SlideShare a Scribd company logo
Date
Spark Job Server
Evan Chan and Kelvin Chu
Overview
WhyWe Needed a Job Server
• Created at Ooyala in 2013
• Our vision for Spark is as a multi-team big data service
• What gets repeated by every team:
• Bastion box for running Hadoop/Spark jobs
• Deploys and process monitoring
• Tracking and serializing job status, progress, and job results
• Job validation
• No easy way to kill jobs
• Polyglot technology stack - Ruby scripts run jobs, Go services
Spark as a Service
• REST API for Spark jobs and contexts. Easily operate Spark from any
language or environment.
• Runs jobs in their own Contexts or share 1 context amongst jobs
• Great for sharing cached RDDs across jobs and low-latency jobs
• Works for Spark Streaming as well!
• Works with Standalone, Mesos, any Spark config
• Jars, job history and config are persisted via a pluggable API
• Async and sync API, JSON job results
http://github.com/ooyala/spark-jobserver
Open Source!!
Creating a Job Server Project
✤ sbt assembly -> fat jar -> upload to job server!
✤ "provided" is used. Don’t want SBT assembly to include the
whole job server jar.!
✤ Java projects should be possible too
resolvers += "Ooyala Bintray" at "http://dl.bintray.com/ooyala/maven"
!
libraryDependencies += "ooyala.cnd" % "job-server" % "0.3.1" % "provided"
✤ In your build.sbt, add this
Example Job Server Job
/**!
* A super-simple Spark job example that implements the SparkJob trait and!
* can be submitted to the job server.!
*/!
object WordCountExample extends SparkJob {!
override def validate(sc: SparkContext, config: Config): SparkJobValidation = {!
Try(config.getString(“input.string”))!
.map(x => SparkJobValid)!
.getOrElse(SparkJobInvalid(“No input.string”))!
}!
!
override def runJob(sc: SparkContext, config: Config): Any = {!
val dd = sc.parallelize(config.getString(“input.string”).split(" ").toSeq)!
dd.map((_, 1)).reduceByKey(_ + _).collect().toMap!
}!
}!
What’s Different?
• Job does not create Context, Job Server does
• Decide when I run the job: in own context, or in pre-created context
• Upload new jobs to diagnose your RDD issues:
• POST /contexts/newContext
• POST /jobs .... context=newContext
• Upload a new diagnostic jar... POST /jars/newDiag
• Run diagnostic jar to dump into on cached RDDs
Submitting and Running a Job
✦ curl --data-binary @../target/mydemo.jar localhost:8090/jars/demo
OK[11:32 PM] ~
!
✦ curl -d "input.string = A lazy dog jumped mean dog" 'localhost:8090/jobs?
appName=demo&classPath=WordCountExample&sync=true'
{
"status": "OK",
"RESULT": {
"lazy": 1,
"jumped": 1,
"A": 1,
"mean": 1,
"dog": 2
}
}
Retrieve Job Statuses
~/s/jobserver (evan-working-1 ↩=) curl 'localhost:8090/jobs?limit=2'
[{
"duration": "77.744 secs",
"classPath": "ooyala.cnd.CreateMaterializedView",
"startTime": "2013-11-26T20:13:09.071Z",
"context": "8b7059dd-ooyala.cnd.CreateMaterializedView",
"status": "FINISHED",
"jobId": "9982f961-aaaa-4195-88c2-962eae9b08d9"
}, {
"duration": "58.067 secs",
"classPath": "ooyala.cnd.CreateMaterializedView",
"startTime": "2013-11-26T20:22:03.257Z",
"context": "d0a5ebdc-ooyala.cnd.CreateMaterializedView",
"status": "FINISHED",
"jobId": "e9317383-6a67-41c4-8291-9c140b6d8459"
}]
Use Case: Fast Query Jobs
Spark as a Query Engine
✤ Goal: spark jobs that run in under a second and answers queries
on shared RDD data!
✤ Query params passed in as job config!
✤ Need to minimize context creation overhead!
✤ Thus many jobs sharing the same SparkContext!
✤ On-heap RDD caching means no serialization loss!
✤ Need to consider concurrent jobs (fair scheduling)
LOW-LATENCY QUERY JOBS
RDDLoad Data
Query
Job
Spark

