SlideShare a Scribd company logo
SnappyData
Getting Spark ready for real-time,
operational analytics
www.snappydata.io
Suds Menon
Co-Founder SnappyData
Jan 2016
Last Week Tonight in Big Data
www.snappydata.io
IoT is what makes the big data challenge very real
A 10 Trillion Device World1
www.snappydata.io
1:http://cacm.acm.org/news/191847-get-ready-to-live-in-a-trillion-device-world/fulltext
Because Insights are like people. Useful for a short period of time
The New Arms Race
www.snappydata.io
●  Sift through data to get insights
to improve your business
●  What is your time to insights?
●  What is your time to
operationalizing insights?
Can we use the past to accurately predict the future?
The Holy Grail of Analytics
www.snappydata.io
The faster you go, the bigger your business advantage
Speeding Up Insights
www.snappydata.io
Exploding data volumes fuel the search for distributed solutions
How We Got Here
www.snappydata.io
Teradata
Cognos
GreenPlum
Netezza,
ParAccel
Hadoop
(SQL on
Hadoop)
Spark
(Spark
SQL)
Every enterprise today deals with these 4 kinds of data interactions
The Four Horsemen Of Data
www.snappydata.io
OLTP OLAP Streaming Machine
Learning
Who Are We?
●  An EMC-Pivotal spinout focused on real time operational
analytics
●  New Spark-based open source project started by Pivotal
GemFire founders+engineers
●  Decades of in-memory data management experience
●  Focus on real-time, operational analytics: Spark inside an
OLTP+OLAP database
www.snappydata.io
SnappyData At Cruising Altitude
Single unified HA cluster: OLTP + OLAP +
Stream for real-time analytics
Batch design, high throughput
Real time operational Analytics – TBs in memory
RDB
Rows
Txn
Columnar
API
Stream processing
ODBC,
JDBC, REST
Spark -
Scala, Java,
Python, R
HDFS
AQP
First commercial project on Approximate
Query Processing(AQP)
MPP DB
Index
SnappyData: A new approach
Single unified HA cluster: OLTP + OLAP + Stream
for real-time analytics
Batch design, high throughput
Real-­‐time	
  
