit Trail Open Source Microsoft Internal Siphon
  • 21. Multiple sources and schemas Siphon Bond Schema PartA Main Header MessageId AuditId TimeStamp PartB Extended Header Key-Value[] PartC Payload CSV XML JSON JSON XML CSV Siphon Bond Schema Bond (https://github.com/Microsoft/bond)  Cross platform framework for working with schematized data.  Cross language (de) serialization.  Similar to Protobuf, Thrift and AVRO.
  • 22. Collector – Data Ingestion (Producer) • Http(s) Server • Restful API with SSL support. • Abstraction from Kafka internals (Partition, Kafka version) • Throttling, QPS Monitoring • PII scrubbing • Load balancing/failover to multiple DCs • Supported for both Windows and Linux servers. Device Proxy Services Collector Kafka Brokers Broker Broker Broker Broker P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 Collector Collector LoadBalancer Services Data Push Agent Services Data Pull (Agent) Open Source Microsoft Internal Siphon URL : http://localhost/produce/<version>?topic=<toipic> Method : POST
  • 23. Pull & Push Consumers Virtual Network A HLC Pull Kafka Brokers Broker Broker Broker Broker P0 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P1 Collector Collector RESTAPI Virtual Network B Pull • RESTful API with SSL support • Works for out of network consumers • Supports metadata and data operation • Implement Simple consumer APIs • Spark streaming receiver for Kafka REST Push • Configurable push to destinations like HDFS, Cosmos, Kafka. • Utilizes KafkaNet - .NET High Level Consumer (https://github.com/Microsoft/Kafkanet)
  • 24. High Level Consumer Monitoring using Canary Device Proxy Services Collector Kafka Brokers Broker Broker Broker Broker P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 Collector Collector LoadBalancer Services Data Push Agent Services Data Pull (Agent) Synthetic message Audit Trail Canary - https://github.com/Microsoft/Availability-Monitor-for-Kafka
  • 25. High Level Consumer Device Proxy Services Collector Kafka Brokers Broker Broker Broker Broker P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 Collector Collector LoadBalancer Services Data Push Agent Services Data Pull (Agent) Audit Trail Sampled vs Full Auditing support Data completeness – Audit Trail
  • 26. Production Experience – Telemetry Charts • Monitoring using ELK • E2E Latency • Data Completeness • Processing Lag • EPS breakdown by data center.
  • 27. Key Takeaways • Scale out with Kafka (50K -> 1M -> multi-million Events Per sec) • Ability to build tunable Auditing/Monitoring • Producer/Consumer Restful API provides a nice abstraction • Config driven Pub/Sub system