SlideShare a Scribd company logo
© Hortonworks Inc. 2011
P. Taylor Goetz
Apache Storm Committer
tgoetz@hortonworks.com
@ptgoetz
Apache Storm Architecture and Integration
Real-Time Big Data
Shedding Light on Data
Shedding Light on Big Data
Shedding Light on Big Data
In Real Time
What is Storm?
Storm is Streaming
Storm is Streaming
Key enabler of the Lamda Architecture
Storm is Fast
Storm is Fast
Clocked at 1M+ messages per second per node
Storm is Scalable
Storm is Scalable
Thousands of workers per cluster
Storm is Fault Tolerant
Storm is Fault Tolerant
Failure is expected, and embraced
Storm is Reliable
Storm is Reliable
Guaranteed message delivery
Storm is Reliable
Exactly-once semantics
Conceptual Model
Tuple
{…}
Tuple
{…} • Core Unit of Data
• Immutable Set of Key/Value
Pairs
Streams
{…} {…} {…} {…} {…} {…} {…}
Unbounded Sequence of Tuples
Spouts
Spouts
• Source of Streams
• Wraps a streaming data source
and emits Tuples
{…}
{…}
{…}
{…}
{…}
{…}
{…}
{…}
{…}
{…}
{…}
{…}
{…}
{…}
Spout API
public interface ISpout extends Serializable {!
!
void open(Map conf, !
! TopologyContext context, !
! ! ! SpoutOutputCollector collector);!
!
void close();!
!
void activate();!
!
void deactivate();!
!
void nextTuple();!
!
void ack(Object msgId);!
!
void fail(Object msgId);!
}
Lifecycle API
Spout API
public interface ISpout extends Serializable {!
!
void open(Map conf, !
! TopologyContext context, !
! ! ! SpoutOutputCollector collector);!
!
void close();!
!
void activate();!
!
void deactivate();!
!
void nextTuple();!
!
void ack(Object msgId);!
!
void fail(Object msgId);!
}
Core API
Spout API
public interface ISpout extends Serializable {!
!
void open(Map conf, !
! TopologyContext context, !
! ! ! SpoutOutputCollector collector);!
!
void close();!
!
void activate();!
!
void deactivate();!
!
void nextTuple();!
!
void ack(Object msgId);!
!
void fail(Object msgId);!
}
Reliability API
Bolts
Bolts
• Core functions of a
streaming computation
• Receive tuples and do stuff
• Optionally emit additional
tuples
Bolts
• Write to a data store
Bolts
• Read from a data store
Bolts
• Perform arbitrary
computation
Compute
{…}
{…}
{…}
{…}
{…}
{…}
{…}
Bolts
• (Optionally) Emit additional
streams
{…}
{…}
{…}
{…}
{…}
{…}
{…}
Bolt API
public interface IBolt extends Serializable {!
!
void prepare(Map stormConf, !
TopologyContext context, !
OutputCollector collector);!
!
void cleanup();!
! !
void execute(Tuple input);!
! !
}
Lifecycle API
Bolt API
public interface IBolt extends Serializable {!
!
void prepare(Map stormConf, !
TopologyContext context, !
OutputCollector collector);!
!
void cleanup();!
! !
void execute(Tuple input);!
! !
}
Core API
Bolt Output API
public interface IOutputCollector extends IErrorReporter {!
!
List<Integer> emit(String streamId, !
Collection<Tuple> anchors, !
List<Object> tuple);!
! !
void emitDirect(int taskId, !
String streamId, !
Collection<Tuple> anchors, !
List<Object> tuple);!
! !
void ack(Tuple input);!
! !
void fail(Tuple input);!
}
Core API
Bolt Output API
public interface IOutputCollector extends IErrorReporter {!
!
List<Integer> emit(String streamId, !
Collection<Tuple> anchors, !
List<Object> tuple);!
! !
void emitDirect(int taskId, !
String streamId, !
Collection<Tuple> anchors, !
List<Object> tuple);!
! !
void ack(Tuple input);!
! !
void fail(Tuple input);!
}
Reliability API
Topologies
Topologies
Topologies
• DAG of Spouts and Bolts
• Data Flow Representation
• Streaming Computation
Topologies
• Storm executes spouts
and bolts as individual
Tasks that run in parallel
on multiple machines.
Stream Groupings
Stream Groupings
Stream Groupings determine how Storm routes
Tuples between tasks in a topology
Stream Groupings
Shuffle!
!
Randomized round-robin.
Stream Groupings
LocalOrShuffle!
!
Randomized round-robin.
(With a preference for intra-worker Tasks)
Stream Groupings
Fields Grouping!
!
Ensures all Tuples with with the same field value(s)
are always routed to the same task.
Stream Groupings
Fields Grouping!
!
Ensures all Tuples with with the same field value(s)
are always routed to the same task.
!
(this is a simple hash of the field values,
modulo the number of tasks)
Physical View
Physical View
ZooKeeperNimbus
Supervisor Supervisor Supervisor Supervisor
Worker* Worker* Worker* Worker*
Topology Deployment
ZooKeeperNimbus
Supervisor Supervisor Supervisor Supervisor
Topology
Submitter
Topology Submitter uploads topology:!
• topology.jar!
• topology.ser!
• conf.ser
$ bin/storm jar
Topology Deployment
Nimbus calculates assignments and sends to Zookeeper
ZooKeeperNimbus
Supervisor Supervisor Supervisor Supervisor
Topology
Submitter
Topology Deployment
Supervisor nodes receive assignment information !
via Zookeeper watches.
ZooKeeperNimbus
Supervisor Supervisor Supervisor Supervisor
Topology
Submitter
Topology Deployment
Supervisor nodes download topology from Nimbus:!
• topology.jar!
• topology.ser!
• conf.ser
ZooKeeperNimbus
Supervisor Supervisor Supervisor Supervisor
Topology
Submitter
Topology Deployment
Supervisors spawn workers (JVM processes) to start the topology
ZooKeeperNimbus
Supervisor Supervisor Supervisor Supervisor
Topology
Submitter
Worker Worker Worker Worker
Fault Tolerance
Fault Tolerance
Workers heartbeat back to Supervisors and Nimbus via ZooKeeper, !
as well as locally.
ZooKeeperNimbus
Supervisor Supervisor Supervisor Supervisor
Topology
Submitter
Worker Worker Worker Worker
Fault Tolerance
