SlideShare a Scribd company logo
Apache Spark in Depth
core concepts, architecture & internals
Anton Kirillov Ooyala, Mar 2016
Roadmap
● RDDs
○ Definition
○ Operations
● Execution workflow
○ DAG
○ Stages and tasks
○ Shuffle
● Architecture
○ Components
○ Memory model
● Coding
○ spark-shell
○ building and submitting Spark applications to YARN
Meet Spark
● Generalized framework for distributed data processing (batch, graph, ML)
● Scala collections functional API for manipulating data at scale
● In-memory data caching and reuse across computations
● Applies set of coarse-grained transformations over partitioned data
● Failure recovery relies on lineage to recompute failed tasks
● Supports majority of input formats and integrates with Mesos / YARN
Spark makes data engineers happy
Backup/restore of Cassandra tables in Parquet
def backup(config: Config) {
sc.cassandraTable(config.keyspace, config.table).map(_.toEvent).toDF()
.write.parquet(config.path)
}
def restore(config: Config) {
sqlContext.read.parquet(config.path)
.map(_.toEvent).saveToCassandra(config.keyspace, config.table)
}
Query different data sources to identify discrepancies
sqlContext.sql {
"""
SELECT count()
FROM cassandra_event_rollups
JOIN mongo_event_rollups
ON cassandra_event_rollups.uuid = cassandra_event_rollups.uuid
WHERE cassandra_event_rollups.value != cassandra_event_rollups.value
""".stripMargin
}
Core Concepts
RDD: Resilient Distributed Dataset
● A fault-tolerant, immutable, parallel data structure
● Provides API for
○ manipulating the collection of elements (transformations and materialization)
○ persisting intermediate results in memory for later reuse
○ controlling partitioning to optimize data placement
● Can be created through deterministic operation
○ from storage (distributed file system, database, plain file)
○ from another RDD
● Stores information about parent RDDs
○ for execution optimization and operations pipelining
○ to recompute the data in case of failure
RDD: a developer’s view
● Distributed immutable data + lazily evaluated operations
○ partitioned data + iterator
○ transformations & actions
● An interface defining 5 main properties
a list of partitions (e.g. splits in Hadoop)
def getPartitions: Array[Partition]
a list of dependencies on other RDDs
def getDependencies: Seq[Dependency[_]]
a function for computing each split
def compute(split: Partition, context: TaskContext): Iterator[T]
(optional) a list of preferred locations to compute each split on
def getPreferredLocations(split: Partition): Seq[String] = Nil
(optional) a partitioner for key-value RDDs
val partitioner: Option[Partitioner] = None
lineage
execution optimization
RDDs Example
● HadoopRDD
○ getPartitions = HDFS blocks
○ getDependencies = None
○ compute = load block in memory
○ getPrefferedLocations = HDFS block locations
○ partitioner = None
● MapPartitionsRDD
○ getPartitions = same as parent
○ getDependencies = parent RDD
○ compute = compute parent and apply map()
○ getPrefferedLocations = same as parent
○ partitioner = None
sparkContext.textFile("hdfs://...")
RDD Operations
● Transformations
○ apply user function to every element in a partition (or to the whole partition)
○ apply aggregation function to the whole dataset (groupBy, sortBy)
○ introduce dependencies between RDDs to form DAG
○ provide functionality for repartitioning (repartition, partitionBy)
● Actions
○ trigger job execution
○ used to materialize computation results
● Extra: persistence
○ explicitly store RDDs in memory, on disk or off-heap (cache, persist)
○ checkpointing for truncating RDD lineage
Execution workflow
10
rdd1.join(rdd2)
.groupBy(...)
.filter(...)
splits graph into
stages of tasks
submits each stage
as ready
launches tasks via
cluster manager
retries failed or
struggling tasks
executes tasks
stores and serves
blocks
Code sample: joining aggregated and raw data
//aggregate events after specific date for given campaign
val events = sc.cassandraTable("demo", "event")
.map(_.toEvent)
.filter(event => event.campaignId == campaignId && event.time.isAfter(watermark))
.keyBy(_.eventType)
.reduceByKey(_ + _)
.cache()
//aggregate campaigns by type
val campaigns = sc.cassandraTable("demo", "campaign")
.map(_.toCampaign)
.filter(campaign => campaign.id == campaignId && campaign.time.isBefore(watermark))
.keyBy(_.eventType)
.reduceByKey(_ + _)
.cache()
//joined rollups and raw events
val joinedTotals = campaigns.join(events)
.map { case (key, (campaign, event)) => CampaignTotals(campaign, event) }
.collect()
//count totals separately
val eventTotals = events.map{ case (t, e) => s"$t -> ${e.value}" }.collect()
val campaignTotals = campaigns.map{ case (t, e) => s"$t -> ${e.value}" }.collect()
DAG
Dependency types
● Narrow (pipelineable)
○ each partition of the parent RDD is used by at most
one partition of the child RDD
○ allow for pipelined execution on one cluster node
○ failure recovery is more efficient as only lost parent
