Apache Spark, the Next Generation Cluster ComputingGerger
This document provides a 3 sentence summary of the key points:
Apache Spark is an open source cluster computing framework that is faster than Hadoop MapReduce by running computations in memory through RDDs, DataFrames and Datasets. It provides high-level APIs for batch, streaming and interactive queries along with libraries for machine learning. Spark's performance is improved through techniques like Catalyst query optimization, Tungsten in-memory columnar formats, and whole stage code generation.
This is the presentation I made on JavaDay Kiev 2015 regarding the architecture of Apache Spark. It covers the memory model, the shuffle implementations, data frames and some other high-level staff and can be used as an introduction to Apache Spark
This deep dive attempts to "de-mystify" Spark by touching on some of the main design philosophies and diving into some of the more advanced features that make it such a flexible and powerful cluster computing framework. It will touch on some common pitfalls and attempt to build some best practices for building, configuring, and deploying Spark applications.
This document discusses Spark shuffle, which is an expensive operation that involves data partitioning, serialization/deserialization, compression, and disk I/O. It provides an overview of how shuffle works in Spark and the history of optimizations like sort-based shuffle and an external shuffle service. Key concepts discussed include shuffle writers, readers, and the pluggable block transfer service that handles data transfer. The document also covers shuffle-related configuration options and potential future work.
Top 5 mistakes when writing Spark applicationshadooparchbook
This document discusses common mistakes people make when writing Spark applications and provides recommendations to address them. It covers issues related to executor configuration, application failures due to shuffle block sizes exceeding limits, slow jobs caused by data skew, and managing the DAG to avoid excessive shuffles and stages. Recommendations include using smaller executors, increasing the number of partitions, addressing skew through techniques like salting, and preferring ReduceByKey over GroupByKey and TreeReduce over Reduce to improve performance and resource usage.
The document discusses Apache Spark, an open source cluster computing framework for real-time data processing. It notes that Spark is up to 100 times faster than Hadoop for in-memory processing and 10 times faster on disk. The main feature of Spark is its in-memory cluster computing capability, which increases processing speeds. Spark runs on a driver-executor model and uses resilient distributed datasets and directed acyclic graphs to process data in parallel across a cluster.
Spark & Spark Streaming Internals - Nov 15 (1)Akhil Das
This document summarizes Spark and Spark Streaming internals. It discusses the Resilient Distributed Dataset (RDD) model in Spark, which allows for fault tolerance through lineage-based recomputation. It provides an example of log mining using RDD transformations and actions. It then discusses Spark Streaming, which provides a simple API for stream processing by treating streams as series of small batch jobs on RDDs. Key concepts discussed include Discretized Stream (DStream), transformations, and output operations. An example Twitter hashtag extraction job is outlined.
Apache Spark presentation at HasGeek FifthElelephant
https://fifthelephant.talkfunnel.com/2015/15-processing-large-data-with-apache-spark
Covering Big Data Overview, Spark Overview, Spark Internals and its supported libraries
Spark is a framework for large-scale data processing. It includes Spark Core which provides functionality like memory management and fault recovery. Spark also includes higher level libraries like SparkSQL for SQL queries, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for real-time data streams. The core abstraction in Spark is the Resilient Distributed Dataset (RDD) which allows parallel operations on distributed data.
This document provides an overview of Apache Spark, including how it compares to Hadoop, the Spark ecosystem, Resilient Distributed Datasets (RDDs), transformations and actions on RDDs, the directed acyclic graph (DAG) scheduler, Spark Streaming, and the DataFrames API. Key points covered include Spark's faster performance versus Hadoop through its use of memory instead of disk, the RDD abstraction for distributed collections, common RDD operations, and Spark's capabilities for real-time streaming data processing and SQL queries on structured data.
This document provides an overview of Apache Spark's architectural components through the life of simple Spark jobs. It begins with a simple Spark application analyzing airline on-time arrival data, then covers Resilient Distributed Datasets (RDDs), the cluster architecture, job execution through Spark components like tasks and scheduling, and techniques for writing better Spark applications like optimizing partitioning and reducing shuffle size.