design	
  center	
  
-­‐	
  Low	
  latency,	
  HA,	
  
concurrent	
  
Vision: Drastically reduce the cost and
complexity in modern big data
Huge community adoption, slip streaming into Hadoop momentum, great data integration platform
Why Spark?
•  Most events in life can be analyzed as micro batches
•  Blends streaming, interactive, and batch analytics
•  Appeals to Java, R, Python, Scala programmers
•  Rich set of transformations and libraries
•  RDD and fault tolerance without replication
•  Offers Spark SQL as a key capability
www.snappydata.io
Spark is a compute framework that processes data, not an analytics database
Clearing Up Some Spark Myths
www.snappydata.io
●  It is NOT a distributed in-memory database
○  It’s a computational framework with immutable caching
●  It is NOT Highly Available
○  Fault tolerance is not the same as HA
●  NOT well suited for real time, operational environments
○  Does not handle concurrency well
○  Does not share data very well either
SnappyData & Lambda
SnappyData Focus
Perspective on Lambda for real time
In-Memory DB
Interactive queries,
updates
Deep Scale, High
volume
MPP DB
Transform
Data-in-motion
Analytics
Application
Streams
Alerts
RELEVANT USECASES
www.snappydata.io
Market Surveillance
www.snappydata.io
FLAG
DETECT
ANALYZE
INGEST
Identify patterns
based on query
results
Partitioned, HA
stream ingestion
Prevent
settlement,
investigate further
SQL queries &
Stream Analytics
on microbatches
Contextual Marketing
www.snappydata.io
RESPOND
DECIDE
ANALYZE
INGEST
Pick Ad based on
variety of reference
data parameters
Transactional
request for Ad
placement
Deliver in real
time
Join with history, join
with user profile, join
with location
Location Based Telco Services
www.snappydata.io
Geo Fencing Mobile Marketing Network Analytics
●  INGEST, CORRELATE, JOIN WITH HISTORICAL DATA,
RESPOND
Spark Architecture
Driver
Cluster
Manager
(YARN,
Mesos,
Standalone)
Worker
Worker
Worker
Executor
REST API for
Job
Submission
Worker
Worker
Worker
Data
Server
Execut
or
Cluster
Manager
(YARN,
Mesos,
Standalone)
Data
Server
Execut
or
Snappy Infused Spark Architecture
JDBC Clients
ODBC Clients
Job ServerLead Node
Lead Node
Core Components Of SnappyData
Colocated row/column Tables in Spark
Row
Table
Column
Table
Spark
Executor
TASK
Spark Block Manager
Stream
processing
Row
Table
Column
Table
Spark
Executor
TASK
Spark Block Manager
Stream
processing
Row
Table
Column
Table
Spark
Executor
TASK
Spark Block Manager
Stream
processing
●  Spark Executors are long lived and shared across multiple apps
●  Gem Memory Mgr and Spark Block Mgr integrated
Table can be partitioned or replicated
Replicated
Table
Partitioned
Table
(Buckets A-H) Replicated
Table
Partitioned
Table
(Buckets I-P)
consistent replica on each node
Partition
Replica
(Buckets A-H)
Replicated
Table
Partitioned
Table
(Buckets Q-W)Partition
Replica
(Buckets I-P)
Data partitioned with one or more replicas
Linearly scale with shared partitions
Spark Executor
Spark Executor
Kafka
queue
Subscriber N-Z
Subscriber A-M
Subscriber A-M
Ref data
Linearly scale with partition pruning
Input queue,
Stream, IMDB,
Output queue
all share the
same
partitioning
strategy
Point access, updates, fast writes
●  Row tables with PKs are distributed HashMaps
○  with secondary indexes
●  Support for transactional semantics
○  read_committed, repeatable_read
●  Support for scalable high write rates
○  streaming data goes through stages
○  queue streams, intermediate storage (Delta row buffer),
immutable compressed columns
Full Spark Compatibility
●  Any table is also visible as a DataFrame
●  Any RDD[T]/DataFrame can be stored in SnappyData
tables
●  Tables appear like any JDBC sourced table
○  But, in executor memory by default
●  Addtional API for updates, inserts, deletes
//Save a dataFrame using the spark context …
context.createExternalTable(”T1", "ROW", myDataFrame.schema, props );
//save using DataFrame API
dataDF.write.format("ROW").mode(SaveMode.Append).options(props).saveAsTable(”T1");
Extends Spark
CREATE	
  [Temporary]	
  TABLE	
  [IF	
  NOT	
  EXISTS]	
  table_name	
  
	
  	
  	
  (	
  
	
  	
  	
  	
  	
  	
  	
  <column	
  deIinition>	
  	
  
	
  	
  	
  )	
  	
  USING	
  ‘JDBC	
  |	
  ROW	
  |	
  COLUMN	
  ’	
  
OPTIONS	
  (	
  
	
  	
  	
  COLOCATE_WITH	
  'table_name',	
  	
  	
   	
  //	
  Default	
  none	
  
	
  	
  	
  PARTITION_BY	
  'PRIMARY	
  KEY	
  |	
  column	
  name',	
  //	
  will	
  be	
  a	
  replicated	
  table,	
  by	
  default	
  
	
  	
  	
  REDUNDANCY	
  	
  	
  	
  	
  	
  	
  	
  '1'	
  ,	
  	
  	
   	
   	
  //	
  Manage	
  HA	
  
	
  	
  PERSISTENT	
  	
  	
  "DISKSTORE_NAME	
  ASYNCHRONOUS	
  |	
  	
  SYNCHRONOUS",	
  	
  
	
   	
   	
  //	
  Empty	
  string	
  will	
  map	
  to	
  default	
  disk	
  store.	
  	
  
	
  	
  OFFHEAP	
  "true	
  |	
  false"	
  	
  
	
  	
  EVICTION_BY	
  	
  "MEMSIZE	
  200	
  |	
  COUNT	
  200	
  |	
  HEAPPERCENT",	
  
…..	
  	