partitions need to be recomputed
● Wide (shuffle)
○ multiple child partitions may depend on one parent
partition
○ require data from all parent partitions to be available
and to be shuffled across the nodes
○ if some partition is lost from all the ancestors a
complete recomputation is needed
Stages and Tasks
● Stages breakdown strategy
○ check backwards from final RDD
○ add each “narrow” dependency to
the current stage
○ create new stage when there’s a
shuffle dependency
● Tasks
○ ShuffleMapTask partitions its
input for shuffle
○ ResultTask sends its output to
the driver
Shuffle
● Shuffle Write
○ redistributes data among partitions
and writes files to disk
○ each hash shuffle task creates one
file per “reduce” task (total = MxR)
○ sort shuffle task creates one file
with regions assigned to reducer
○ sort shuffle uses in-memory sorting
with spillover to disk to get final
result
● Shuffle Read
○ fetches the files and applies
reduce() logic
○ if data ordering is needed then it is
sorted on “reducer” side for any
type of shuffle (SPARK-2926)
Sort Shuffle
● Incoming records accumulated
and sorted in memory according
their target partition ids
● Sorted records are written to file
or multiple files if spilled and then
merged
● index file stores offsets of the
data blocks in the data file
● Sorting without deserialization is
possible under certain conditions
(SPARK-7081)
Architecture Recap
● Spark Driver
○ separate process to execute user
applications
○ creates SparkContext to schedule
jobs execution and negotiate with
cluster manager
● Executors
○ run tasks scheduled by driver
○ store computation results in
memory, on disk or off-heap
○ interact with storage systems
● Cluster Manager
○ Mesos
○ YARN
○ Spark Standalone
Spark Components
Spark Components
● SparkContext
○ represents the connection to a Spark cluster, and can be used to create RDDs, accumulators and
broadcast variables on that cluster
● DAGScheduler
○ computes a DAG of stages for each job and submits them to TaskScheduler
○ determines preferred locations for tasks (based on cache status or shuffle files locations) and finds
minimum schedule to run the jobs
● TaskScheduler
○ responsible for sending tasks to the cluster, running them, retrying if there are failures, and mitigating
stragglers
● SchedulerBackend
○ backend interface for scheduling systems that allows plugging in different implementations(Mesos,
YARN, Standalone, local)
● BlockManager
○ provides interfaces for putting and retrieving blocks both locally and remotely into various stores
(memory, disk, and off-heap)
Memory Management in Spark 1.6
● Execution Memory
○ storage for data needed during tasks execution
○ shuffle-related data
● Storage Memory
○ storage of cached RDDs and broadcast variables
○ possible to borrow from execution memory
(spill otherwise)
○ safeguard value is 0.5 of Spark Memory when cached
blocks are immune to eviction
● User Memory
○ user data structures and internal metadata in Spark
○ safeguarding against OOM
● Reserved memory
○ memory needed for running executor itself and not
strictly related to Spark
Workshop
code available @ github.com/datastrophic/spark-workshop
Execution Modes
● spark-shell --master [ local | spark | yarn-client | mesos]
○ launches REPL connected to specified cluster manager
○ always runs in client mode
● spark-submit --master [ local | spark:// | mesos:// | yarn ] spark-job.jar
○ launches assembly jar on the cluster
● Masters
○ local[k] - run Spark locally with K worker threads
○ spark - launches driver app on Spark Standalone installation
○ mesos - driver will spawn executors on Mesos cluster (deploy-mode: client | cluster)
○ yarn - same idea as with Mesos (deploy-mode: client | cluster)
● Deploy Modes
○ client - driver executed as a separate process on the machine where it has been launched and
spawns executors
○ cluster - driver launched as a container using underlying cluster manager
Invocation examples
spark-shell 
--master yarn 
--deploy-mode client 
--executor-cores 1 
--num-executors 2 
--jars /target/spark-workshop.jar 
--conf spark.cassandra.connection.host=cassandra
spark-submit --class io.datastrophic.spark.workshop.ParametrizedApplicationExample 
--master yarn 
--deploy-mode cluster 
--num-executors 2 
--driver-memory 1g 
--executor-memory 1g 
/target/spark-workshop.jar 
--cassandra-host cassandra 
--keyspace demo 
--table event 
--target-dir /workshop/dumps
Live Demo
● spark-shell
● Spark UI
● creating an app with Typesafe Activator
● Spark SQL and DataFrames API
● coding
Coding ideas
● get familiar with API through sample project
○ join data from different storage systems
○ aggregate data with breakdown by date
● play with caching and persistence
● check out join behavior applying different partitioning
● familiarize with Spark UI
● experiment with new DataSet API (since 1.6)
● [ your awesome idea here ]
Questions
@antonkirillov datastrophic.io
Ad