Apache Spark is a fast distributed data processing engine that runs in memory. It can be used with Java, Scala, Python and R. Spark uses resilient distributed datasets (RDDs) as its main data structure. RDDs are immutable and partitioned collections of elements that allow transformations like map and filter. Spark is 10-100x faster than Hadoop for iterative algorithms and can be used for tasks like ETL, machine learning, and streaming.
Introduction to Apache Spark Developer TrainingCloudera, Inc.
Apache Spark is a next-generation processing engine optimized for speed, ease of use, and advanced analytics well beyond batch. The Spark framework supports streaming data and complex, iterative algorithms, enabling applications to run 100x faster than traditional MapReduce programs. With Spark, developers can write sophisticated parallel applications for faster business decisions and better user outcomes, applied to a wide variety of architectures and industries.
Learn What Apache Spark is and how it compares to Hadoop MapReduce, How to filter, map, reduce, and save Resilient Distributed Datasets (RDDs), Who is best suited to attend the course and what prior knowledge you should have, and the benefits of building Spark applications as part of an enterprise data hub.
Apache Spark Introduction and Resilient Distributed Dataset basics and deep diveSachin Aggarwal
We will give a detailed introduction to Apache Spark and why and how Spark can change the analytics world. Apache Spark's memory abstraction is RDD (Resilient Distributed DataSet). One of the key reason why Apache Spark is so different is because of the introduction of RDD. You cannot do anything in Apache Spark without knowing about RDDs. We will give a high level introduction to RDD and in the second half we will have a deep dive into RDDs.
How Apache Spark fits into the Big Data landscapePaco Nathan
Boulder/Denver Spark Meetup, 2014-10-02 @ Datalogix
http://www.meetup.com/Boulder-Denver-Spark-Meetup/events/207581832/
Apache Spark is intended as a general purpose engine that supports combinations of Batch, Streaming, SQL, ML, Graph, etc., for apps written in Scala, Java, Python, Clojure, R, etc.
This talk provides an introduction to Spark — how it provides so much better performance, and why — and then explores how Spark fits into the Big Data landscape — e.g., other systems with which Spark pairs nicely — and why Spark is needed for the work ahead.
Introduction to Apache Spark. With an emphasis on the RDD API, Spark SQL (DataFrame and Dataset API) and Spark Streaming.
Presented at the Desert Code Camp:
http://oct2016.desertcodecamp.com/sessions/all
Introduction to Spark Streaming & Apache Kafka | Big Data Hadoop Spark Tutori...CloudxLab
Big Data with Hadoop & Spark Training: http://bit.ly/2L6bZbn
This CloudxLab Introduction to Spark Streaming & Apache Kafka tutorial helps you to understand Spark Streaming and Kafka in detail. Below are the topics covered in this tutorial:
1) Spark Streaming - Workflow
2) Use Cases - E-commerce, Real-time Sentiment Analysis & Real-time Fraud Detection
3) Spark Streaming - DStream
4) Word Count Hands-on using Spark Streaming
5) Spark Streaming - Running Locally Vs Running on Cluster
6) Introduction to Apache Kafka
7) Apache Kafka Hands-on on CloudxLab
8) Integrating Spark Streaming & Kafka
9) Spark Streaming & Kafka Hands-on
This document provides an overview of Apache Spark, including its goal of providing a fast and general engine for large-scale data processing. It discusses Spark's programming model, components like RDDs and DAGs, and how to initialize and deploy Spark on a cluster. Key aspects covered include RDDs as the fundamental data structure in Spark, transformations and actions, and storage levels for caching data in memory or disk.
This document compares MapReduce and Spark frameworks. It discusses their histories and basic functionalities. MapReduce uses input, map, shuffle, and reduce stages, while Spark uses RDDs (Resilient Distributed Datasets) and transformations and actions. Spark is easier to program than MapReduce due to its interactive mode, but MapReduce has more supporting tools. Performance benchmarks show Spark is faster than MapReduce for sorting. The hardware and developer costs of Spark are also lower than MapReduce.