Executors
Cassandra
REST Job Server
Query
Job
Query
Result
Query
Result
new SparkContext
Create
query
context
Load
some
data
Sharing Data Between Jobs
✤ RDD Caching!
✤ Benefit: no need to serialize data. Especially useful for indexes etc.!
✤ Job server provides a NamedRdds trait for thread-safe CRUD of
cached RDDs by name!
✤ (Compare to SparkContext’s API which uses an integer ID and
is not thread safe)!
✤ For example, at Ooyala a number of fields are multiplexed into the
RDD name: timestamp:customerID:granularity
Data Concurrency
✤ Single writer, multiple readers!
✤ Managing multiple updates to RDDs!
✤ Cache keeps track of which RDDs being updated!
✤ Example: thread A spark job creates RDD “A” at t0!
✤ thread B fetches RDD “A” at t1 > t0!
✤ Both threads A and B, using NamedRdds, will get the RDD at
time t2 when thread A finishes creating the RDD “A”
Production Usage
Persistence
✤ What gets persisted?!
✤ Job status (success, error, why it failed)!
✤ Job Configuration!
✤ Jars!
✤ JDBC database configuration: spark.sqldao.jdbc.url!
✤ jdbc:mysql://dbserver:3306/jobserverdb
✤ Multiple Job Servers can share the same database.!
✤ The default will be H2 - single file on disk.
Deployment and Metrics
✤ spark-jobserver repo comes with a full suite of tests
and deploy scripts:!
✤ server_deploy.sh for regular server pushes!
✤ server_package.sh for Mesos and Chronos .tar.gz!
✤ /metricz route for codahale-metrics monitoring!
✤ /healthz route for health check0o
Challenges and Lessons
• Spark is based around contexts - we need a Job Server oriented around
logical jobs
• Running multiple SparkContexts in the same process
• Much easier with Spark 0.9+ … no more global System properties
• Have to be careful with SparkEnv
• Dynamic jar and class loading is tricky (contributed back to Spark)
• Manage threads carefully - each context uses lots of threads
FutureWork
Future Plans
✤ Spark-contrib project list. So this and other projects
can gain visibility! (SPARK-1283)!
✤ HA mode using Akka Cluster or Mesos!
✤ HA and Hot Failover for Spark Drivers/Contexts!
✤ REST API for job progress!
✤ Swagger API documentation
HA and Hot Failover for Jobs
Job
Server 1
Job
Server 2
Active
Job
Context
HDFS
Standby
Job
Context
Gossip
Checkpoint
✤ Job context dies:!
✤ Job server 2
notices and spins
up standby
context, restores
checkpoint
Thanks for your contributions!
✤ All of these were community contributed:!
✤ index.html main page!
✤ saving and retrieving job configuration!
✤ Your contributions are very welcome on Github!
Architecture
Completely Async Design
✤ http://spray.io - probably the fastest JVM HTTP
microframework!
✤ Akka Actor based, non blocking!
✤ Futures used to manage individual jobs. (Note that
Spark is using Scala futures to manage job stages now)!
✤ Single JVM for now, but easy to distribute later via
remote Actors / Akka Cluster
Async Actor Flow
Spray web
API
Request
actor
Local
Supervisor
Job
Manager
Job 1
Future
Job 2
Future
Job Status
Actor
Job Result
Actor
Message flow fully documented
Thank you!
And Everybody is Hiring!!
UsingTachyon
Pros Cons
Off-heap storage: No GC
ByteBuffer API - need to
pay deserialization cost
Can be shared across
multiple processes
Data can survive process
loss
Backed by HDFS
Does not support random
access writes
Ad

More Related Content

What's hot (20)

Breakthrough OLAP performance with Cassandra and Spark
Breakthrough OLAP performance with Cassandra and SparkBreakthrough OLAP performance with Cassandra and Spark
Breakthrough OLAP performance with Cassandra and Spark
Evan Chan
 
Real time Analytics with Apache Kafka and Apache Spark
Real time Analytics with Apache Kafka and Apache SparkReal time Analytics with Apache Kafka and Apache Spark
Real time Analytics with Apache Kafka and Apache Spark
Rahul Jain
 
Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...
Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...
Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...
Helena Edelson
 
Reactive app using actor model & apache spark
Reactive app using actor model & apache sparkReactive app using actor model & apache spark
Reactive app using actor model & apache spark
Rahul Kumar
 
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Helena Edelson
 
Introduction to real time big data with Apache Spark
Introduction to real time big data with Apache SparkIntroduction to real time big data with Apache Spark
Introduction to real time big data with Apache Spark
Taras Matyashovsky
 
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Helena Edelson
 
Transactional writes to cloud storage with Eric Liang
Transactional writes to cloud storage with Eric LiangTransactional writes to cloud storage with Eric Liang
Transactional writes to cloud storage with Eric Liang
Databricks
 
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
Spark Summit
 
Global Big Data Conference Sept 2014 AWS Kinesis Spark Streaming Approximatio...
Global Big Data Conference Sept 2014 AWS Kinesis Spark Streaming Approximatio...Global Big Data Conference Sept 2014 AWS Kinesis Spark Streaming Approximatio...
Global Big Data Conference Sept 2014 AWS Kinesis Spark Streaming Approximatio...
Chris Fregly
 
Spark stream - Kafka
Spark stream - Kafka Spark stream - Kafka
Spark stream - Kafka
Dori Waldman
 
Stream Processing using Apache Spark and Apache Kafka
Stream Processing using Apache Spark and Apache KafkaStream Processing using Apache Spark and Apache Kafka
Stream Processing using Apache Spark and Apache Kafka
Abhinav Singh
 
Securing Spark Applications by Kostas Sakellis and Marcelo Vanzin
Securing Spark Applications by Kostas Sakellis and Marcelo VanzinSecuring Spark Applications by Kostas Sakellis and Marcelo Vanzin
Securing Spark Applications by Kostas Sakellis and Marcelo Vanzin
Spark Summit
 
Intro to Apache Spark
Intro to Apache SparkIntro to Apache Spark
Intro to Apache Spark
Robert Sanders
 