More Related Content

What's hot (20)

Apache spark - Architecture , Overview & libraries
Apache spark - Architecture , Overview & librariesApache spark - Architecture , Overview & libraries
Apache spark - Architecture , Overview & libraries
Walaa Hamdy Assy
 
Processing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeekProcessing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeek
Venkata Naga Ravi
 
Apache spark
Apache sparkApache spark
Apache spark
TEJPAL GAUTAM
 
Spark
SparkSpark
Spark
Heena Madan
 
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Databricks
 
Apache Spark Introduction and Resilient Distributed Dataset basics and deep dive
Apache Spark Introduction and Resilient Distributed Dataset basics and deep diveApache Spark Introduction and Resilient Distributed Dataset basics and deep dive
Apache Spark Introduction and Resilient Distributed Dataset basics and deep dive
Sachin Aggarwal
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 
Spark shuffle introduction
Spark shuffle introductionSpark shuffle introduction
Spark shuffle introduction
colorant
 
Parquet Strata/Hadoop World, New York 2013
Parquet Strata/Hadoop World, New York 2013Parquet Strata/Hadoop World, New York 2013
Parquet Strata/Hadoop World, New York 2013
Julien Le Dem
 
Apache Spark Introduction
Apache Spark IntroductionApache Spark Introduction
Apache Spark Introduction
sudhakara st
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Apache Spark Architecture
Apache Spark ArchitectureApache Spark Architecture
Apache Spark Architecture
Alexey Grishchenko
 
Presto on Apache Spark: A Tale of Two Computation Engines
Presto on Apache Spark: A Tale of Two Computation EnginesPresto on Apache Spark: A Tale of Two Computation Engines
Presto on Apache Spark: A Tale of Two Computation Engines
Databricks
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark Summit
 
Apache Spark 101
Apache Spark 101Apache Spark 101
Apache Spark 101
Abdullah Çetin ÇAVDAR
 
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the CloudAmazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Noritaka Sekiyama
 
Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
What Is RDD In Spark? | Edureka
What Is RDD In Spark? | EdurekaWhat Is RDD In Spark? | Edureka
What Is RDD In Spark? | Edureka
Edureka!
 
Apache spark - Architecture , Overview & libraries
Apache spark - Architecture , Overview & librariesApache spark - Architecture , Overview & libraries
Apache spark - Architecture , Overview & libraries
Walaa Hamdy Assy
 
Processing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeekProcessing Large Data with Apache Spark -- HasGeek
Processing Large Data with Apache Spark -- HasGeek
Venkata Naga Ravi
 
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Improving SparkSQL Performance by 30%: How We Optimize Parquet Pushdown and P...
Databricks
 
Apache Spark Introduction and Resilient Distributed Dataset basics and deep dive
Apache Spark Introduction and Resilient Distributed Dataset basics and deep diveApache Spark Introduction and Resilient Distributed Dataset basics and deep dive
Apache Spark Introduction and Resilient Distributed Dataset basics and deep dive
Sachin Aggarwal
 
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Designing ETL Pipelines with Structured Streaming and Delta Lake—How to Archi...
Databricks
 
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Deep Dive into Spark SQL with Advanced Performance Tuning with Xiao Li & Wenc...
Databricks
 
Parquet performance tuning: the missing guide
Parquet performance tuning: the missing guideParquet performance tuning: the missing guide
Parquet performance tuning: the missing guide
Ryan Blue
 
Spark shuffle introduction
Spark shuffle introductionSpark shuffle introduction
Spark shuffle introduction
colorant
 
Parquet Strata/Hadoop World, New York 2013
Parquet Strata/Hadoop World, New York 2013Parquet Strata/Hadoop World, New York 2013
Parquet Strata/Hadoop World, New York 2013
Julien Le Dem
 
Apache Spark Introduction
Apache Spark IntroductionApache Spark Introduction
Apache Spark Introduction
sudhakara st
 
The Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization OpportunitiesThe Parquet Format and Performance Optimization Opportunities
The Parquet Format and Performance Optimization Opportunities
Databricks
 
Presto on Apache Spark: A Tale of Two Computation Engines
Presto on Apache Spark: A Tale of Two Computation EnginesPresto on Apache Spark: A Tale of Two Computation Engines
Presto on Apache Spark: A Tale of Two Computation Engines
Databricks
 
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark + Parquet In Depth: Spark Summit East Talk by Emily Curtin and Robbie S...
Spark Summit
 
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the CloudAmazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Amazon S3 Best Practice and Tuning for Hadoop/Spark in the Cloud
Noritaka Sekiyama
 
Apache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper OptimizationApache Spark Core—Deep Dive—Proper Optimization
Apache Spark Core—Deep Dive—Proper Optimization
Databricks
 
What Is RDD In Spark? | Edureka
What Is RDD In Spark? | EdurekaWhat Is RDD In Spark? | Edureka
What Is RDD In Spark? | Edureka
Edureka!
 

Viewers also liked (14)

Introduction to Spark Internals
Introduction to Spark InternalsIntroduction to Spark Internals
Introduction to Spark Internals
Pietro Michiardi
 
Introduction to Apache Spark Developer Training
Introduction to Apache Spark Developer TrainingIntroduction to Apache Spark Developer Training
Introduction to Apache Spark Developer Training
Cloudera, Inc.
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
Rahul Jain
 
MapR Tutorial Series
MapR Tutorial SeriesMapR Tutorial Series
MapR Tutorial Series
selvaraaju
 
Simplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache SparkSimplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache Spark
Databricks
 
MapR and Cisco Make IT Better
MapR and Cisco Make IT BetterMapR and Cisco Make IT Better
MapR and Cisco Make IT Better
MapR Technologies
 
Apache Spark & Hadoop
Apache Spark & HadoopApache Spark & Hadoop
Apache Spark & Hadoop
MapR Technologies
 