I gave this talk on the Highload++ conference 2015 in Moscow. Slides have been translated into English. They cover the Apache HAWQ components, its architecture, query processing logic, and also competitive information
Ten tools for ten big data areas 03_Apache SparkWill Du
Apache Spark is a fast and general-purpose cluster computing system for large-scale data processing. It provides functions for distributed processing of large datasets across clusters using a concept called resilient distributed datasets (RDDs). RDDs allow in-memory clustering computing to improve performance. Spark also supports streaming, SQL, machine learning, and graph processing.
we will see an overview of Spark in Big Data. We will start with an introduction to Apache Spark Programming. Then we will move to know the Spark History. Moreover, we will learn why Spark is needed. Afterward, will cover all fundamental of Spark components. Furthermore, we will learn about Spark’s core abstraction and Spark RDD. For more detailed insights, we will also cover spark features, Spark limitations, and Spark Use cases.
Breakthrough OLAP performance with Cassandra and SparkEvan Chan
Find out about breakthrough architectures for fast OLAP performance querying Cassandra data with Apache Spark, including a new open source project, FiloDB.
Deep Dive: Memory Management in Apache SparkDatabricks
Memory management is at the heart of any data-intensive system. Spark, in particular, must arbitrate memory allocation between two main use cases: buffering intermediate data for processing (execution) and caching user data (storage). This talk will take a deep dive through the memory management designs adopted in Spark since its inception and discuss their performance and usability implications for the end user.
Spark is a distributed data processing framework that uses RDDs (Resilient Distributed Datasets) to represent data distributed across a cluster. RDDs support transformations like map, filter, and actions like reduce to operate on the distributed data in a parallel and fault-tolerant manner. Key concepts include lazy evaluation of transformations, caching of RDDs, and use of broadcast variables and accumulators for sharing data across nodes.
Transformation Processing Smackdown; Spark vs Hive vs PigLester Martin
This document provides an overview and comparison of different data transformation frameworks including Apache Pig, Apache Hive, and Apache Spark. It discusses features such as file formats, source to target mappings, data quality checks, and core processing functionality. The document contains code examples demonstrating how to perform common ETL tasks in each framework using delimited, XML, JSON, and other file formats. It also covers topics like numeric validation, data mapping, and performance. The overall purpose is to help users understand the different options for large-scale data processing in Hadoop.
we will see internal architecture of spark cluster i.e what is driver, worker,executer and cluster manager, how spark program will be run on cluster and what are jobs,stages and task.
Spark is a framework for large-scale data processing. It includes Spark Core which provides functionality like memory management and fault recovery. Spark also includes higher level libraries like SparkSQL for SQL queries, MLlib for machine learning, GraphX for graph processing, and Spark Streaming for real-time data streams. The core abstraction in Spark is the Resilient Distributed Dataset (RDD) which allows parallel operations on distributed data.
This document provides an overview of Apache Spark, including how it compares to Hadoop, the Spark ecosystem, Resilient Distributed Datasets (RDDs), transformations and actions on RDDs, the directed acyclic graph (DAG) scheduler, Spark Streaming, and the DataFrames API. Key points covered include Spark's faster performance versus Hadoop through its use of memory instead of disk, the RDD abstraction for distributed collections, common RDD operations, and Spark's capabilities for real-time streaming data processing and SQL queries on structured data.
This document provides an overview of Apache Spark's architectural components through the life of simple Spark jobs. It begins with a simple Spark application analyzing airline on-time arrival data, then covers Resilient Distributed Datasets (RDDs), the cluster architecture, job execution through Spark components like tasks and scheduling, and techniques for writing better Spark applications like optimizing partitioning and reducing shuffle size.
Apache Spark is a fast distributed data processing engine that runs in memory. It can be used with Java, Scala, Python and R. Spark uses resilient distributed datasets (RDDs) as its main data structure. RDDs are immutable and partitioned collections of elements that allow transformations like map and filter. Spark is 10-100x faster than Hadoop for iterative algorithms and can be used for tasks like ETL, machine learning, and streaming.
Introduction to Apache Spark Developer TrainingCloudera, Inc.