Introduction to Spark Streaming & Apache Kafka | Big Data Hadoop Spark Tutori...
Introduction to Spark Streaming & Apache Kafka | Big Data Hadoop Spark Tutori...Introduction to Spark Streaming & Apache Kafka | Big Data Hadoop Spark Tutori...
Introduction to Spark Streaming & Apache Kafka | Big Data Hadoop Spark Tutori...
CloudxLab
 
FiloDB - Breakthrough OLAP Performance with Cassandra and Spark
FiloDB - Breakthrough OLAP Performance with Cassandra and SparkFiloDB - Breakthrough OLAP Performance with Cassandra and Spark
FiloDB - Breakthrough OLAP Performance with Cassandra and Spark
Evan Chan
 
Emr zeppelin & Livy demystified
Emr zeppelin & Livy demystifiedEmr zeppelin & Livy demystified
Emr zeppelin & Livy demystified
Omid Vahdaty
 
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at LyftSF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
Chester Chen
 
Akka 2.4 plus new commercial features in Typesafe Reactive Platform
Akka 2.4 plus new commercial features in Typesafe Reactive PlatformAkka 2.4 plus new commercial features in Typesafe Reactive Platform
Akka 2.4 plus new commercial features in Typesafe Reactive Platform
Legacy Typesafe (now Lightbend)
 
Spark Kernel Talk - Apache Spark Meetup San Francisco (July 2015)
Spark Kernel Talk - Apache Spark Meetup San Francisco (July 2015)Spark Kernel Talk - Apache Spark Meetup San Francisco (July 2015)
Spark Kernel Talk - Apache Spark Meetup San Francisco (July 2015)
Robert "Chip" Senkbeil
 
Breakthrough OLAP performance with Cassandra and Spark
Breakthrough OLAP performance with Cassandra and SparkBreakthrough OLAP performance with Cassandra and Spark
Breakthrough OLAP performance with Cassandra and Spark
Evan Chan
 
Real time Analytics with Apache Kafka and Apache Spark
Real time Analytics with Apache Kafka and Apache SparkReal time Analytics with Apache Kafka and Apache Spark
Real time Analytics with Apache Kafka and Apache Spark
Rahul Jain
 
Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...
Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...
Delivering Meaning In Near-Real Time At High Velocity In Massive Scale with A...
Helena Edelson
 
Reactive app using actor model & apache spark
Reactive app using actor model & apache sparkReactive app using actor model & apache spark
Reactive app using actor model & apache spark
Rahul Kumar
 
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Streaming Big Data with Spark, Kafka, Cassandra, Akka & Scala (from webinar)
Helena Edelson
 
Introduction to real time big data with Apache Spark
Introduction to real time big data with Apache SparkIntroduction to real time big data with Apache Spark
Introduction to real time big data with Apache Spark
Taras Matyashovsky
 
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Fast and Simplified Streaming, Ad-Hoc and Batch Analytics with FiloDB and Spa...
Helena Edelson
 
Transactional writes to cloud storage with Eric Liang
Transactional writes to cloud storage with Eric LiangTransactional writes to cloud storage with Eric Liang
Transactional writes to cloud storage with Eric Liang
Databricks
 
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
Recipes for Running Spark Streaming Applications in Production-(Tathagata Das...
Spark Summit
 
Global Big Data Conference Sept 2014 AWS Kinesis Spark Streaming Approximatio...
Global Big Data Conference Sept 2014 AWS Kinesis Spark Streaming Approximatio...Global Big Data Conference Sept 2014 AWS Kinesis Spark Streaming Approximatio...
Global Big Data Conference Sept 2014 AWS Kinesis Spark Streaming Approximatio...
Chris Fregly
 
Spark stream - Kafka
Spark stream - Kafka Spark stream - Kafka
Spark stream - Kafka
Dori Waldman
 
Stream Processing using Apache Spark and Apache Kafka
Stream Processing using Apache Spark and Apache KafkaStream Processing using Apache Spark and Apache Kafka
Stream Processing using Apache Spark and Apache Kafka
Abhinav Singh
 
Securing Spark Applications by Kostas Sakellis and Marcelo Vanzin
Securing Spark Applications by Kostas Sakellis and Marcelo VanzinSecuring Spark Applications by Kostas Sakellis and Marcelo Vanzin
Securing Spark Applications by Kostas Sakellis and Marcelo Vanzin
Spark Summit
 
Introduction to Spark Streaming & Apache Kafka | Big Data Hadoop Spark Tutori...
Introduction to Spark Streaming & Apache Kafka | Big Data Hadoop Spark Tutori...Introduction to Spark Streaming & Apache Kafka | Big Data Hadoop Spark Tutori...
Introduction to Spark Streaming & Apache Kafka | Big Data Hadoop Spark Tutori...
CloudxLab
 
FiloDB - Breakthrough OLAP Performance with Cassandra and Spark
FiloDB - Breakthrough OLAP Performance with Cassandra and SparkFiloDB - Breakthrough OLAP Performance with Cassandra and Spark
FiloDB - Breakthrough OLAP Performance with Cassandra and Spark
Evan Chan
 
Emr zeppelin & Livy demystified
Emr zeppelin & Livy demystifiedEmr zeppelin & Livy demystified
Emr zeppelin & Livy demystified
Omid Vahdaty
 