Modern Data Architecture
Modern Data ArchitectureModern Data Architecture
Modern Data Architecture
Alexey Grishchenko
 
Hands on MapR -- Viadea
Hands on MapR -- ViadeaHands on MapR -- Viadea
Hands on MapR -- Viadea
viadea
 
Architectural Overview of MapR's Apache Hadoop Distribution
Architectural Overview of MapR's Apache Hadoop DistributionArchitectural Overview of MapR's Apache Hadoop Distribution
Architectural Overview of MapR's Apache Hadoop Distribution
mcsrivas
 
MapR M7: Providing an enterprise quality Apache HBase API
MapR M7: Providing an enterprise quality Apache HBase APIMapR M7: Providing an enterprise quality Apache HBase API
MapR M7: Providing an enterprise quality Apache HBase API
mcsrivas
 
Deep Learning for Fraud Detection
Deep Learning for Fraud DetectionDeep Learning for Fraud Detection
Deep Learning for Fraud Detection
DataWorks Summit/Hadoop Summit
 
Apache Spark 2.0: Faster, Easier, and Smarter
Apache Spark 2.0: Faster, Easier, and SmarterApache Spark 2.0: Faster, Easier, and Smarter
Apache Spark 2.0: Faster, Easier, and Smarter
Databricks
 
MapR Data Analyst
MapR Data AnalystMapR Data Analyst
MapR Data Analyst
selvaraaju
 
Introduction to Spark Internals
Introduction to Spark InternalsIntroduction to Spark Internals
Introduction to Spark Internals
Pietro Michiardi
 
Introduction to Apache Spark Developer Training
Introduction to Apache Spark Developer TrainingIntroduction to Apache Spark Developer Training
Introduction to Apache Spark Developer Training
Cloudera, Inc.
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
Rahul Jain
 
MapR Tutorial Series
MapR Tutorial SeriesMapR Tutorial Series
MapR Tutorial Series
selvaraaju
 
Simplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache SparkSimplifying Big Data Analytics with Apache Spark
Simplifying Big Data Analytics with Apache Spark
Databricks
 
MapR and Cisco Make IT Better
MapR and Cisco Make IT BetterMapR and Cisco Make IT Better
MapR and Cisco Make IT Better
MapR Technologies
 
Hands on MapR -- Viadea
Hands on MapR -- ViadeaHands on MapR -- Viadea
Hands on MapR -- Viadea
viadea
 
Architectural Overview of MapR's Apache Hadoop Distribution
Architectural Overview of MapR's Apache Hadoop DistributionArchitectural Overview of MapR's Apache Hadoop Distribution
Architectural Overview of MapR's Apache Hadoop Distribution
mcsrivas
 
MapR M7: Providing an enterprise quality Apache HBase API
MapR M7: Providing an enterprise quality Apache HBase APIMapR M7: Providing an enterprise quality Apache HBase API
MapR M7: Providing an enterprise quality Apache HBase API
mcsrivas
 
Apache Spark 2.0: Faster, Easier, and Smarter
Apache Spark 2.0: Faster, Easier, and SmarterApache Spark 2.0: Faster, Easier, and Smarter
Apache Spark 2.0: Faster, Easier, and Smarter
Databricks
 
MapR Data Analyst
MapR Data AnalystMapR Data Analyst
MapR Data Analyst
selvaraaju
 
Ad

Similar to Apache Spark in Depth: Core Concepts, Architecture & Internals (20)

Data processing platforms with SMACK: Spark and Mesos internals
Data processing platforms with SMACK:  Spark and Mesos internalsData processing platforms with SMACK:  Spark and Mesos internals
Data processing platforms with SMACK: Spark and Mesos internals
Anton Kirillov
 
Spark Deep Dive
Spark Deep DiveSpark Deep Dive
Spark Deep Dive
Corey Nolet
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
Datio Big Data
 
Apache spark - Installation
Apache spark - InstallationApache spark - Installation
Apache spark - Installation
Martin Zapletal
 
Apache spark - Spark's distributed programming model
Apache spark - Spark's distributed programming modelApache spark - Spark's distributed programming model
Apache spark - Spark's distributed programming model
Martin Zapletal
 
Apache Spark II (SparkSQL)
Apache Spark II (SparkSQL)Apache Spark II (SparkSQL)
Apache Spark II (SparkSQL)
Datio Big Data
 
Apache Spark™ is a multi-language engine for executing data-S5.ppt
Apache Spark™ is a multi-language engine for executing data-S5.pptApache Spark™ is a multi-language engine for executing data-S5.ppt
Apache Spark™ is a multi-language engine for executing data-S5.ppt
bhargavi804095
 
Spark 计算模型
Spark 计算模型Spark 计算模型
Spark 计算模型
wang xing
 
Apache Spark: What? Why? When?
Apache Spark: What? Why? When?Apache Spark: What? Why? When?
Apache Spark: What? Why? When?
Massimo Schenone
 
Core Services behind Spark Job Execution
Core Services behind Spark Job ExecutionCore Services behind Spark Job Execution
Core Services behind Spark Job Execution
datamantra
 
