Spark streaming can be used for near-real-time data analysis of data streams. It processes data in micro-batches and provides windowing operations. Stateful operations like updateStateByKey allow tracking state across batches. Data can be obtained from sources like Kafka, Flume, HDFS and processed using transformations before being saved to destinations like Cassandra. Fault tolerance is provided by replicating batches, but some data may be lost depending on how receivers collect data.