SlideShare a Scribd company logo
1
2
2
Statistical learning of linear regression model
3
Agenda
1. Data model
2. Problem
3. Fit
4. Residuals
5. Estimator properties
6. Visualizations
7. Fisher tests
8. Regularization
9. Multiple output
4
4
Data model
5
Real problems
Data model
Retail Computer vision
6
Dataset (sample)
Data model
7
Formulas…
Data model
b b b
X - features (regressors) | Matrix
(d, n)
b - unknown parameters | Vector
(d, 1)
Y - target (answer) | Vector
(1, n)
epsilon - error
8
How estimate unknown parameter?
Data model
b = ?
b b b
9
9
Linear Regression | problem
10
Heuristics
Problem
b
b
b - line between first and last points. Data is
ordered by Y
b - line between first and last points. Data is
ordered by X
What estimator is the “best”?
What does word “best” mean?
11
Heuristics
Problem
b
b
b - line between first and last points. Data is
ordered by Y
b - line between first and last points. Data is
ordered by X
What estimator is the “best”?
What does word “best” mean?
What about outliers?
12
Heuristics
Problem
b - line between first and last points. Data is
ordered by Y
b - line between first and last points. Data is
ordered by X
What estimator is the “best”?
What does word “best” mean?
What about outliers?
What about extrapolation?
b
b
13
What does the word “best” mean
Problem
B - is a set of all possible parameters of b
The “best” estimator should be the best estimator
among other estimators.
What is the measure (loss)?
14
Loss function examples
Problem
15
15
Linear regression | Fit
16
Fit
Normal equation for linear regression
We do not use any Loss here…
17
Fit
Normal equation for linear regression (MSE case)
sklearn.linear_model.LinearRegression
18
Fit
Other estimates (MAE and scipy.optimize.fmin)
*The same logic to minimize other loss functions
19
Fit
Other estimates (scipy.optimize.fsolve)
*The same logic to minimize other derivatives
20
20
Linear regression | Useless feature engineering
21
Useless features
Normal equation with linear transformation
(MSE case)
new features,
det(H) > 0
Here H could mean:
1. multiplication on scalar
2. column swap
3. adding column
4. Any combinations of (1, 2, 3)
22
Useless features
Adding new features …
(MSE case)
Linear combined features are useless. Easy to show, det(XX^T) = 0 in this case
23
Useful features
Adding new features …
(MSE case)
X is a feature matrix
What features will help to upgrade the model:
- Polynoms(X)
- Nonlinear function(X): log, exp, sin, cos,
tanh, sigmoid, relu, selu ...
- Indicators (x_1 > 0.6)
24
24
Linear regression | Asymptotics
25
Properties
Properties: consistency
26
Properties
Properties: consistency visualization
27
Properties
Properties: Normality
link
28
Properties
Properties: Normality visualization
29
Properties
Properties: Gauss-Markov theorem
If:
Then, is “BLUE” (optimal) - best linear
unbiased estimator
Link (G.M. theorem and BLUE definition)
30
30
Linear regression | MSE, Residuals
31
Residuals
Linear model prediction residuals
Last formula means:
MSE estimator minimize residuals variance
MSE is a residual variance estimator
32
32
Linear regression | Visualizations
33
Visualization
Simple visualizations
34
Visualization
Q-Q diagram
q
a1
q
a2
35
35
Linear regression | Feature selection
36
Tests
Linear F-test (hard way)
Two models:
Steps:
- Count hat F
- specify alpha (1-st type error) level
- Find quantile of Fisher distribution in tables
- Compare F and hat F
link
37
Tests
Linear F-test (easy way)
You can evaluate this: but this simpler
link
38
Tests
Linear F-test
(example)
link
Without “F-test”
MSE: 0.13890
Rank: 1316 / 4368
With “F-test”
MSE: 0.13501
RANK: 1681 / 4368
Features: only float and int features.
Feature selection with F-test: +365 rank
39
39
Linear regression | Regularization
40
Regularization
Ridge (L2 regularization, Tikhonov)
The second term is a penalty for extremely big parameter values
lambda - is not fittable parameter
link
41
Regularization
Ridge (L2 regularization, Tikhonov)
Ridge regression can work with correlated features:
- You can add as many features as you can
- Please select lambda somehow…
- Do not forget to normalize coefficients
42
Tests
L1 regularization
link
You can use use:
1. Convex optimization methods
1. Quadratic programming methods
1. From sklearn.linear_model import Lasso :)
to solve this minimization problem
43
43
Linear regression | Multiple output
44
Multiple output
What if Y is a matrix (output is a vector)?
X - features (regressors) | Matrix
(d, n)
b - unknown parameters | Vector
(d, m)
Y - target (answer) | Vector
(m, n)
epsilon - error
| Vector (m, n)
45
Multiple output
Normal equation for linear regression
The slide is the same …
46
46
Linear regression | Links
47
Bibliography
1. Linear regression link
1. Gauss-Markov theorem link
1. scikit-learn Linear regression link
1. Correlation matrix link
1. Regularizations link
1. Fisher test link
48
Ad