DAGScheduler - The Internals of Apache Spark.pdf
DAGScheduler - The Internals of Apache Spark.pdfDAGScheduler - The Internals of Apache Spark.pdf
DAGScheduler - The Internals of Apache Spark.pdf
JoeKibangu
 
Apache Spark Workshop
Apache Spark WorkshopApache Spark Workshop
Apache Spark Workshop
Michael Spector
 
Improving Apache Spark Downscaling
 Improving Apache Spark Downscaling Improving Apache Spark Downscaling
Improving Apache Spark Downscaling
Databricks
 
Tuning and Debugging in Apache Spark
Tuning and Debugging in Apache SparkTuning and Debugging in Apache Spark
Tuning and Debugging in Apache Spark
Databricks
 
Tuning and Debugging in Apache Spark
Tuning and Debugging in Apache SparkTuning and Debugging in Apache Spark
Tuning and Debugging in Apache Spark
Patrick Wendell
 
Debugging & Tuning in Spark
Debugging & Tuning in SparkDebugging & Tuning in Spark
Debugging & Tuning in Spark
Shiao-An Yuan
 
11. From Hadoop to Spark 2/2
11. From Hadoop to Spark 2/211. From Hadoop to Spark 2/2
11. From Hadoop to Spark 2/2
Fabio Fumarola
 
Big Data processing with Apache Spark
Big Data processing with Apache SparkBig Data processing with Apache Spark
Big Data processing with Apache Spark
Lucian Neghina
 
SE2016 BigData Vitalii Bondarenko "HD insight spark. Advanced in-memory Big D...
SE2016 BigData Vitalii Bondarenko "HD insight spark. Advanced in-memory Big D...SE2016 BigData Vitalii Bondarenko "HD insight spark. Advanced in-memory Big D...
SE2016 BigData Vitalii Bondarenko "HD insight spark. Advanced in-memory Big D...
Inhacking
 
Vitalii Bondarenko HDinsight: spark. advanced in memory big-data analytics wi...
Vitalii Bondarenko HDinsight: spark. advanced in memory big-data analytics wi...Vitalii Bondarenko HDinsight: spark. advanced in memory big-data analytics wi...
Vitalii Bondarenko HDinsight: spark. advanced in memory big-data analytics wi...
Аліна Шепшелей
 
Data processing platforms with SMACK: Spark and Mesos internals
Data processing platforms with SMACK:  Spark and Mesos internalsData processing platforms with SMACK:  Spark and Mesos internals
Data processing platforms with SMACK: Spark and Mesos internals
Anton Kirillov
 
Introduction to Apache Spark
Introduction to Apache SparkIntroduction to Apache Spark
Introduction to Apache Spark
Datio Big Data
 
Apache spark - Installation
Apache spark - InstallationApache spark - Installation
Apache spark - Installation
Martin Zapletal
 
Apache spark - Spark's distributed programming model
Apache spark - Spark's distributed programming modelApache spark - Spark's distributed programming model
Apache spark - Spark's distributed programming model
Martin Zapletal
 
Apache Spark II (SparkSQL)
Apache Spark II (SparkSQL)Apache Spark II (SparkSQL)
Apache Spark II (SparkSQL)
Datio Big Data
 
Apache Spark™ is a multi-language engine for executing data-S5.ppt
Apache Spark™ is a multi-language engine for executing data-S5.pptApache Spark™ is a multi-language engine for executing data-S5.ppt
Apache Spark™ is a multi-language engine for executing data-S5.ppt
bhargavi804095
 
Spark 计算模型
Spark 计算模型Spark 计算模型
Spark 计算模型
wang xing
 
Apache Spark: What? Why? When?
Apache Spark: What? Why? When?Apache Spark: What? Why? When?
Apache Spark: What? Why? When?
Massimo Schenone
 
Core Services behind Spark Job Execution
Core Services behind Spark Job ExecutionCore Services behind Spark Job Execution
Core Services behind Spark Job Execution
datamantra
 
DAGScheduler - The Internals of Apache Spark.pdf
DAGScheduler - The Internals of Apache Spark.pdfDAGScheduler - The Internals of Apache Spark.pdf
DAGScheduler - The Internals of Apache Spark.pdf
JoeKibangu
 
Improving Apache Spark Downscaling
 Improving Apache Spark Downscaling Improving Apache Spark Downscaling
Improving Apache Spark Downscaling
Databricks
 
Tuning and Debugging in Apache Spark
Tuning and Debugging in Apache SparkTuning and Debugging in Apache Spark
Tuning and Debugging in Apache Spark
Databricks
 
Tuning and Debugging in Apache Spark
Tuning and Debugging in Apache SparkTuning and Debugging in Apache Spark
Tuning and Debugging in Apache Spark
Patrick Wendell
 
Debugging & Tuning in Spark
Debugging & Tuning in SparkDebugging & Tuning in Spark
Debugging & Tuning in Spark
Shiao-An Yuan
 
11. From Hadoop to Spark 2/2
11. From Hadoop to Spark 2/211. From Hadoop to Spark 2/2
11. From Hadoop to Spark 2/2
Fabio Fumarola
 
Big Data processing with Apache Spark
Big Data processing with Apache SparkBig Data processing with Apache Spark
Big Data processing with Apache Spark
Lucian Neghina
 
