The anonymity of social networks makes it attractive for hate speech to mask their criminal
activities online posing a challenge to the world and in particular Ethiopia. With this everincreasing
volume of social media data, hate speech identification becomes a challenge in
aggravating conflict between citizens of nations. The high rate of production, has become
difficult to collect, store and analyze such big data using traditional detection methods. This
paper proposed the application of apache spark in hate speech detection to reduce the
challenges. Authors developed an apache spark based model to classify Amharic Facebook
posts and comments into hate and not hate. Authors employed Random forest and Naïve Bayes
for learning and Word2Vec and TF-IDF for feature selection. Tested by 10-fold crossvalidation,
the model based on word2vec embedding performed best with 79.83%accuracy. The
proposed method achieve a promising result with unique feature of spark for big data.