  
	
  [AS	
  select_statement];	
  
Key feature: Synopses Data
●  Maintain stratified samples
○  Intelligent sampling to keep error bounds low
●  Probabilistic data
○  TopK for time series (using time aggregation CMS, item
aggregation)
○  Histograms, HyperLogLog, Bloom Filters, Wavelets
CREATE SAMPLE TABLE sample-table-name USING columnar
OPTIONS (
BASETABLE ‘table_name’ // source column table or stream table
[ SAMPLINGMETHOD "stratified | uniform" ]
STRATA name (
QCS (“comma-separated-column-names”)
[ FRACTION “frac” ]
),+ // one or more QCS
www.snappydata.io
AQP Architecture
www.snappydata.io
Spot The Differences
www.snappydata.io
SnappyData is Open Source
●  Beta will be on github in January. We are looking for
contributors!
●  Learn more & register for beta: www.snappydata.io
●  Connect:
○  twitter: www.twitter.com/snappydata
○  facebook: www.facebook.com/snappydata
○  linkedin: www.linkedin.com/snappydata
○  slack: http://snappydata-slackin.herokuapp.com
○  IRC: irc.freenode.net #snappydata
Q&A
www.snappydata.io
THANK YOU
www.snappydata.io

More Related Content

What's hot (20)

PDF
SnappyData at Spark Summit 2017
Jags Ramnarayan
 
PPTX
Jags Ramnarayan's presentation
punesparkmeetup
 
PPTX
Is hadoop for you
Gwen (Chen) Shapira
 
PPTX
Incredible Impala
Gwen (Chen) Shapira
 
PDF
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Databricks
 
PPTX
Hive vs. Impala
Omid Vahdaty
 
PPTX
TensorFlowOnSpark: Scalable TensorFlow Learning on Spark Clusters
DataWorks Summit
 
ODP
Sumedh Wale's presentation
punesparkmeetup
 
PDF
Generating Recommendations at Amazon Scale with Apache Spark and Amazon DSSTNE
DataWorks Summit/Hadoop Summit
 
PPTX
Big Data Anti-Patterns: Lessons From the Front LIne
Douglas Moore
 
PPTX
Real-time Analytics with Trino and Apache Pinot
Xiang Fu
 
PPTX
Introduction to Apache Kudu
Jeff Holoman
 
PDF
Enterprise Scale Topological Data Analysis Using Spark
Alpine Data
 
PDF
Apache Spark & Hadoop
MapR Technologies
 
PDF
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
PPTX
Seattle Scalability Meetup - Ted Dunning - MapR
clive boulton
 
PPTX
High concurrency,
Low latency analytics
using Spark/Kudu
Chris George
 
PPTX
Building a Pluggable Analytics Stack with Cassandra (Jim Peregord, Element Co...
DataStax
 
PDF
Serverless Machine Learning on Modern Hardware Using Apache Spark with Patric...
Databricks
 
SnappyData at Spark Summit 2017
Jags Ramnarayan
 
Jags Ramnarayan's presentation
punesparkmeetup
 
Is hadoop for you
Gwen (Chen) Shapira
 
Incredible Impala
Gwen (Chen) Shapira
 
Zeus: Uber’s Highly Scalable and Distributed Shuffle as a Service
Databricks
 
Hive vs. Impala
Omid Vahdaty
 
TensorFlowOnSpark: Scalable TensorFlow Learning on Spark Clusters
DataWorks Summit
 
Sumedh Wale's presentation
punesparkmeetup
 
Generating Recommendations at Amazon Scale with Apache Spark and Amazon DSSTNE
DataWorks Summit/Hadoop Summit
 
Big Data Anti-Patterns: Lessons From the Front LIne
Douglas Moore
 
Real-time Analytics with Trino and Apache Pinot
Xiang Fu
 
Introduction to Apache Kudu
Jeff Holoman
 
Enterprise Scale Topological Data Analysis Using Spark
Alpine Data
 
Apache Spark & Hadoop
MapR Technologies
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
Seattle Scalability Meetup - Ted Dunning - MapR
clive boulton
 
High concurrency,
Low latency analytics
using Spark/Kudu
Chris George
 
Building a Pluggable Analytics Stack with Cassandra (Jim Peregord, Element Co...
DataStax
 
Serverless Machine Learning on Modern Hardware Using Apache Spark with Patric...
Databricks
 

Viewers also liked (9)