SE2016 BigData Vitalii Bondarenko "HD insight spark. Advanced in-memory Big D...
SE2016 BigData Vitalii Bondarenko "HD insight spark. Advanced in-memory Big D...SE2016 BigData Vitalii Bondarenko "HD insight spark. Advanced in-memory Big D...
SE2016 BigData Vitalii Bondarenko "HD insight spark. Advanced in-memory Big D...
Inhacking
 
Vitalii Bondarenko HDinsight: spark. advanced in memory big-data analytics wi...
Vitalii Bondarenko HDinsight: spark. advanced in memory big-data analytics wi...Vitalii Bondarenko HDinsight: spark. advanced in memory big-data analytics wi...
Vitalii Bondarenko HDinsight: spark. advanced in memory big-data analytics wi...
Аліна Шепшелей
 
Ad

Recently uploaded (20)

Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Induction Program of MTAB online session
Induction Program of MTAB online sessionInduction Program of MTAB online session
Induction Program of MTAB online session
LOHITH886892
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”
vzmcareers
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
KNN_Logistic_Regression_Presentation_Styled.pptx
KNN_Logistic_Regression_Presentation_Styled.pptxKNN_Logistic_Regression_Presentation_Styled.pptx
KNN_Logistic_Regression_Presentation_Styled.pptx
sonujha1980712
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Introcomputerscienceand datascience.pptx
Introcomputerscienceand datascience.pptxIntrocomputerscienceand datascience.pptx
Introcomputerscienceand datascience.pptx
abdulrehmanbscsf22
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
i_o updated.pptx 6=₹cnjxifj,lsbd ধ and vjcjcdbgjfu n smn u cut the lb, it ও o...
i_o updated.pptx 6=₹cnjxifj,lsbd ধ and vjcjcdbgjfu n smn u cut the lb, it ও o...i_o updated.pptx 6=₹cnjxifj,lsbd ধ and vjcjcdbgjfu n smn u cut the lb, it ও o...
i_o updated.pptx 6=₹cnjxifj,lsbd ধ and vjcjcdbgjfu n smn u cut the lb, it ও o...
ggg032019
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136How to join illuminati Agent in uganda call+256776963507/0741506136
How to join illuminati Agent in uganda call+256776963507/0741506136
illuminati Agent uganda call+256776963507/0741506136
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 
Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..Secure_File_Storage_Hybrid_Cryptography.pptx..
Secure_File_Storage_Hybrid_Cryptography.pptx..
yuvarajreddy2002
 
Induction Program of MTAB online session
Induction Program of MTAB online sessionInduction Program of MTAB online session
Induction Program of MTAB online session
LOHITH886892
 
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptxmd-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
md-presentHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHation.pptx
fatimalazaar2004
 
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdfIAS-slides2-ia-aaaaaaaaaaain-business.pdf
IAS-slides2-ia-aaaaaaaaaaain-business.pdf
mcgardenlevi9
 
Defense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptxDefense Against LLM Scheming 2025_04_28.pptx
Defense Against LLM Scheming 2025_04_28.pptx
Greg Makowski
 
Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”Andhra Pradesh Micro Irrigation Project”
Andhra Pradesh Micro Irrigation Project”
vzmcareers
 
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your CompetitorsAI Competitor Analysis: How to Monitor and Outperform Your Competitors
AI Competitor Analysis: How to Monitor and Outperform Your Competitors
Contify
 
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Day 1 - Lab 1 Reconnaissance Scanning with NMAP, Vulnerability Assessment wit...
Abodahab
 
KNN_Logistic_Regression_Presentation_Styled.pptx
KNN_Logistic_Regression_Presentation_Styled.pptxKNN_Logistic_Regression_Presentation_Styled.pptx
KNN_Logistic_Regression_Presentation_Styled.pptx
sonujha1980712
 
computer organization and assembly language.docx
computer organization and assembly language.docxcomputer organization and assembly language.docx
computer organization and assembly language.docx
alisoftwareengineer1
 
Introcomputerscienceand datascience.pptx
Introcomputerscienceand datascience.pptxIntrocomputerscienceand datascience.pptx
Introcomputerscienceand datascience.pptx
abdulrehmanbscsf22
 
04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story04302025_CCC TUG_DataVista: The Design Story
04302025_CCC TUG_DataVista: The Design Story
ccctableauusergroup
 
LLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bertLLM finetuning for multiple choice google bert
LLM finetuning for multiple choice google bert
ChadapornK
 
i_o updated.pptx 6=₹cnjxifj,lsbd ধ and vjcjcdbgjfu n smn u cut the lb, it ও o...
i_o updated.pptx 6=₹cnjxifj,lsbd ধ and vjcjcdbgjfu n smn u cut the lb, it ও o...i_o updated.pptx 6=₹cnjxifj,lsbd ধ and vjcjcdbgjfu n smn u cut the lb, it ও o...
i_o updated.pptx 6=₹cnjxifj,lsbd ধ and vjcjcdbgjfu n smn u cut the lb, it ও o...
ggg032019
 
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjksPpt. Nikhil.pptxnshwuudgcudisisshvehsjks
Ppt. Nikhil.pptxnshwuudgcudisisshvehsjks
panchariyasahil
 