Apache Spark is a next-generation processing engine optimized for speed, ease of use, and advanced analytics well beyond batch. The Spark framework supports streaming data and complex, iterative algorithms, enabling applications to run 100x faster than traditional MapReduce programs. With Spark, developers can write sophisticated parallel applications for faster business decisions and better user outcomes, applied to a wide variety of architectures and industries.
Learn What Apache Spark is and how it compares to Hadoop MapReduce, How to filter, map, reduce, and save Resilient Distributed Datasets (RDDs), Who is best suited to attend the course and what prior knowledge you should have, and the benefits of building Spark applications as part of an enterprise data hub.
Apache Spark Introduction and Resilient Distributed Dataset basics and deep diveSachin Aggarwal
We will give a detailed introduction to Apache Spark and why and how Spark can change the analytics world. Apache Spark's memory abstraction is RDD (Resilient Distributed DataSet). One of the key reason why Apache Spark is so different is because of the introduction of RDD. You cannot do anything in Apache Spark without knowing about RDDs. We will give a high level introduction to RDD and in the second half we will have a deep dive into RDDs.
How Apache Spark fits into the Big Data landscapePaco Nathan
Boulder/Denver Spark Meetup, 2014-10-02 @ Datalogix
http://www.meetup.com/Boulder-Denver-Spark-Meetup/events/207581832/
Apache Spark is intended as a general purpose engine that supports combinations of Batch, Streaming, SQL, ML, Graph, etc., for apps written in Scala, Java, Python, Clojure, R, etc.
This talk provides an introduction to Spark — how it provides so much better performance, and why — and then explores how Spark fits into the Big Data landscape — e.g., other systems with which Spark pairs nicely — and why Spark is needed for the work ahead.
Introduction to Apache Spark. With an emphasis on the RDD API, Spark SQL (DataFrame and Dataset API) and Spark Streaming.
Presented at the Desert Code Camp:
http://oct2016.desertcodecamp.com/sessions/all
Introduction to Spark Streaming & Apache Kafka | Big Data Hadoop Spark Tutori...CloudxLab
Big Data with Hadoop & Spark Training: http://bit.ly/2L6bZbn
This CloudxLab Introduction to Spark Streaming & Apache Kafka tutorial helps you to understand Spark Streaming and Kafka in detail. Below are the topics covered in this tutorial:
1) Spark Streaming - Workflow
2) Use Cases - E-commerce, Real-time Sentiment Analysis & Real-time Fraud Detection
3) Spark Streaming - DStream
4) Word Count Hands-on using Spark Streaming
5) Spark Streaming - Running Locally Vs Running on Cluster
6) Introduction to Apache Kafka
7) Apache Kafka Hands-on on CloudxLab
8) Integrating Spark Streaming & Kafka
9) Spark Streaming & Kafka Hands-on
This document provides an overview of Apache Spark, including its goal of providing a fast and general engine for large-scale data processing. It discusses Spark's programming model, components like RDDs and DAGs, and how to initialize and deploy Spark on a cluster. Key aspects covered include RDDs as the fundamental data structure in Spark, transformations and actions, and storage levels for caching data in memory or disk.
This document compares MapReduce and Spark frameworks. It discusses their histories and basic functionalities. MapReduce uses input, map, shuffle, and reduce stages, while Spark uses RDDs (Resilient Distributed Datasets) and transformations and actions. Spark is easier to program than MapReduce due to its interactive mode, but MapReduce has more supporting tools. Performance benchmarks show Spark is faster than MapReduce for sorting. The hardware and developer costs of Spark are also lower than MapReduce.
I gave this talk on the Highload++ conference 2015 in Moscow. Slides have been translated into English. They cover the Apache HAWQ components, its architecture, query processing logic, and also competitive information
Ten tools for ten big data areas 03_Apache SparkWill Du
Apache Spark is a fast and general-purpose cluster computing system for large-scale data processing. It provides functions for distributed processing of large datasets across clusters using a concept called resilient distributed datasets (RDDs). RDDs allow in-memory clustering computing to improve performance. Spark also supports streaming, SQL, machine learning, and graph processing.
we will see an overview of Spark in Big Data. We will start with an introduction to Apache Spark Programming. Then we will move to know the Spark History. Moreover, we will learn why Spark is needed. Afterward, will cover all fundamental of Spark components. Furthermore, we will learn about Spark’s core abstraction and Spark RDD. For more detailed insights, we will also cover spark features, Spark limitations, and Spark Use cases.