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at LyftSF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
SF Big Analytics_20190612: Scaling Apache Spark on Kubernetes at Lyft
Chester Chen
 
Akka 2.4 plus new commercial features in Typesafe Reactive Platform
Akka 2.4 plus new commercial features in Typesafe Reactive PlatformAkka 2.4 plus new commercial features in Typesafe Reactive Platform
Akka 2.4 plus new commercial features in Typesafe Reactive Platform
Legacy Typesafe (now Lightbend)
 
Spark Kernel Talk - Apache Spark Meetup San Francisco (July 2015)
Spark Kernel Talk - Apache Spark Meetup San Francisco (July 2015)Spark Kernel Talk - Apache Spark Meetup San Francisco (July 2015)
Spark Kernel Talk - Apache Spark Meetup San Francisco (July 2015)
Robert "Chip" Senkbeil
 

Similar to Spark Summit 2014: Spark Job Server Talk (20)

Intro to node.js - Ran Mizrahi (28/8/14)
Intro to node.js - Ran Mizrahi (28/8/14)Intro to node.js - Ran Mizrahi (28/8/14)
Intro to node.js - Ran Mizrahi (28/8/14)
Ran Mizrahi
 
Intro to node.js - Ran Mizrahi (27/8/2014)
Intro to node.js - Ran Mizrahi (27/8/2014)Intro to node.js - Ran Mizrahi (27/8/2014)
Intro to node.js - Ran Mizrahi (27/8/2014)
Ran Mizrahi
 
Apache spark
Apache sparkApache spark
Apache spark
Sameer Mahajan
 
Sqoop on Spark for Data Ingestion
Sqoop on Spark for Data IngestionSqoop on Spark for Data Ingestion
Sqoop on Spark for Data Ingestion
DataWorks Summit
 
Faster Data Integration Pipeline Execution using Spark-Jobserver
Faster Data Integration Pipeline Execution using Spark-JobserverFaster Data Integration Pipeline Execution using Spark-Jobserver
Faster Data Integration Pipeline Execution using Spark-Jobserver
Databricks
 
Cassandra Day SV 2014: Spark, Shark, and Apache Cassandra
Cassandra Day SV 2014: Spark, Shark, and Apache CassandraCassandra Day SV 2014: Spark, Shark, and Apache Cassandra
Cassandra Day SV 2014: Spark, Shark, and Apache Cassandra
DataStax Academy
 
실시간 Streaming using Spark and Kafka 강의교재
실시간 Streaming using Spark and Kafka 강의교재실시간 Streaming using Spark and Kafka 강의교재
실시간 Streaming using Spark and Kafka 강의교재
hkyoon2
 
Cassandra and SparkSQL: You Don't Need Functional Programming for Fun with Ru...
Cassandra and SparkSQL: You Don't Need Functional Programming for Fun with Ru...Cassandra and SparkSQL: You Don't Need Functional Programming for Fun with Ru...
Cassandra and SparkSQL: You Don't Need Functional Programming for Fun with Ru...
Databricks
 
Spark 101 - First steps to distributed computing
Spark 101 - First steps to distributed computingSpark 101 - First steps to distributed computing
Spark 101 - First steps to distributed computing
Demi Ben-Ari
 
Homologous Apache Spark Clusters Using Nomad with Alex Dadgar
Homologous Apache Spark Clusters Using Nomad with Alex DadgarHomologous Apache Spark Clusters Using Nomad with Alex Dadgar
Homologous Apache Spark Clusters Using Nomad with Alex Dadgar
Databricks
 
Spark and scala reference architecture
Spark and scala reference architectureSpark and scala reference architecture
Spark and scala reference architecture
Adrian Tanase
 
Harnessing Spark and Cassandra with Groovy
Harnessing Spark and Cassandra with GroovyHarnessing Spark and Cassandra with Groovy
Harnessing Spark and Cassandra with Groovy
Steve Pember
 
Cassandra and Spark SQL
Cassandra and Spark SQLCassandra and Spark SQL
Cassandra and Spark SQL
Russell Spitzer
 
Apache Spark Tutorial
Apache Spark TutorialApache Spark Tutorial
Apache Spark Tutorial
Ahmet Bulut
 
Spark from the Surface
Spark from the SurfaceSpark from the Surface
Spark from the Surface
Josi Aranda
 
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
Simplilearn
 
Buildingsocialanalyticstoolwithmongodb
BuildingsocialanalyticstoolwithmongodbBuildingsocialanalyticstoolwithmongodb
Buildingsocialanalyticstoolwithmongodb
MongoDB APAC
 
Seattle Spark Meetup Mobius CSharp API
Seattle Spark Meetup Mobius CSharp APISeattle Spark Meetup Mobius CSharp API
Seattle Spark Meetup Mobius CSharp API
shareddatamsft
 
BDM25 - Spark runtime internal
BDM25 - Spark runtime internalBDM25 - Spark runtime internal
BDM25 - Spark runtime internal
David Lauzon
 
Scalding by Adform Research, Alex Gryzlov
Scalding by Adform Research, Alex GryzlovScalding by Adform Research, Alex Gryzlov
Scalding by Adform Research, Alex Gryzlov
Vasil Remeniuk
 