PPTX
Apache Geode で始める Spring Data Gemfire
Akihiro Kitada
 
PDF
(LT)Spark and Cassandra
datastaxjp
 
PDF
超高速処理とスケーラビリティを両立するApache GEODE
Masaki Yamakawa
 
PDF
噛み砕いてKafka Streams #kafkajp
Yahoo!デベロッパーネットワーク
 
PDF
Awsでつくるapache kafkaといろんな悩み
Keigo Suda
 
PDF
インメモリーデータグリッドの選択肢
Masaki Yamakawa
 
PDF
RDB技術者のためのNoSQLガイド NoSQLの必要性と位置づけ
Recruit Technologies
 
PDF
ストリーム処理を支えるキューイングシステムの選び方
Yoshiyasu SAEKI
 
PDF
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
The Hive
 
Apache Geode で始める Spring Data Gemfire
Akihiro Kitada
 
(LT)Spark and Cassandra
datastaxjp
 
超高速処理とスケーラビリティを両立するApache GEODE
Masaki Yamakawa
 
噛み砕いてKafka Streams #kafkajp
Yahoo!デベロッパーネットワーク
 
Awsでつくるapache kafkaといろんな悩み
Keigo Suda
 
インメモリーデータグリッドの選択肢
Masaki Yamakawa
 
RDB技術者のためのNoSQLガイド NoSQLの必要性と位置づけ
Recruit Technologies
 
ストリーム処理を支えるキューイングシステムの選び方
Yoshiyasu SAEKI
 
Tech Talk: RocksDB Slides by Dhruba Borthakur & Haobo Xu of Facebook
The Hive
 
Ad

Similar to SnappyData Overview Slidedeck for Big Data Bellevue (20)

PDF
Getting Spark ready for real-time, operational analytics
airisData
 
PPTX
Explore big data at speed of thought with Spark 2.0 and Snappydata
Data Con LA
 
PPTX
Pyspark presentationfsfsfjspfsjfsfsfjsfpsfsf
sasuke20y4sh
 
PPTX
Nike tech talk.2
Jags Ramnarayan
 
PPTX
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
sasuke20y4sh
 
PDF
Impala presentation ahad rana
Data Con LA
 
PDF
The Future of Fast Databases: Lessons from a Decade of QuestDB
javier ramirez
 
PDF
Scaling up with hadoop and banyan at ITRIX-2015, College of Engineering, Guindy
Rohit Kulkarni
 
PDF
Data processing with spark in r &amp; python
Maloy Manna, PMP®
 
PDF
2014-10-20 Large-Scale Machine Learning with Apache Spark at Internet of Thin...
DB Tsai
 
PDF
HKOSCon18 - Chetan Khatri - Scaling TB's of Data with Apache Spark and Scala ...
Chetan Khatri
 
PDF
2015 01-17 Lambda Architecture with Apache Spark, NextML Conference
DB Tsai
 
PDF
Cassandra Summit 2014: Interactive OLAP Queries using Apache Cassandra and Spark
DataStax Academy
 
PDF
An introduction To Apache Spark
Amir Sedighi
 
PDF
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
Databricks
 
PDF
Interactive SQL-on-Hadoop and JethroData
Ofir Manor
 
PPTX
Apache Hive for modern DBAs
Luis Marques
 
PDF
Apache Spark PDF
Naresh Rupareliya
 
PDF
Apache Spark 101 - Demi Ben-Ari
Demi Ben-Ari
 
PPTX
Intro to Apache Spark by CTO of Twingo
MapR Technologies
 
Getting Spark ready for real-time, operational analytics
airisData
 
Explore big data at speed of thought with Spark 2.0 and Snappydata
Data Con LA
 
Pyspark presentationfsfsfjspfsjfsfsfjsfpsfsf
sasuke20y4sh
 
Nike tech talk.2
Jags Ramnarayan
 
Pyspark presentationsfspfsjfspfjsfpsjfspfjsfpsjfsfsf
sasuke20y4sh
 
Impala presentation ahad rana
Data Con LA
 
The Future of Fast Databases: Lessons from a Decade of QuestDB
javier ramirez
 
Scaling up with hadoop and banyan at ITRIX-2015, College of Engineering, Guindy
Rohit Kulkarni
 