Breakthrough OLAP performance with Cassandra and SparkEvan Chan
Find out about breakthrough architectures for fast OLAP performance querying Cassandra data with Apache Spark, including a new open source project, FiloDB.
Deep Dive: Memory Management in Apache SparkDatabricks
Memory management is at the heart of any data-intensive system. Spark, in particular, must arbitrate memory allocation between two main use cases: buffering intermediate data for processing (execution) and caching user data (storage). This talk will take a deep dive through the memory management designs adopted in Spark since its inception and discuss their performance and usability implications for the end user.
Spark is a distributed data processing framework that uses RDDs (Resilient Distributed Datasets) to represent data distributed across a cluster. RDDs support transformations like map, filter, and actions like reduce to operate on the distributed data in a parallel and fault-tolerant manner. Key concepts include lazy evaluation of transformations, caching of RDDs, and use of broadcast variables and accumulators for sharing data across nodes.
Transformation Processing Smackdown; Spark vs Hive vs PigLester Martin
This document provides an overview and comparison of different data transformation frameworks including Apache Pig, Apache Hive, and Apache Spark. It discusses features such as file formats, source to target mappings, data quality checks, and core processing functionality. The document contains code examples demonstrating how to perform common ETL tasks in each framework using delimited, XML, JSON, and other file formats. It also covers topics like numeric validation, data mapping, and performance. The overall purpose is to help users understand the different options for large-scale data processing in Hadoop.
we will see internal architecture of spark cluster i.e what is driver, worker,executer and cluster manager, how spark program will be run on cluster and what are jobs,stages and task.
Spark uses Resilient Distributed Datasets (RDDs) as its fundamental data structure. RDDs are immutable, lazy evaluated collections of data that can be operated on in parallel. This allows RDD transformations to be computed lazily and combined for better performance. RDDs also support type inference and caching to improve efficiency. Spark programs run by submitting jobs to a cluster manager like YARN or Mesos, which then schedule tasks across worker nodes where the lazy transformations are executed.
Spark Streaming makes it easy to build scalable fault-tolerant streaming applications. In this webinar, developers will learn:
*How Spark Streaming works - a quick review.
*Features in Spark Streaming that help prevent potential data loss.
*Complementary tools in a streaming pipeline - Kafka and Akka.
*Design and tuning tips for Reactive Spark Streaming applications.
Lambda Architecture with Spark, Spark Streaming, Kafka, Cassandra, Akka and S...Helena Edelson
Regardless of the meaning we are searching for over our vast amounts of data, whether we are in science, finance, technology, energy, health care…, we all share the same problems that must be solved: How do we achieve that? What technologies best support the requirements? This talk is about how to leverage fast access to historical data with real time streaming data for predictive modeling for lambda architecture with Spark Streaming, Kafka, Cassandra, Akka and Scala. Efficient Stream Computation, Composable Data Pipelines, Data Locality, Cassandra data model and low latency, Kafka producers and HTTP endpoints as akka actors...
Lambda Architecture with Spark Streaming, Kafka, Cassandra, Akka, ScalaHelena Edelson
Scala Days, Amsterdam, 2015: Lambda Architecture - Batch and Streaming with Spark, Cassandra, Kafka, Akka and Scala; Fault Tolerance, Data Pipelines, Data Flows, Data Locality, Akka Actors, Spark, Spark Cassandra Connector, Big Data, Asynchronous data flows. Time series data, KillrWeather, Scalable Infrastructure, Partition For Scale, Replicate For Resiliency, Parallelism
Isolation, Data Locality, Location Transparency
This document provides an overview of the Apache Spark framework. It covers Spark fundamentals including the Spark execution model using Resilient Distributed Datasets (RDDs), basic Spark programming, and common Spark libraries and use cases. Key topics include how Spark improves on MapReduce by operating in-memory and supporting general graphs through its directed acyclic graph execution model. The document also reviews Spark installation and provides examples of basic Spark programs in Scala.