Intro to node.js - Ran Mizrahi (28/8/14)
Intro to node.js - Ran Mizrahi (28/8/14)Intro to node.js - Ran Mizrahi (28/8/14)
Intro to node.js - Ran Mizrahi (28/8/14)
Ran Mizrahi
 
Intro to node.js - Ran Mizrahi (27/8/2014)
Intro to node.js - Ran Mizrahi (27/8/2014)Intro to node.js - Ran Mizrahi (27/8/2014)
Intro to node.js - Ran Mizrahi (27/8/2014)
Ran Mizrahi
 
Sqoop on Spark for Data Ingestion
Sqoop on Spark for Data IngestionSqoop on Spark for Data Ingestion
Sqoop on Spark for Data Ingestion
DataWorks Summit
 
Faster Data Integration Pipeline Execution using Spark-Jobserver
Faster Data Integration Pipeline Execution using Spark-JobserverFaster Data Integration Pipeline Execution using Spark-Jobserver
Faster Data Integration Pipeline Execution using Spark-Jobserver
Databricks
 
Cassandra Day SV 2014: Spark, Shark, and Apache Cassandra
Cassandra Day SV 2014: Spark, Shark, and Apache CassandraCassandra Day SV 2014: Spark, Shark, and Apache Cassandra
Cassandra Day SV 2014: Spark, Shark, and Apache Cassandra
DataStax Academy
 
실시간 Streaming using Spark and Kafka 강의교재
실시간 Streaming using Spark and Kafka 강의교재실시간 Streaming using Spark and Kafka 강의교재
실시간 Streaming using Spark and Kafka 강의교재
hkyoon2
 
Cassandra and SparkSQL: You Don't Need Functional Programming for Fun with Ru...
Cassandra and SparkSQL: You Don't Need Functional Programming for Fun with Ru...Cassandra and SparkSQL: You Don't Need Functional Programming for Fun with Ru...
Cassandra and SparkSQL: You Don't Need Functional Programming for Fun with Ru...
Databricks
 
Spark 101 - First steps to distributed computing
Spark 101 - First steps to distributed computingSpark 101 - First steps to distributed computing
Spark 101 - First steps to distributed computing
Demi Ben-Ari
 
Homologous Apache Spark Clusters Using Nomad with Alex Dadgar
Homologous Apache Spark Clusters Using Nomad with Alex DadgarHomologous Apache Spark Clusters Using Nomad with Alex Dadgar
Homologous Apache Spark Clusters Using Nomad with Alex Dadgar
Databricks
 
Spark and scala reference architecture
Spark and scala reference architectureSpark and scala reference architecture
Spark and scala reference architecture
Adrian Tanase
 
Harnessing Spark and Cassandra with Groovy
Harnessing Spark and Cassandra with GroovyHarnessing Spark and Cassandra with Groovy
Harnessing Spark and Cassandra with Groovy
Steve Pember
 
Apache Spark Tutorial
Apache Spark TutorialApache Spark Tutorial
Apache Spark Tutorial
Ahmet Bulut
 
Spark from the Surface
Spark from the SurfaceSpark from the Surface
Spark from the Surface
Josi Aranda
 
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
What Is Apache Spark? | Introduction To Apache Spark | Apache Spark Tutorial ...
Simplilearn
 
Buildingsocialanalyticstoolwithmongodb
BuildingsocialanalyticstoolwithmongodbBuildingsocialanalyticstoolwithmongodb
Buildingsocialanalyticstoolwithmongodb
MongoDB APAC
 
Seattle Spark Meetup Mobius CSharp API
Seattle Spark Meetup Mobius CSharp APISeattle Spark Meetup Mobius CSharp API
Seattle Spark Meetup Mobius CSharp API
shareddatamsft
 
BDM25 - Spark runtime internal
BDM25 - Spark runtime internalBDM25 - Spark runtime internal
BDM25 - Spark runtime internal
David Lauzon
 
Scalding by Adform Research, Alex Gryzlov
Scalding by Adform Research, Alex GryzlovScalding by Adform Research, Alex Gryzlov
Scalding by Adform Research, Alex Gryzlov
Vasil Remeniuk
 
Ad

More from Evan Chan (10)

Time-State Analytics: MinneAnalytics 2024 Talk
Time-State Analytics: MinneAnalytics 2024 TalkTime-State Analytics: MinneAnalytics 2024 Talk
Time-State Analytics: MinneAnalytics 2024 Talk
Evan Chan
 
Porting a Streaming Pipeline from Scala to Rust
Porting a Streaming Pipeline from Scala to RustPorting a Streaming Pipeline from Scala to Rust
Porting a Streaming Pipeline from Scala to Rust
Evan Chan
 
Designing Stateful Apps for Cloud and Kubernetes
Designing Stateful Apps for Cloud and KubernetesDesigning Stateful Apps for Cloud and Kubernetes
Designing Stateful Apps for Cloud and Kubernetes
Evan Chan
 
Histograms at scale - Monitorama 2019
Histograms at scale - Monitorama 2019Histograms at scale - Monitorama 2019
Histograms at scale - Monitorama 2019
Evan Chan
 