Geometry maths presentation for begginers
Geometry maths presentation for begginersGeometry maths presentation for begginers
Geometry maths presentation for begginers
zrjacob283
 
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
Adobe Analytics NOAM Central User Group April 2025 Agent AI: Uncovering the S...
gmuir1066
 
Simple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptxSimple_AI_Explanation_English somplr.pptx
Simple_AI_Explanation_English somplr.pptx
ssuser2aa19f
 
Minions Want to eat presentacion muy linda
Minions Want to eat presentacion muy lindaMinions Want to eat presentacion muy linda
Minions Want to eat presentacion muy linda
CarlaAndradesSoler1
 

Apache Spark in Depth: Core Concepts, Architecture & Internals

  • 1. Apache Spark in Depth core concepts, architecture & internals Anton Kirillov Ooyala, Mar 2016
  • 2. Roadmap ● RDDs ○ Definition ○ Operations ● Execution workflow ○ DAG ○ Stages and tasks ○ Shuffle ● Architecture ○ Components ○ Memory model ● Coding ○ spark-shell ○ building and submitting Spark applications to YARN
  • 3. Meet Spark ● Generalized framework for distributed data processing (batch, graph, ML) ● Scala collections functional API for manipulating data at scale ● In-memory data caching and reuse across computations ● Applies set of coarse-grained transformations over partitioned data ● Failure recovery relies on lineage to recompute failed tasks ● Supports majority of input formats and integrates with Mesos / YARN
  • 4. Spark makes data engineers happy Backup/restore of Cassandra tables in Parquet def backup(config: Config) { sc.cassandraTable(config.keyspace, config.table).map(_.toEvent).toDF() .write.parquet(config.path) } def restore(config: Config) { sqlContext.read.parquet(config.path) .map(_.toEvent).saveToCassandra(config.keyspace, config.table) } Query different data sources to identify discrepancies sqlContext.sql { """ SELECT count() FROM cassandra_event_rollups JOIN mongo_event_rollups ON cassandra_event_rollups.uuid = cassandra_event_rollups.uuid WHERE cassandra_event_rollups.value != cassandra_event_rollups.value """.stripMargin }
  • 6. RDD: Resilient Distributed Dataset ● A fault-tolerant, immutable, parallel data structure ● Provides API for ○ manipulating the collection of elements (transformations and materialization) ○ persisting intermediate results in memory for later reuse ○ controlling partitioning to optimize data placement ● Can be created through deterministic operation ○ from storage (distributed file system, database, plain file) ○ from another RDD ● Stores information about parent RDDs ○ for execution optimization and operations pipelining ○ to recompute the data in case of failure
  • 7. RDD: a developer’s view ● Distributed immutable data + lazily evaluated operations ○ partitioned data + iterator ○ transformations & actions ● An interface defining 5 main properties a list of partitions (e.g. splits in Hadoop) def getPartitions: Array[Partition] a list of dependencies on other RDDs def getDependencies: Seq[Dependency[_]] a function for computing each split def compute(split: Partition, context: TaskContext): Iterator[T] (optional) a list of preferred locations to compute each split on def getPreferredLocations(split: Partition): Seq[String] = Nil (optional) a partitioner for key-value RDDs val partitioner: Option[Partitioner] = None lineage execution optimization
  • 8. RDDs Example ● HadoopRDD ○ getPartitions = HDFS blocks ○ getDependencies = None ○ compute = load block in memory ○ getPrefferedLocations = HDFS block locations ○ partitioner = None ● MapPartitionsRDD ○ getPartitions = same as parent ○ getDependencies = parent RDD ○ compute = compute parent and apply map() ○ getPrefferedLocations = same as parent ○ partitioner = None sparkContext.textFile("hdfs://...")
  • 9. RDD Operations ● Transformations ○ apply user function to every element in a partition (or to the whole partition) ○ apply aggregation function to the whole dataset (groupBy, sortBy) ○ introduce dependencies between RDDs to form DAG ○ provide functionality for repartitioning (repartition, partitionBy) ● Actions ○ trigger job execution ○ used to materialize computation results ● Extra: persistence ○ explicitly store RDDs in memory, on disk or off-heap (cache, persist) ○ checkpointing for truncating RDD lineage
  • 10. Execution workflow 10 rdd1.join(rdd2) .groupBy(...) .filter(...) splits graph into stages of tasks submits each stage as ready launches tasks via cluster manager retries failed or struggling tasks executes tasks stores and serves blocks
  • 11. Code sample: joining aggregated and raw data //aggregate events after specific date for given campaign val events = sc.cassandraTable("demo", "event") .map(_.toEvent) .filter(event => event.campaignId == campaignId && event.time.isAfter(watermark)) .keyBy(_.eventType) .reduceByKey(_ + _) .cache() //aggregate campaigns by type val campaigns = sc.cassandraTable("demo", "campaign") .map(_.toCampaign) .filter(campaign => campaign.id == campaignId && campaign.time.isBefore(watermark)) .keyBy(_.eventType) .reduceByKey(_ + _) .cache() //joined rollups and raw events val joinedTotals = campaigns.join(events) .map { case (key, (campaign, event)) => CampaignTotals(campaign, event) } .collect() //count totals separately val eventTotals = events.map{ case (t, e) => s"$t -> ${e.value}" }.collect() val campaignTotals = campaigns.map{ case (t, e) => s"$t -> ${e.value}" }.collect()