A Master Guide To Apache Spark Application And Versatile Uses.pdfDataSpace Academy
A leading name in big data handling tasks, Apache Spark earns kudos for its ability to handle vast amounts of data swiftly and efficiently. The tool is also a major name in the development of APIs in Java, Python, and R. The blog offers a master guide on all the key aspects of Apache Spark, including versatility, fault tolerance, real-time streaming, and more. The blog also goes on to explain the operational procedure of the tool, step by step. Finally, the article wraps up with benefits and also limitations of the tool.
VMworld 2013: Virtualizing Databases: Doing IT Right VMworld
VMworld 2013
Michael Corey, Ntirety, Inc
Jeff Szastak, VMware
Learn more about VMworld and register at http://www.vmworld.com/index.jspa?src=socmed-vmworld-slideshare
Transitioning Compute Models: Hadoop MapReduce to SparkSlim Baltagi
This presentation is an analysis of the observed trends in the transition from the Hadoop ecosystem to the Spark ecosystem. The related talk took place at the Chicago Hadoop User Group (CHUG) meetup held on February 12, 2015.
Apache Spark is an open-source data analytics cluster computing framework originally developed in the AMPLab at UC Berkeley.Spark fits into the Hadoop open-source community, building on top of the Hadoop Distributed File System (HDFS). However, Spark is not tied to the two-stage MapReduce paradigm, and promises performance up to 100 times faster than Hadoop MapReduce for certain applications.Spark provides primitives for in-memory cluster computing that allows user programs to load data into a cluster's memory and query it repeatedly, making it well suited to machine learning algorithms.
Big Data Processing with Apache Spark 2014mahchiev
This document provides an overview of Apache Spark, a framework for large-scale data processing. It discusses what big data is, the history and advantages of Spark, and Spark's execution model. Key concepts explained include Resilient Distributed Datasets (RDDs), transformations, actions, and MapReduce algorithms like word count. Examples are provided to illustrate Spark's use of RDDs and how it can improve on Hadoop MapReduce.
Bay Area Impala User Group Meetup (Sept 16 2014)Cloudera, Inc.
The document discusses Impala releases and roadmaps. It outlines key features released in different Impala versions, including SQL capabilities, performance improvements, and support for additional file formats and data types. It also describes Impala's performance advantages compared to other SQL-on-Hadoop systems and how its approach is expected to increasingly favor performance gains. Lastly, it encourages trying out Impala and engaging with their community.
spark example spark example spark examplespark examplespark examplespark exampleShidrokhGoudarzi1
Spark is a fast general-purpose engine for large-scale data processing. It has advantages over MapReduce like speed, ease of use, and running everywhere. Spark supports SQL querying, streaming, machine learning, and graph processing. It can run on Scala, Java, Python. Spark applications have drivers, executors, tasks and run RDDs and shared variables. The Spark shell provides an interactive way to learn the API and analyze data.
Cloudera Impala - Las Vegas Big Data Meetup Nov 5th 2014cdmaxime
Maxime Dumas gives a presentation on Cloudera Impala, which provides fast SQL query capability for Apache Hadoop. Impala allows for interactive queries on Hadoop data in seconds rather than minutes by using a native MPP query engine instead of MapReduce. It offers benefits like SQL support, improved performance of 3-4x up to 90x faster than MapReduce, and flexibility to query existing Hadoop data without needing to migrate or duplicate it. The latest release of Impala 2.0 includes new features like window functions, subqueries, and spilling joins and aggregations to disk when memory is exhausted.
Spark is a fast, general-purpose cluster computing system. It provides high-level APIs in Java, Scala, Python and R for distributed tasks including SQL, streaming, and machine learning. Spark improves on MapReduce by keeping data in-memory, allowing iterative algorithms to run faster than disk-based approaches. Resilient Distributed Datasets (RDDs) are Spark's fundamental data structure, acting as a fault-tolerant collection of elements that can be operated on in parallel.