FiloDB: Reactive, Real-Time, In-Memory Time Series at Scale
FiloDB: Reactive, Real-Time, In-Memory Time Series at ScaleFiloDB: Reactive, Real-Time, In-Memory Time Series at Scale
FiloDB: Reactive, Real-Time, In-Memory Time Series at Scale
Evan Chan
 
Building a High-Performance Database with Scala, Akka, and Spark
Building a High-Performance Database with Scala, Akka, and SparkBuilding a High-Performance Database with Scala, Akka, and Spark
Building a High-Performance Database with Scala, Akka, and Spark
Evan Chan
 
Akka in Production - ScalaDays 2015
Akka in Production - ScalaDays 2015Akka in Production - ScalaDays 2015
Akka in Production - ScalaDays 2015
Evan Chan
 
MIT lecture - Socrata Open Data Architecture
MIT lecture - Socrata Open Data ArchitectureMIT lecture - Socrata Open Data Architecture
MIT lecture - Socrata Open Data Architecture
Evan Chan
 
OLAP with Cassandra and Spark
OLAP with Cassandra and SparkOLAP with Cassandra and Spark
OLAP with Cassandra and Spark
Evan Chan
 
Real-time Analytics with Cassandra, Spark, and Shark
Real-time Analytics with Cassandra, Spark, and SharkReal-time Analytics with Cassandra, Spark, and Shark
Real-time Analytics with Cassandra, Spark, and Shark
Evan Chan
 
Time-State Analytics: MinneAnalytics 2024 Talk
Time-State Analytics: MinneAnalytics 2024 TalkTime-State Analytics: MinneAnalytics 2024 Talk
Time-State Analytics: MinneAnalytics 2024 Talk
Evan Chan
 
Porting a Streaming Pipeline from Scala to Rust
Porting a Streaming Pipeline from Scala to RustPorting a Streaming Pipeline from Scala to Rust
Porting a Streaming Pipeline from Scala to Rust
Evan Chan
 
Designing Stateful Apps for Cloud and Kubernetes
Designing Stateful Apps for Cloud and KubernetesDesigning Stateful Apps for Cloud and Kubernetes
Designing Stateful Apps for Cloud and Kubernetes
Evan Chan
 
Histograms at scale - Monitorama 2019
Histograms at scale - Monitorama 2019Histograms at scale - Monitorama 2019
Histograms at scale - Monitorama 2019
Evan Chan
 
FiloDB: Reactive, Real-Time, In-Memory Time Series at Scale
FiloDB: Reactive, Real-Time, In-Memory Time Series at ScaleFiloDB: Reactive, Real-Time, In-Memory Time Series at Scale
FiloDB: Reactive, Real-Time, In-Memory Time Series at Scale
Evan Chan
 
Building a High-Performance Database with Scala, Akka, and Spark
Building a High-Performance Database with Scala, Akka, and SparkBuilding a High-Performance Database with Scala, Akka, and Spark
Building a High-Performance Database with Scala, Akka, and Spark
Evan Chan
 
Akka in Production - ScalaDays 2015
Akka in Production - ScalaDays 2015Akka in Production - ScalaDays 2015
Akka in Production - ScalaDays 2015
Evan Chan
 
MIT lecture - Socrata Open Data Architecture
MIT lecture - Socrata Open Data ArchitectureMIT lecture - Socrata Open Data Architecture
MIT lecture - Socrata Open Data Architecture
Evan Chan
 
OLAP with Cassandra and Spark
OLAP with Cassandra and SparkOLAP with Cassandra and Spark
OLAP with Cassandra and Spark
Evan Chan
 
Real-time Analytics with Cassandra, Spark, and Shark
Real-time Analytics with Cassandra, Spark, and SharkReal-time Analytics with Cassandra, Spark, and Shark
Real-time Analytics with Cassandra, Spark, and Shark
Evan Chan
 
Ad

Recently uploaded (20)

Smart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptxSmart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptx
rushikeshnavghare94
 
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E..."Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
Infopitaara
 
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G..."Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
Infopitaara
 
Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...
Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...
Process Parameter Optimization for Minimizing Springback in Cold Drawing Proc...
Journal of Soft Computing in Civil Engineering
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
railway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forgingrailway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forging
Javad Kadkhodapour
 
new ppt artificial intelligence historyyy
new ppt artificial intelligence historyyynew ppt artificial intelligence historyyy
new ppt artificial intelligence historyyy
PianoPianist
 
ELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdfELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdf
Shiju Jacob
 
Introduction to Zoomlion Earthmoving.pptx
Introduction to Zoomlion Earthmoving.pptxIntroduction to Zoomlion Earthmoving.pptx
Introduction to Zoomlion Earthmoving.pptx
AS1920
 
IntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdfIntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdf
Luiz Carneiro
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
some basics electrical and electronics knowledge
some basics electrical and electronics knowledgesome basics electrical and electronics knowledge
some basics electrical and electronics knowledge
nguyentrungdo88
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...
IJCSES Journal
 
Degree_of_Automation.pdf for Instrumentation and industrial specialist
Degree_of_Automation.pdf for  Instrumentation  and industrial specialistDegree_of_Automation.pdf for  Instrumentation  and industrial specialist
Degree_of_Automation.pdf for Instrumentation and industrial specialist
shreyabhosale19
 