  • 12. DAG
  • 13. Dependency types ● Narrow (pipelineable) ○ each partition of the parent RDD is used by at most one partition of the child RDD ○ allow for pipelined execution on one cluster node ○ failure recovery is more efficient as only lost parent partitions need to be recomputed ● Wide (shuffle) ○ multiple child partitions may depend on one parent partition ○ require data from all parent partitions to be available and to be shuffled across the nodes ○ if some partition is lost from all the ancestors a complete recomputation is needed
  • 14. Stages and Tasks ● Stages breakdown strategy ○ check backwards from final RDD ○ add each “narrow” dependency to the current stage ○ create new stage when there’s a shuffle dependency ● Tasks ○ ShuffleMapTask partitions its input for shuffle ○ ResultTask sends its output to the driver
  • 15. Shuffle ● Shuffle Write ○ redistributes data among partitions and writes files to disk ○ each hash shuffle task creates one file per “reduce” task (total = MxR) ○ sort shuffle task creates one file with regions assigned to reducer ○ sort shuffle uses in-memory sorting with spillover to disk to get final result ● Shuffle Read ○ fetches the files and applies reduce() logic ○ if data ordering is needed then it is sorted on “reducer” side for any type of shuffle (SPARK-2926)
  • 16. Sort Shuffle ● Incoming records accumulated and sorted in memory according their target partition ids ● Sorted records are written to file or multiple files if spilled and then merged ● index file stores offsets of the data blocks in the data file ● Sorting without deserialization is possible under certain conditions (SPARK-7081)
  • 17. Architecture Recap ● Spark Driver ○ separate process to execute user applications ○ creates SparkContext to schedule jobs execution and negotiate with cluster manager ● Executors ○ run tasks scheduled by driver ○ store computation results in memory, on disk or off-heap ○ interact with storage systems ● Cluster Manager ○ Mesos ○ YARN ○ Spark Standalone
  • 19. Spark Components ● SparkContext ○ represents the connection to a Spark cluster, and can be used to create RDDs, accumulators and broadcast variables on that cluster ● DAGScheduler ○ computes a DAG of stages for each job and submits them to TaskScheduler ○ determines preferred locations for tasks (based on cache status or shuffle files locations) and finds minimum schedule to run the jobs ● TaskScheduler ○ responsible for sending tasks to the cluster, running them, retrying if there are failures, and mitigating stragglers ● SchedulerBackend ○ backend interface for scheduling systems that allows plugging in different implementations(Mesos, YARN, Standalone, local) ● BlockManager ○ provides interfaces for putting and retrieving blocks both locally and remotely into various stores (memory, disk, and off-heap)
  • 20. Memory Management in Spark 1.6 ● Execution Memory ○ storage for data needed during tasks execution ○ shuffle-related data ● Storage Memory ○ storage of cached RDDs and broadcast variables ○ possible to borrow from execution memory (spill otherwise) ○ safeguard value is 0.5 of Spark Memory when cached blocks are immune to eviction ● User Memory ○ user data structures and internal metadata in Spark ○ safeguarding against OOM ● Reserved memory ○ memory needed for running executor itself and not strictly related to Spark
  • 21. Workshop code available @ github.com/datastrophic/spark-workshop
  • 22. Execution Modes ● spark-shell --master [ local | spark | yarn-client | mesos] ○ launches REPL connected to specified cluster manager ○ always runs in client mode ● spark-submit --master [ local | spark:// | mesos:// | yarn ] spark-job.jar ○ launches assembly jar on the cluster ● Masters ○ local[k] - run Spark locally with K worker threads ○ spark - launches driver app on Spark Standalone installation ○ mesos - driver will spawn executors on Mesos cluster (deploy-mode: client | cluster) ○ yarn - same idea as with Mesos (deploy-mode: client | cluster) ● Deploy Modes ○ client - driver executed as a separate process on the machine where it has been launched and spawns executors ○ cluster - driver launched as a container using underlying cluster manager
  • 23. Invocation examples spark-shell --master yarn --deploy-mode client --executor-cores 1 --num-executors 2 --jars /target/spark-workshop.jar --conf spark.cassandra.connection.host=cassandra spark-submit --class io.datastrophic.spark.workshop.ParametrizedApplicationExample --master yarn --deploy-mode cluster --num-executors 2 --driver-memory 1g --executor-memory 1g /target/spark-workshop.jar --cassandra-host cassandra --keyspace demo --table event --target-dir /workshop/dumps
  • 24. Live Demo ● spark-shell ● Spark UI ● creating an app with Typesafe Activator ● Spark SQL and DataFrames API ● coding
  • 25. Coding ideas ● get familiar with API through sample project ○ join data from different storage systems ○ aggregate data with breakdown by date ● play with caching and persistence ● check out join behavior applying different partitioning ● familiarize with Spark UI ● experiment with new DataSet API (since 1.6) ● [ your awesome idea here ]