Data processing with spark in r &amp; python
Maloy Manna, PMP®
 
2014-10-20 Large-Scale Machine Learning with Apache Spark at Internet of Thin...
DB Tsai
 
HKOSCon18 - Chetan Khatri - Scaling TB's of Data with Apache Spark and Scala ...
Chetan Khatri
 
2015 01-17 Lambda Architecture with Apache Spark, NextML Conference
DB Tsai
 
Cassandra Summit 2014: Interactive OLAP Queries using Apache Cassandra and Spark
DataStax Academy
 
An introduction To Apache Spark
Amir Sedighi
 
Scalable Monitoring Using Prometheus with Apache Spark Clusters with Diane F...
Databricks
 
Interactive SQL-on-Hadoop and JethroData
Ofir Manor
 
Apache Hive for modern DBAs
Luis Marques
 
Apache Spark PDF
Naresh Rupareliya
 
Apache Spark 101 - Demi Ben-Ari
Demi Ben-Ari
 
Intro to Apache Spark by CTO of Twingo
MapR Technologies
 
Ad

Recently uploaded (20)

PPTX
TexSender Pro 8.9.1 Crack Full Version Download
cracked shares
 
PDF
SAP GUI Installation Guide for Windows | Step-by-Step Setup for SAP Access
SAP Vista, an A L T Z E N Company
 
PPTX
Cutting Optimization Pro 5.18.2 Crack With Free Download
cracked shares
 
PPTX
How Can Reporting Tools Improve Marketing Performance.pptx
Varsha Nayak
 
PDF
Australian Enterprises Need Project Service Automation
Navision India
 
PDF
ESUG 2025: Pharo 13 and Beyond (Stephane Ducasse)
ESUG
 
PDF
10 Salesforce Consulting Companies in Sydney.pdf
DianApps Technologies
 
PPTX
Get Started with Maestro: Agent, Robot, and Human in Action – Session 5 of 5
klpathrudu
 
PDF
Understanding the EU Cyber Resilience Act
ICS
 
PPTX
Transforming Lending with IntelliGrow – Advanced Loan Software Solutions
Intelli grow
 
PPTX
Build a Custom Agent for Agentic Testing.pptx
klpathrudu
 
PDF
Step-by-Step Guide to Install SAP HANA Studio | Complete Installation Tutoria...
SAP Vista, an A L T Z E N Company
 
PDF
AI Prompts Cheat Code prompt engineering
Avijit Kumar Roy
 
PDF
Everything you need to know about pricing & licensing Microsoft 365 Copilot f...
Q-Advise
 
PPTX
Function & Procedure: Function Vs Procedure in PL/SQL
Shani Tiwari
 
PDF
Salesforce Experience Cloud Consultant.pdf
VALiNTRY360
 
PPTX
Smart Doctor Appointment Booking option in odoo.pptx
AxisTechnolabs
 
PPTX
Chess King 25.0.0.2500 With Crack Full Free Download
cracked shares
 
PPTX
ChessBase 18.02 Crack + Serial Key Free Download
cracked shares
 
PDF
Ready Layer One: Intro to the Model Context Protocol
mmckenna1
 
TexSender Pro 8.9.1 Crack Full Version Download
cracked shares
 
SAP GUI Installation Guide for Windows | Step-by-Step Setup for SAP Access
SAP Vista, an A L T Z E N Company
 
Cutting Optimization Pro 5.18.2 Crack With Free Download
cracked shares
 
How Can Reporting Tools Improve Marketing Performance.pptx
Varsha Nayak
 
Australian Enterprises Need Project Service Automation
Navision India
 
ESUG 2025: Pharo 13 and Beyond (Stephane Ducasse)
ESUG
 
10 Salesforce Consulting Companies in Sydney.pdf
DianApps Technologies
 
Get Started with Maestro: Agent, Robot, and Human in Action – Session 5 of 5
klpathrudu
 
Understanding the EU Cyber Resilience Act
ICS
 
Transforming Lending with IntelliGrow – Advanced Loan Software Solutions
Intelli grow
 
Build a Custom Agent for Agentic Testing.pptx
klpathrudu
 
Step-by-Step Guide to Install SAP HANA Studio | Complete Installation Tutoria...
SAP Vista, an A L T Z E N Company
 