More Related Content

Similar to GlobalLogic Machine Learning Webinar “Statistical learning of linear regression model” (20)

Matlab anilkumar
Matlab  anilkumarMatlab  anilkumar
Matlab anilkumar
THEMASTERBLASTERSVID
 
MATLAB Workshop yugjjnhhasfhlhhlllhl.pptx
MATLAB Workshop yugjjnhhasfhlhhlllhl.pptxMATLAB Workshop yugjjnhhasfhlhhlllhl.pptx
MATLAB Workshop yugjjnhhasfhlhhlllhl.pptx
prashantkumarchinama
 
EPE821_Lecture3.pptx
EPE821_Lecture3.pptxEPE821_Lecture3.pptx
EPE821_Lecture3.pptx
Ihtisham Uddin
 
Matlab introduction
Matlab introductionMatlab introduction
Matlab introduction
Vikash Jakhar
 
GLM ASFFAFSFSFSAASFASFAFAFAFAFAFAFSAFAFSFAFAFA
GLM ASFFAFSFSFSAASFASFAFAFAFAFAFAFSAFAFSFAFAFAGLM ASFFAFSFSFSAASFASFAFAFAFAFAFAFSAFAFSFAFAFA
GLM ASFFAFSFSFSAASFASFAFAFAFAFAFAFSAFAFSFAFAFA
ssuser094376
 
Engineering Numerical Analysis-Introduction.pdf
Engineering Numerical Analysis-Introduction.pdfEngineering Numerical Analysis-Introduction.pdf
Engineering Numerical Analysis-Introduction.pdf
ssuseraae901
 
Matlab1
Matlab1Matlab1
Matlab1
guest8ba004
 
Midterm
MidtermMidterm
Midterm
Robert Edwards
 
Fst ch2 notes
Fst ch2 notesFst ch2 notes
Fst ch2 notes
David Tchozewski
 
Lecture 8 about data mining and how to use it.pptx
Lecture 8 about data mining and how to use it.pptxLecture 8 about data mining and how to use it.pptx
Lecture 8 about data mining and how to use it.pptx
HedraAtif
 
LPP, Duality and Game Theory
LPP, Duality and Game TheoryLPP, Duality and Game Theory
LPP, Duality and Game Theory
Purnima Pandit
 
MATLAB/SIMULINK for Engineering Applications day 2:Introduction to simulink
MATLAB/SIMULINK for Engineering Applications day 2:Introduction to simulinkMATLAB/SIMULINK for Engineering Applications day 2:Introduction to simulink
MATLAB/SIMULINK for Engineering Applications day 2:Introduction to simulink
reddyprasad reddyvari
 
Portfolio Planning
Portfolio PlanningPortfolio Planning
Portfolio Planning
ahmad bassiouny
 
Dimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptxDimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptx
Sivam Chinna
 
Dynamic pgmming
Dynamic pgmmingDynamic pgmming
Dynamic pgmming
Dr. C.V. Suresh Babu
 
1. Ch_1 SL_1_Intro to Matlab.pptx
1. Ch_1 SL_1_Intro to Matlab.pptx1. Ch_1 SL_1_Intro to Matlab.pptx
1. Ch_1 SL_1_Intro to Matlab.pptx
MOHAMMAD SAYDUL ALAM
 
Compilation
CompilationCompilation
Compilation
magansandu
 
Mechanical Engineering Homework Help
Mechanical Engineering Homework HelpMechanical Engineering Homework Help
Mechanical Engineering Homework Help
Matlab Assignment Experts
 
Matlab intro
Matlab introMatlab intro
Matlab intro
Chaitanya Banoth
 
Linear regression in R
Linear regression in R Linear regression in R
Linear regression in R
Leon Kim
 