The Gaussian Process Modeling Module in UQLab
The Gaussian Process Modeling Module in UQLabThe Gaussian Process Modeling Module in UQLab
The Gaussian Process Modeling Module in UQLab
Journal of Soft Computing in Civil Engineering
 
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfRICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
MohamedAbdelkader115
 
Oil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdfOil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdf
M7md3li2
 
Smart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptxSmart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptx
rushikeshnavghare94
 
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E..."Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
"Boiler Feed Pump (BFP): Working, Applications, Advantages, and Limitations E...
Infopitaara
 
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G..."Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
Infopitaara
 
fluke dealers in bangalore..............
fluke dealers in bangalore..............fluke dealers in bangalore..............
fluke dealers in bangalore..............
Haresh Vaswani
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
211421893-M-Tech-CIVIL-Structural-Engineering-pdf.pdf
inmishra17121973
 
railway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forgingrailway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forging
Javad Kadkhodapour
 
new ppt artificial intelligence historyyy
new ppt artificial intelligence historyyynew ppt artificial intelligence historyyy
new ppt artificial intelligence historyyy
PianoPianist
 
ELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdfELectronics Boards & Product Testing_Shiju.pdf
ELectronics Boards & Product Testing_Shiju.pdf
Shiju Jacob
 
Introduction to Zoomlion Earthmoving.pptx
Introduction to Zoomlion Earthmoving.pptxIntroduction to Zoomlion Earthmoving.pptx
Introduction to Zoomlion Earthmoving.pptx
AS1920
 
IntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdfIntroSlides-April-BuildWithAI-VertexAI.pdf
IntroSlides-April-BuildWithAI-VertexAI.pdf
Luiz Carneiro
 
introduction to machine learining for beginers
introduction to machine learining for beginersintroduction to machine learining for beginers
introduction to machine learining for beginers
JoydebSheet
 
some basics electrical and electronics knowledge
some basics electrical and electronics knowledgesome basics electrical and electronics knowledge
some basics electrical and electronics knowledge
nguyentrungdo88
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...
IJCSES Journal
 
Degree_of_Automation.pdf for Instrumentation and industrial specialist
Degree_of_Automation.pdf for  Instrumentation  and industrial specialistDegree_of_Automation.pdf for  Instrumentation  and industrial specialist
Degree_of_Automation.pdf for Instrumentation and industrial specialist
shreyabhosale19
 
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdfRICS Membership-(The Royal Institution of Chartered Surveyors).pdf
RICS Membership-(The Royal Institution of Chartered Surveyors).pdf
MohamedAbdelkader115
 
Oil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdfOil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdf
M7md3li2
 