If a worker dies (fails to heartbeat), the Supervisor will restart it
ZooKeeperNimbus
Supervisor Supervisor Supervisor Supervisor
Topology
Submitter
Worker Worker Worker Worker
X
Fault Tolerance
If a worker dies repeatedly, Nimbus will reassign the work to other!
nodes in the cluster.
ZooKeeperNimbus
Supervisor Supervisor Supervisor Supervisor
Topology
Submitter
Worker Worker Worker Worker
X
Fault Tolerance
If a supervisor node dies, Nimbus will reassign the work to other nodes.
ZooKeeperNimbus
Supervisor Supervisor Supervisor Supervisor
Topology
Submitter
Worker Worker Worker Worker
X
X
Fault Tolerance
If Nimbus dies, topologies will continue to function normally,!
but won’t be able to perform reassignments.
ZooKeeperNimbus
Supervisor Supervisor Supervisor Supervisor
Topology
Submitter
Worker Worker Worker Worker
X
Parallelism
Scaling a Distributed Computation
Parallelism
Worker (JVM)
Executor (Thread) Executor (Thread) Executor (Thread)
Task Task Task
1 Worker,
Parallelism = 1
Parallelism
Worker (JVM)
Executor (Thread) Executor (Thread) Executor (Thread)
Task Task Task
Executor (Thread)
Task
1 Worker,
Parallelism = 2
Parallelism
Worker (JVM)
Executor (Thread) Executor (Thread)
Task Task
Executor (Thread)
Task
Task
1 Worker,
Parallelism = 2, NumTasks = 2
Parallelism
3 Workers,
Parallelism = 1, NumTasks = 1
Worker (JVM)Worker (JVM)Worker (JVM)
Executor (Thread) Executor (Thread) Executor (Thread)
Task Task Task
Internal Messaging
Internal Messaging
Worker Mechanics
Worker Internal Messaging
Worker Receive Thread
Worker Port
List<List<Tuple>>
Receive Buffer
Executor Thread *
Inbound Queue Outbound Queue
Router Send
Thread
Worker Transfer Thread
List<List<Tuple>>
Transfer Buffer
To Other Workers
Task
(Spout/Bolt)
Task
(Spout/Bolt)
Task(s)
(Spout/Bolt)
Reliable Processing
At Least Once
Reliable Processing
Bolts may emit Tuples Anchored to one received.
Tuple “B” is a descendant of Tuple “A”
{A} {B}
Reliable Processing
Multiple Anchorings form a Tuple tree
(bolts not shown)
{A} {B}
{C}
{D}
{E}
{F}
{G}
{H}
Reliable Processing
Bolts can Acknowledge that a tuple
has been processed successfully.
{A} {B}
ACK
Reliable Processing
Acks are delivered via a system-level bolt
ACK
{A} {B}
Acker Bolt
ackack
Reliable Processing
Bolts can also Fail a tuple to trigger a spout to
replay the original.
FAIL
{A} {B}
Acker Bolt
failfail
Reliable Processing
Any failure in the Tuple tree will trigger a
replay of the original tuple
{A} {B}
{C}
{D}
{E}
{F}
{G}
{H}
X
X
Reliable Processing
How to track a large-scale tuple tree efficiently?
Reliable Processing
A single 64-bit integer.
XOR Magic
Long a, b, c = Random.nextLong();
XOR Magic
Long a, b, c = Random.nextLong();!
!
a ^ a == 0
XOR Magic
Long a, b, c = Random.nextLong();!
!
a ^ a == 0!
!
a ^ a ^ b != 0
XOR Magic
Long a, b, c = Random.nextLong();!
!
a ^ a == 0!
!
a ^ a ^ b != 0!
!
a ^ a ^ b ^ b == 0
XOR Magic
Long a, b, c = Random.nextLong();!
!
a ^ (a ^ b) ^ c ^ (b ^ c) == 0
XOR Magic
Long a, b, c = Random.nextLong();!
!
a ^ (a ^ b) ^ c ^ (b ^ c) == 0
Acks can arrive asynchronously, in any order
Trident
Trident
High-level abstraction built on Storm’s core primitives.
Trident
Built-in support for:
• Merges and Joins
• Aggregations
• Groupings
• Functions
• Filters
Trident
Stateful, incremental processing on top
of any persistence store.
Trident
Trident is Storm
Trident
Fluent, Stream-oriented API
Trident
Fluent, Stream-Oriented API
TridentTopology topology = new TridentTopology();!
FixedBatchSpout spout = new FixedBatchSpout(…);!
Stream stream = topology.newStream("words", spout);!
!
stream.each(…, new MyFunction())!
.groupBy()!
.each(…, new MyFilter())!
.persistentAggregate(…);!
User-defined functions
Trident
Micro-Batch Oriented
Tuple Micro-Batch
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
Trident
Trident Batches are Ordered
Tuple Micro-Batch
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
Tuple Micro-Batch
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
Batch #1 Batch #2
Trident
Trident Batches can be Partitioned
Tuple Micro-Batch
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
Trident
Trident Batches can be Partitioned
Tuple Micro-Batch
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
Partition Operation
Partition A
{…} {…}
{…}{…}
Partition B
{…} {…}
{…}{…}
Partition C
{…} {…}
{…}{…}
Partition D
{…} {…}
{…}{…}
Trident Operation Types
1. Local Operations (Functions/Filters)
2. Repartitioning Operations (Stream Groupings,
etc.)
3. Aggregations
4. Merges/Joins
Trident Topologies
each
each
shuffle
Function
Filter
partition
persist
Trident Toplogies
Partitioning operations define the boundaries
between bolts, and thus network transfer
and parallelism
Trident Topologies
each
each
shuffle
Function
Filter
partition
persist
Bolt 1
Bolt 2
shuffleGrouping()
Partitioning!
Operation
Trident Batch
Coordination
Trident Batch Coordination
Trident SpoutMaster Batch Coordinator User Logic
next
batch
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
{…} {…} {…} {…}
commit
Controlling
Deployment
Controlling Deployment
How do you control where spouts
and bolts get deployed in a cluster?
Controlling Deployment
How do you control where spouts
and bolts get deployed in a cluster?
Plug-able Schedulers
Controlling Deployment
How do you control where spouts
and bolts get deployed in a cluster?
Isolation Scheduler
Wait… Nimbus, Supervisor, Schedulers…
!
Doesn’t that sound kind of like
resource negotiation?
Storm on YARN
HDFS2	
  