MATLAB Workshop yugjjnhhasfhlhhlllhl.pptx
MATLAB Workshop yugjjnhhasfhlhhlllhl.pptxMATLAB Workshop yugjjnhhasfhlhhlllhl.pptx
MATLAB Workshop yugjjnhhasfhlhhlllhl.pptx
prashantkumarchinama
 
GLM ASFFAFSFSFSAASFASFAFAFAFAFAFAFSAFAFSFAFAFA
GLM ASFFAFSFSFSAASFASFAFAFAFAFAFAFSAFAFSFAFAFAGLM ASFFAFSFSFSAASFASFAFAFAFAFAFAFSAFAFSFAFAFA
GLM ASFFAFSFSFSAASFASFAFAFAFAFAFAFSAFAFSFAFAFA
ssuser094376
 
Engineering Numerical Analysis-Introduction.pdf
Engineering Numerical Analysis-Introduction.pdfEngineering Numerical Analysis-Introduction.pdf
Engineering Numerical Analysis-Introduction.pdf
ssuseraae901
 
Lecture 8 about data mining and how to use it.pptx
Lecture 8 about data mining and how to use it.pptxLecture 8 about data mining and how to use it.pptx
Lecture 8 about data mining and how to use it.pptx
HedraAtif
 
LPP, Duality and Game Theory
LPP, Duality and Game TheoryLPP, Duality and Game Theory
LPP, Duality and Game Theory
Purnima Pandit
 
MATLAB/SIMULINK for Engineering Applications day 2:Introduction to simulink
MATLAB/SIMULINK for Engineering Applications day 2:Introduction to simulinkMATLAB/SIMULINK for Engineering Applications day 2:Introduction to simulink
MATLAB/SIMULINK for Engineering Applications day 2:Introduction to simulink
reddyprasad reddyvari
 
Dimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptxDimensionality Reduction and feature extraction.pptx
Dimensionality Reduction and feature extraction.pptx
Sivam Chinna
 
Linear regression in R
Linear regression in R Linear regression in R
Linear regression in R
Leon Kim
 

More from GlobalLogic Ukraine (20)

GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic Ukraine
 
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Ukraine
 
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Ukraine
 
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic Ukraine
 
Штучний інтелект як допомога в навчанні, а не замінник.pptx
Штучний інтелект як допомога в навчанні, а не замінник.pptxШтучний інтелект як допомога в навчанні, а не замінник.pptx
Штучний інтелект як допомога в навчанні, а не замінник.pptx
GlobalLogic Ukraine
 
Задачі AI-розробника як застосовується штучний інтелект.pptx
Задачі AI-розробника як застосовується штучний інтелект.pptxЗадачі AI-розробника як застосовується штучний інтелект.pptx
Задачі AI-розробника як застосовується штучний інтелект.pptx
GlobalLogic Ukraine
 
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptxЩо треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Ukraine
 
JavaScript Community Webinar #14 "Why Is Git Rebase?"
JavaScript Community Webinar #14 "Why Is Git Rebase?"JavaScript Community Webinar #14 "Why Is Git Rebase?"
JavaScript Community Webinar #14 "Why Is Git Rebase?"
GlobalLogic Ukraine
 
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic Ukraine
 
Страх і сила помилок - IT Inside від GlobalLogic Education
Страх і сила помилок - IT Inside від GlobalLogic EducationСтрах і сила помилок - IT Inside від GlobalLogic Education
Страх і сила помилок - IT Inside від GlobalLogic Education
GlobalLogic Ukraine
 
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic Ukraine
 
GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic QA Webinar “What does it take to become a Test Engineer”GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic Ukraine
 
“How to Secure Your Applications With a Keycloak?
“How to Secure Your Applications With a Keycloak?“How to Secure Your Applications With a Keycloak?
“How to Secure Your Applications With a Keycloak?
GlobalLogic Ukraine
 
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic Ukraine
 
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
GlobalLogic Ukraine
 
GlobalLogic Webinar "Introduction to Embedded QA"
GlobalLogic Webinar "Introduction to Embedded QA"GlobalLogic Webinar "Introduction to Embedded QA"
GlobalLogic Webinar "Introduction to Embedded QA"
GlobalLogic Ukraine
 