AI Prompts Cheat Code prompt engineering
Avijit Kumar Roy
 
Everything you need to know about pricing & licensing Microsoft 365 Copilot f...
Q-Advise
 
Function & Procedure: Function Vs Procedure in PL/SQL
Shani Tiwari
 
Salesforce Experience Cloud Consultant.pdf
VALiNTRY360
 
Smart Doctor Appointment Booking option in odoo.pptx
AxisTechnolabs
 
Chess King 25.0.0.2500 With Crack Full Free Download
cracked shares
 
ChessBase 18.02 Crack + Serial Key Free Download
cracked shares
 
Ready Layer One: Intro to the Model Context Protocol
mmckenna1
 

SnappyData Overview Slidedeck for Big Data Bellevue

  • 1. SnappyData Getting Spark ready for real-time, operational analytics www.snappydata.io Suds Menon Co-Founder SnappyData Jan 2016
  • 2. Last Week Tonight in Big Data www.snappydata.io
  • 3. IoT is what makes the big data challenge very real A 10 Trillion Device World1 www.snappydata.io 1:http://cacm.acm.org/news/191847-get-ready-to-live-in-a-trillion-device-world/fulltext
  • 4. Because Insights are like people. Useful for a short period of time The New Arms Race www.snappydata.io ●  Sift through data to get insights to improve your business ●  What is your time to insights? ●  What is your time to operationalizing insights?
  • 5. Can we use the past to accurately predict the future? The Holy Grail of Analytics www.snappydata.io
  • 6. The faster you go, the bigger your business advantage Speeding Up Insights www.snappydata.io
  • 7. Exploding data volumes fuel the search for distributed solutions How We Got Here www.snappydata.io Teradata Cognos GreenPlum Netezza, ParAccel Hadoop (SQL on Hadoop) Spark (Spark SQL)
  • 8. Every enterprise today deals with these 4 kinds of data interactions The Four Horsemen Of Data www.snappydata.io OLTP OLAP Streaming Machine Learning
  • 9. Who Are We? ●  An EMC-Pivotal spinout focused on real time operational analytics ●  New Spark-based open source project started by Pivotal GemFire founders+engineers ●  Decades of in-memory data management experience ●  Focus on real-time, operational analytics: Spark inside an OLTP+OLAP database www.snappydata.io
  • 10. SnappyData At Cruising Altitude Single unified HA cluster: OLTP + OLAP + Stream for real-time analytics Batch design, high throughput Real time operational Analytics – TBs in memory RDB Rows Txn Columnar API Stream processing ODBC, JDBC, REST Spark - Scala, Java, Python, R HDFS AQP First commercial project on Approximate Query Processing(AQP) MPP DB Index
  • 11. SnappyData: A new approach Single unified HA cluster: OLTP + OLAP + Stream for real-time analytics Batch design, high throughput Real-­‐time   design  center   -­‐  Low  latency,  HA,   concurrent   Vision: Drastically reduce the cost and complexity in modern big data
  • 12. Huge community adoption, slip streaming into Hadoop momentum, great data integration platform Why Spark? •  Most events in life can be analyzed as micro batches •  Blends streaming, interactive, and batch analytics •  Appeals to Java, R, Python, Scala programmers •  Rich set of transformations and libraries •  RDD and fault tolerance without replication •  Offers Spark SQL as a key capability www.snappydata.io
  • 13. Spark is a compute framework that processes data, not an analytics database Clearing Up Some Spark Myths www.snappydata.io ●  It is NOT a distributed in-memory database ○  It’s a computational framework with immutable caching ●  It is NOT Highly Available ○  Fault tolerance is not the same as HA ●  NOT well suited for real time, operational environments ○  Does not handle concurrency well ○  Does not share data very well either
  • 15. Perspective on Lambda for real time In-Memory DB Interactive queries, updates Deep Scale, High volume MPP DB Transform Data-in-motion Analytics Application Streams Alerts
  • 17. Market Surveillance www.snappydata.io FLAG DETECT ANALYZE INGEST Identify patterns based on query results Partitioned, HA stream ingestion Prevent settlement, investigate further SQL queries & Stream Analytics on microbatches