Apache Spark is a fast, general-purpose cluster computing system that allows processing of large datasets in parallel across clusters. It can be used for batch processing, streaming, and interactive queries. Spark improves on Hadoop MapReduce by using an in-memory computing model that is faster than disk-based approaches. It includes APIs for Java, Scala, Python and supports machine learning algorithms, SQL queries, streaming, and graph processing.
http://bit.ly/1BTaXZP – As organizations look for even faster ways to derive value from big data, they are turning to Apache Spark is an in-memory processing framework that offers lightning-fast big data analytics, providing speed, developer productivity, and real-time processing advantages. The Spark software stack includes a core data-processing engine, an interface for interactive querying, Spark Streaming for streaming data analysis, and growing libraries for machine-learning and graph analysis. Spark is quickly establishing itself as a leading environment for doing fast, iterative in-memory and streaming analysis. This talk will give an introduction the Spark stack, explain how Spark has lighting fast results, and how it complements Apache Hadoop. By the end of the session, you’ll come away with a deeper understanding of how you can unlock deeper insights from your data, faster, with Spark.
Apache Spark is an open-source unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an optimized engine that supports general computation graphs for data analysis. Some key components of Apache Spark include Resilient Distributed Datasets (RDDs), DataFrames, Datasets, and Spark SQL for structured data processing. Spark also supports streaming, machine learning via MLlib, and graph processing with GraphX.
This document discusses Cloudera's initiative to make Spark the standard execution engine for Hadoop. It outlines how Spark improves on MapReduce by leveraging distributed memory and having a simpler developer experience. It also describes Cloudera's investments in areas like management, security, scale, and streaming to further Spark's capabilities and make it production-ready. The goal is for Spark to replace MapReduce as the execution engine and for specialized engines like Impala to handle specific workloads, with all sharing the same data, metadata, resource management, and other platform services.
By James Francis, CEO of Paradigm Asset Management
In the landscape of urban safety innovation, Mt. Vernon is emerging as a compelling case study for neighboring Westchester County cities. The municipality’s recently launched Public Safety Camera Program not only represents a significant advancement in community protection but also offers valuable insights for New Rochelle and White Plains as they consider their own safety infrastructure enhancements.
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsContify
AI competitor analysis helps businesses watch and understand what their competitors are doing. Using smart competitor intelligence tools, you can track their moves, learn from their strategies, and find ways to do better. Stay smart, act fast, and grow your business with the power of AI insights.
For more information please visit here https://www.contify.com/
Just-in-time: Repetitive production system in which processing and movement of materials and goods occur just as they are needed, usually in small batches
JIT is characteristic of lean production systems
JIT operates with very little “fat”
Telangana State, India’s newest state that was carved from the erstwhile state of Andhra
Pradesh in 2014 has launched the Water Grid Scheme named as ‘Mission Bhagiratha (MB)’
to seek a permanent and sustainable solution to the drinking water problem in the state. MB is
designed to provide potable drinking water to every household in their premises through
piped water supply (PWS) by 2018. The vision of the project is to ensure safe and sustainable
piped drinking water supply from surface water sources
GenAI for Quant Analytics: survey-analytics.aiInspirient
Pitched at the Greenbook Insight Innovation Competition as apart of IIEX North America 2025 on 30 April 2025 in Washington, D.C.
Join us at survey-analytics.ai!
2. Agenda
• Introduction
• Features -
• Supports all major Big Data Environments
• General platform for major Big Data tasks
• Access diverse data sources
• Speed
• Ease of use
• Architecture
• Resilient Distributed Datasets
• In-memory Computing
• Performance
Apache Spark 2
3. Spark Introduction
• Apache Spark is an
– open source,
– parallel data processing framework
– master slave model
– complements Hadoop
to make it easy to develop fast, unified Big Data applications
• Cloudera offers commercial support for Spark with Cloudera
Enterprise.
• It has over 465 contributors making it most active Big Data Project in
Apache Foundation, started at UC Berkley in 2009
Apache Spark 3
4. Supports All major BigData Environments
Runs Everywhere -
• Standalone Cluster Mode
• Hadoop Yarn
• Apache Mesos
• Amazon EC2
• Spark runs on both Windows and UNIX-like systems (e.g. Linux,
Mac OS).