C++ Webinar "Why Should You Learn C++ in 2021-22?"
C++ Webinar "Why Should You Learn C++ in 2021-22?"C++ Webinar "Why Should You Learn C++ in 2021-22?"
C++ Webinar "Why Should You Learn C++ in 2021-22?"
GlobalLogic Ukraine
 
GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic JavaScript Community Webinar #21 “Інтерв’ю без заспокійливих”
GlobalLogic Ukraine
 
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
Deadlocks in SQL - Turning Fear Into Understanding (by Sergii Stets)
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Java Community Webinar #18 “How to Improve Web Application Perfor...
GlobalLogic Ukraine
 
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Embedded Community x ROS Ukraine Webinar "Surgical Robots"
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Java Community Webinar #17 “SpringJDBC vs JDBC. Is Spring a Hero?”
GlobalLogic Ukraine
 
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic JavaScript Community Webinar #18 “Long Story Short: OSI Model”
GlobalLogic Ukraine
 
Штучний інтелект як допомога в навчанні, а не замінник.pptx
Штучний інтелект як допомога в навчанні, а не замінник.pptxШтучний інтелект як допомога в навчанні, а не замінник.pptx
Штучний інтелект як допомога в навчанні, а не замінник.pptx
GlobalLogic Ukraine
 
Задачі AI-розробника як застосовується штучний інтелект.pptx
Задачі AI-розробника як застосовується штучний інтелект.pptxЗадачі AI-розробника як застосовується штучний інтелект.pptx
Задачі AI-розробника як застосовується штучний інтелект.pptx
GlobalLogic Ukraine
 
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptxЩо треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
Що треба вивчати, щоб стати розробником штучного інтелекту та нейромереж.pptx
GlobalLogic Ukraine
 
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Java Community Webinar #16 “Zaloni’s Architecture for Data-Driven...
GlobalLogic Ukraine
 
JavaScript Community Webinar #14 "Why Is Git Rebase?"
JavaScript Community Webinar #14 "Why Is Git Rebase?"JavaScript Community Webinar #14 "Why Is Git Rebase?"
JavaScript Community Webinar #14 "Why Is Git Rebase?"
GlobalLogic Ukraine
 
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic .NET Community Webinar #3 "Exploring Serverless with Azure Functi...
GlobalLogic Ukraine
 
Страх і сила помилок - IT Inside від GlobalLogic Education
Страх і сила помилок - IT Inside від GlobalLogic EducationСтрах і сила помилок - IT Inside від GlobalLogic Education
Страх і сила помилок - IT Inside від GlobalLogic Education
GlobalLogic Ukraine
 
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic .NET Webinar #2 “Azure RBAC and Managed Identity”
GlobalLogic Ukraine
 
GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic QA Webinar “What does it take to become a Test Engineer”GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic QA Webinar “What does it take to become a Test Engineer”
GlobalLogic Ukraine
 
“How to Secure Your Applications With a Keycloak?
“How to Secure Your Applications With a Keycloak?“How to Secure Your Applications With a Keycloak?
“How to Secure Your Applications With a Keycloak?
GlobalLogic Ukraine
 
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic C++ Webinar “The Minimum Knowledge to Become a C++ Developer”
GlobalLogic Ukraine
 
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
Embedded Webinar #17 "Low-level Network Testing in Embedded Devices Development"
GlobalLogic Ukraine
 
GlobalLogic Webinar "Introduction to Embedded QA"
GlobalLogic Webinar "Introduction to Embedded QA"GlobalLogic Webinar "Introduction to Embedded QA"
GlobalLogic Webinar "Introduction to Embedded QA"
GlobalLogic Ukraine
 
C++ Webinar "Why Should You Learn C++ in 2021-22?"
C++ Webinar "Why Should You Learn C++ in 2021-22?"C++ Webinar "Why Should You Learn C++ in 2021-22?"
C++ Webinar "Why Should You Learn C++ in 2021-22?"
GlobalLogic Ukraine
 
Ad

Recently uploaded (20)

Smart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineeringSmart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineering
rushikeshnavghare94
 
15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...
IJCSES Journal
 
Smart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptxSmart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptx
rushikeshnavghare94
 
Value Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous SecurityValue Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous Security
Marc Hornbeek
 
Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.
anuragmk56
 
railway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forgingrailway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forging
Javad Kadkhodapour
 
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design ThinkingDT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DhruvChotaliya2
 
Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...
Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...
Structural Response of Reinforced Self-Compacting Concrete Deep Beam Using Fi...
Journal of Soft Computing in Civil Engineering
 
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G..."Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
Infopitaara
 
Avnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights FlyerAvnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights Flyer
WillDavies22
 
Artificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptxArtificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptx
aditichinar
 
Oil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdfOil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdf
M7md3li2
 
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
charlesdick1345
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
π0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalizationπ0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalization
NABLAS株式会社
 
Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
Development of MLR, ANN and ANFIS Models for Estimation of PCUs at Different ...
Development of MLR, ANN and ANFIS Models for Estimation of PCUs at Different ...Development of MLR, ANN and ANFIS Models for Estimation of PCUs at Different ...
Development of MLR, ANN and ANFIS Models for Estimation of PCUs at Different ...
Journal of Soft Computing in Civil Engineering
 
AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)
Vəhid Gəruslu
 
Reagent dosing (Bredel) presentation.pptx
Reagent dosing (Bredel) presentation.pptxReagent dosing (Bredel) presentation.pptx
Reagent dosing (Bredel) presentation.pptx
AlejandroOdio
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
Smart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineeringSmart Storage Solutions.pptx for production engineering
Smart Storage Solutions.pptx for production engineering
rushikeshnavghare94
 
15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...15th International Conference on Computer Science, Engineering and Applicatio...
15th International Conference on Computer Science, Engineering and Applicatio...
IJCSES Journal
 
Smart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptxSmart_Storage_Systems_Production_Engineering.pptx
Smart_Storage_Systems_Production_Engineering.pptx
rushikeshnavghare94
 
Value Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous SecurityValue Stream Mapping Worskshops for Intelligent Continuous Security
Value Stream Mapping Worskshops for Intelligent Continuous Security
Marc Hornbeek
 
Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.Fort night presentation new0903 pdf.pdf.
Fort night presentation new0903 pdf.pdf.
anuragmk56
 
railway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forgingrailway wheels, descaling after reheating and before forging
railway wheels, descaling after reheating and before forging
Javad Kadkhodapour
 
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design ThinkingDT REPORT by Tech titan GROUP to introduce the subject design Thinking
DT REPORT by Tech titan GROUP to introduce the subject design Thinking
DhruvChotaliya2
 
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G..."Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
"Feed Water Heaters in Thermal Power Plants: Types, Working, and Efficiency G...
Infopitaara
 
Avnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights FlyerAvnet Silica's PCIM 2025 Highlights Flyer
Avnet Silica's PCIM 2025 Highlights Flyer
WillDavies22
 
Artificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptxArtificial Intelligence (AI) basics.pptx
Artificial Intelligence (AI) basics.pptx
aditichinar
 
Oil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdfOil-gas_Unconventional oil and gass_reseviours.pdf
Oil-gas_Unconventional oil and gass_reseviours.pdf
M7md3li2
 
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
DATA-DRIVEN SHOULDER INVERSE KINEMATICS YoungBeom Kim1 , Byung-Ha Park1 , Kwa...
charlesdick1345
 
Introduction to FLUID MECHANICS & KINEMATICS
Introduction to FLUID MECHANICS &  KINEMATICSIntroduction to FLUID MECHANICS &  KINEMATICS
Introduction to FLUID MECHANICS & KINEMATICS
narayanaswamygdas
 
π0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalizationπ0.5: a Vision-Language-Action Model with Open-World Generalization
π0.5: a Vision-Language-Action Model with Open-World Generalization
NABLAS株式会社
 
Level 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical SafetyLevel 1-Safety.pptx Presentation of Electrical Safety
Level 1-Safety.pptx Presentation of Electrical Safety
JoseAlbertoCariasDel
 
AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)AI-assisted Software Testing (3-hours tutorial)
AI-assisted Software Testing (3-hours tutorial)
Vəhid Gəruslu
 
Reagent dosing (Bredel) presentation.pptx
Reagent dosing (Bredel) presentation.pptxReagent dosing (Bredel) presentation.pptx
Reagent dosing (Bredel) presentation.pptx
AlejandroOdio
 
Raish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdfRaish Khanji GTU 8th sem Internship Report.pdf
Raish Khanji GTU 8th sem Internship Report.pdf
RaishKhanji
 
Ad

GlobalLogic Machine Learning Webinar “Statistical learning of linear regression model”