  • 18. Contextual Marketing www.snappydata.io RESPOND DECIDE ANALYZE INGEST Pick Ad based on variety of reference data parameters Transactional request for Ad placement Deliver in real time Join with history, join with user profile, join with location
  • 19. Location Based Telco Services www.snappydata.io Geo Fencing Mobile Marketing Network Analytics ●  INGEST, CORRELATE, JOIN WITH HISTORICAL DATA, RESPOND
  • 22. Core Components Of SnappyData
  • 23. Colocated row/column Tables in Spark Row Table Column Table Spark Executor TASK Spark Block Manager Stream processing Row Table Column Table Spark Executor TASK Spark Block Manager Stream processing Row Table Column Table Spark Executor TASK Spark Block Manager Stream processing ●  Spark Executors are long lived and shared across multiple apps ●  Gem Memory Mgr and Spark Block Mgr integrated
  • 24. Table can be partitioned or replicated Replicated Table Partitioned Table (Buckets A-H) Replicated Table Partitioned Table (Buckets I-P) consistent replica on each node Partition Replica (Buckets A-H) Replicated Table Partitioned Table (Buckets Q-W)Partition Replica (Buckets I-P) Data partitioned with one or more replicas
  • 25. Linearly scale with shared partitions Spark Executor Spark Executor Kafka queue Subscriber N-Z Subscriber A-M Subscriber A-M Ref data Linearly scale with partition pruning Input queue, Stream, IMDB, Output queue all share the same partitioning strategy
  • 26. Point access, updates, fast writes ●  Row tables with PKs are distributed HashMaps ○  with secondary indexes ●  Support for transactional semantics ○  read_committed, repeatable_read ●  Support for scalable high write rates ○  streaming data goes through stages ○  queue streams, intermediate storage (Delta row buffer), immutable compressed columns
  • 27. Full Spark Compatibility ●  Any table is also visible as a DataFrame ●  Any RDD[T]/DataFrame can be stored in SnappyData tables ●  Tables appear like any JDBC sourced table ○  But, in executor memory by default ●  Addtional API for updates, inserts, deletes //Save a dataFrame using the spark context … context.createExternalTable(”T1", "ROW", myDataFrame.schema, props ); //save using DataFrame API dataDF.write.format("ROW").mode(SaveMode.Append).options(props).saveAsTable(”T1");
  • 28. Extends Spark CREATE  [Temporary]  TABLE  [IF  NOT  EXISTS]  table_name        (                <column  deIinition>          )    USING  ‘JDBC  |  ROW  |  COLUMN  ’   OPTIONS  (        COLOCATE_WITH  'table_name',        //  Default  none        PARTITION_BY  'PRIMARY  KEY  |  column  name',  //  will  be  a  replicated  table,  by  default        REDUNDANCY                '1'  ,          //  Manage  HA      PERSISTENT      "DISKSTORE_NAME  ASYNCHRONOUS  |    SYNCHRONOUS",          //  Empty  string  will  map  to  default  disk  store.        OFFHEAP  "true  |  false"        EVICTION_BY    "MEMSIZE  200  |  COUNT  200  |  HEAPPERCENT",   …..      [AS  select_statement];  
  • 29. Key feature: Synopses Data ●  Maintain stratified samples ○  Intelligent sampling to keep error bounds low ●  Probabilistic data ○  TopK for time series (using time aggregation CMS, item aggregation) ○  Histograms, HyperLogLog, Bloom Filters, Wavelets CREATE SAMPLE TABLE sample-table-name USING columnar OPTIONS ( BASETABLE ‘table_name’ // source column table or stream table [ SAMPLINGMETHOD "stratified | uniform" ] STRATA name ( QCS (“comma-separated-column-names”) [ FRACTION “frac” ] ),+ // one or more QCS
  • 32. www.snappydata.io SnappyData is Open Source ●  Beta will be on github in January. We are looking for contributors! ●  Learn more & register for beta: www.snappydata.io ●  Connect: ○  twitter: www.twitter.com/snappydata ○  facebook: www.facebook.com/snappydata ○  linkedin: www.linkedin.com/snappydata ○  slack: http://snappydata-slackin.herokuapp.com ○  IRC: irc.freenode.net #snappydata