Spark Summit 2014: Spark Job Server Talk

  • 1. Date Spark Job Server Evan Chan and Kelvin Chu
  • 3. WhyWe Needed a Job Server • Created at Ooyala in 2013 • Our vision for Spark is as a multi-team big data service • What gets repeated by every team: • Bastion box for running Hadoop/Spark jobs • Deploys and process monitoring • Tracking and serializing job status, progress, and job results • Job validation • No easy way to kill jobs • Polyglot technology stack - Ruby scripts run jobs, Go services
  • 4. Spark as a Service • REST API for Spark jobs and contexts. Easily operate Spark from any language or environment. • Runs jobs in their own Contexts or share 1 context amongst jobs • Great for sharing cached RDDs across jobs and low-latency jobs • Works for Spark Streaming as well! • Works with Standalone, Mesos, any Spark config • Jars, job history and config are persisted via a pluggable API • Async and sync API, JSON job results
  • 6. Creating a Job Server Project ✤ sbt assembly -> fat jar -> upload to job server! ✤ "provided" is used. Don’t want SBT assembly to include the whole job server jar.! ✤ Java projects should be possible too resolvers += "Ooyala Bintray" at "http://dl.bintray.com/ooyala/maven" ! libraryDependencies += "ooyala.cnd" % "job-server" % "0.3.1" % "provided" ✤ In your build.sbt, add this
  • 7. Example Job Server Job /**! * A super-simple Spark job example that implements the SparkJob trait and! * can be submitted to the job server.! */! object WordCountExample extends SparkJob {! override def validate(sc: SparkContext, config: Config): SparkJobValidation = {! Try(config.getString(“input.string”))! .map(x => SparkJobValid)! .getOrElse(SparkJobInvalid(“No input.string”))! }! ! override def runJob(sc: SparkContext, config: Config): Any = {! val dd = sc.parallelize(config.getString(“input.string”).split(" ").toSeq)! dd.map((_, 1)).reduceByKey(_ + _).collect().toMap! }! }!
  • 8. What’s Different? • Job does not create Context, Job Server does • Decide when I run the job: in own context, or in pre-created context • Upload new jobs to diagnose your RDD issues: • POST /contexts/newContext • POST /jobs .... context=newContext • Upload a new diagnostic jar... POST /jars/newDiag • Run diagnostic jar to dump into on cached RDDs
  • 9. Submitting and Running a Job ✦ curl --data-binary @../target/mydemo.jar localhost:8090/jars/demo OK[11:32 PM] ~ ! ✦ curl -d "input.string = A lazy dog jumped mean dog" 'localhost:8090/jobs? appName=demo&classPath=WordCountExample&sync=true' { "status": "OK", "RESULT": { "lazy": 1, "jumped": 1, "A": 1, "mean": 1, "dog": 2 } }
  • 10. Retrieve Job Statuses ~/s/jobserver (evan-working-1 ↩=) curl 'localhost:8090/jobs?limit=2' [{ "duration": "77.744 secs", "classPath": "ooyala.cnd.CreateMaterializedView", "startTime": "2013-11-26T20:13:09.071Z", "context": "8b7059dd-ooyala.cnd.CreateMaterializedView", "status": "FINISHED", "jobId": "9982f961-aaaa-4195-88c2-962eae9b08d9" }, { "duration": "58.067 secs", "classPath": "ooyala.cnd.CreateMaterializedView", "startTime": "2013-11-26T20:22:03.257Z", "context": "d0a5ebdc-ooyala.cnd.CreateMaterializedView", "status": "FINISHED", "jobId": "e9317383-6a67-41c4-8291-9c140b6d8459" }]
  • 11. Use Case: Fast Query Jobs
  • 12. Spark as a Query Engine ✤ Goal: spark jobs that run in under a second and answers queries on shared RDD data! ✤ Query params passed in as job config! ✤ Need to minimize context creation overhead! ✤ Thus many jobs sharing the same SparkContext! ✤ On-heap RDD caching means no serialization loss! ✤ Need to consider concurrent jobs (fair scheduling)
  • 13. LOW-LATENCY QUERY JOBS RDDLoad Data Query Job Spark
 Executors Cassandra REST Job Server Query Job Query Result Query Result new SparkContext Create query context Load some data
  • 14. Sharing Data Between Jobs ✤ RDD Caching! ✤ Benefit: no need to serialize data. Especially useful for indexes etc.! ✤ Job server provides a NamedRdds trait for thread-safe CRUD of cached RDDs by name! ✤ (Compare to SparkContext’s API which uses an integer ID and is not thread safe)! ✤ For example, at Ooyala a number of fields are multiplexed into the RDD name: timestamp:customerID:granularity
  • 15. Data Concurrency ✤ Single writer, multiple readers! ✤ Managing multiple updates to RDDs! ✤ Cache keeps track of which RDDs being updated! ✤ Example: thread A spark job creates RDD “A” at t0! ✤ thread B fetches RDD “A” at t1 > t0! ✤ Both threads A and B, using NamedRdds, will get the RDD at time t2 when thread A finishes creating the RDD “A”
  • 17. Persistence ✤ What gets persisted?! ✤ Job status (success, error, why it failed)! ✤ Job Configuration! ✤ Jars! ✤ JDBC database configuration: spark.sqldao.jdbc.url! ✤ jdbc:mysql://dbserver:3306/jobserverdb ✤ Multiple Job Servers can share the same database.! ✤ The default will be H2 - single file on disk.
  • 18. Deployment and Metrics ✤ spark-jobserver repo comes with a full suite of tests and deploy scripts:! ✤ server_deploy.sh for regular server pushes! ✤ server_package.sh for Mesos and Chronos .tar.gz! ✤ /metricz route for codahale-metrics monitoring! ✤ /healthz route for health check0o
  • 19. Challenges and Lessons • Spark is based around contexts - we need a Job Server oriented around logical jobs • Running multiple SparkContexts in the same process • Much easier with Spark 0.9+ … no more global System properties • Have to be careful with SparkEnv • Dynamic jar and class loading is tricky (contributed back to Spark) • Manage threads carefully - each context uses lots of threads
  • 21. Future Plans ✤ Spark-contrib project list. So this and other projects can gain visibility! (SPARK-1283)! ✤ HA mode using Akka Cluster or Mesos! ✤ HA and Hot Failover for Spark Drivers/Contexts! ✤ REST API for job progress! ✤ Swagger API documentation
  • 22. HA and Hot Failover for Jobs Job Server 1 Job Server 2 Active Job Context HDFS Standby Job Context Gossip Checkpoint ✤ Job context dies:! ✤ Job server 2 notices and spins up standby context, restores checkpoint
  • 23. Thanks for your contributions! ✤ All of these were community contributed:! ✤ index.html main page! ✤ saving and retrieving job configuration! ✤ Your contributions are very welcome on Github!
  • 25. Completely Async Design ✤ http://spray.io - probably the fastest JVM HTTP microframework! ✤ Akka Actor based, non blocking! ✤ Futures used to manage individual jobs. (Note that Spark is using Scala futures to manage job stages now)! ✤ Single JVM for now, but easy to distribute later via remote Actors / Akka Cluster
  • 26. Async Actor Flow Spray web API Request actor Local Supervisor Job Manager Job 1 Future Job 2 Future Job Status Actor Job Result Actor
  • 27. Message flow fully documented
  • 29. UsingTachyon Pros Cons Off-heap storage: No GC ByteBuffer API - need to pay deserialization cost Can be shared across multiple processes Data can survive process loss Backed by HDFS Does not support random access writes