Apache Spark 4
5. General platform for all major Big Data tasks
• Common ETL (Sqoop)
• SQL and Analytics (Pig and Hive)
• Real Time Streaming (Storm)
• Machine Learning (Mahout)
• Graphs (Data Visualization)
• Both Interactive and Batch mode processing
• Reuse the same code for batch and stream processing, even joining
streaming data to historical data
Apache Spark 5
6. Access Diverse Data Sources
Read and write anywhere -
• HDFS
• Cassandra
• Hbase
• TextFile
• RDBMS
• Kafka
Apache Spark 6
7. Speed
• Run programs up to 100x faster than Hadoop MapReduce in
memory, or 10x faster on disk.
• Spark has an advanced DAG execution engine that supports cyclic
data flow and in-memory computing.
Logistic regression in Hadoop and Spark
Apache Spark 7
8. Ease of Use
• Write application in
– Java
– Scala
– Python
• 80 high-level operators that make it easy to build parallel apps
Apache Spark 8
9. Unified Analytics with Cloudera’s Enterprise Data Hub
Faster Decisions (Interactive) Better Decisions (Batch)
Real-Time Action (Streaming
and Applications)
Web Security
Why is my website slow? What are the common causes
of performance issues?
How can I detect and block
malicious attacks in real-time?
Retail
What are our top selling items
across channels?
What products and services to
customers buy together?
How can I deliver relevant
promotions to buyers at the
point of sale?
Financial
Services
Who opened multiple accounts
in the past 6 months?
What are the leading
indicators of fraudulent
activity?
How can I protect my
customers from identity theft in
real-time?
Apache Spark 9
12. Resilient Distributed Datasets
• A read-only collection of objects partitioned across a set of machines
• Immutable. You can modify an RDD with a transformation but the
transformation returns you a new RDD whereas the original RDD
remains the same.
• Can be rebuilt if a partition is lost.
• Fault tolerant because they can be recreated & recomputed
RDD supports two types of operations:
• Transformation
• Action
Apache Spark 12
13. • Transformation: don't return a single value, they return a new RDD.
Nothing gets evaluated when you call a Transformation function, it
just takes an RDD and return a new RDD.
– Some of the Transformation functions are map, filter, flatMap,
groupByKey, reduceByKey, aggregateByKey, pipe, and coalesce.
• Action: operation evaluates and returns a new value. When an
Action function is called on a RDD object, all the data processing
queries are computed at that time and the result value is returned.
– Some of the Action operations are reduce, collect, count, first, take,
countByKey, and foreach.
Apache Spark 13
14. How in-memory computing Improve Performance
• Intermediate data is not spilled to disk
Apache Spark 14
15. Performance improvement in DAG executions
• New shuffle implementation, sort-based shuffle uses single buffer
which reduces substantial memory overhead and can support huge
workloads in a single stage. Earlier concurrent buffers were used
• The revamped network module in Spark maintains its own pool of
memory, thus bypassing JVM’s memory allocator, reducing the
impact of garbage collection.
• New external shuffle service ensures that Spark can still serve
shuffle files even when the executors are in GC pauses.
Apache Spark 15
16. • Timsort, which is a derivation of quicksort and mergesort. It works
better than earlier quicksort in partially ordered datasets.
• Exploiting cache locality reduced sorting by factor of 5.
sort_key record sort_key location
The Spark cluster was able to sustain 3GB/s/node I/O activity during the
map phase, and 1.1 GB/s/node network activity during the reduce phase,
saturating the 10Gbps link available on these machines.
Apache Spark 16
10b 10b100b 4b
17. • The memory consumed by RDDs can be optimized per size of data
• Performance can be tuned by caching
• MR supports only Map and Reduce operations and everything (join,
groupby etc) has to be fit into the Map and Reduce model, which
might not be the efficient way. Spark supports 80 other
transformations and actions.
Apache Spark 17
#4: I quickly added these four benefits, please keep extending this list. Put quantifiable numbers (example ??% improvement in development cycle) wherever possible.
#5: List all the features added so far in Release #1. One line per feature, similar to the “Features in upcoming releases” format.
#6: The architecture diagram goes here. See the example I sent from one of my oldframework development project.