(redundant,	
  reliable	
  storage)
YARN	
  
(cluster	
  resource	
  management)
MapReduce
(batch)
Apache	
  

STORM	
  
(streaming)
HADOOP 2.0
Tez	
  
(interactive)
Multi Use Data Platform
Batch, Interactive, Online, Streaming, …
Storm on YARN
HDFS2	
  
(redundant,	
  reliable	
  storage)
YARN	
  
(cluster	
  resource	
  management)
MapReduce
(batch)
Apache	
  

STORM	
  
(streaming)
HADOOP 2.0
Tez	
  
(interactive)
Multi Use Data Platform
Batch, Interactive, Online, Streaming, …
Batch and real-time on the same cluster
Storm on YARN
HDFS2	
  
(redundant,	
  reliable	
  storage)
YARN	
  
(cluster	
  resource	
  management)
MapReduce
(batch)
Apache	
  

STORM	
  
(streaming)
HADOOP 2.0
Tez	
  
(interactive)
Multi Use Data Platform
Batch, Interactive, Online, Streaming, …
Security and Multi-tenancy
Storm on YARN
HDFS2	
  
(redundant,	
  reliable	
  storage)
YARN	
  
(cluster	
  resource	
  management)
MapReduce
(batch)
Apache	
  

STORM	
  
(streaming)
HADOOP 2.0
Tez	
  
(interactive)
Multi Use Data Platform
Batch, Interactive, Online, Streaming, …
Elasticity
Storm on YARN
Nimbus
Resource Management, Scheduling
Supervisor
Node and Process management
Workers
Runs topology tasks
YARN RM
Resource Management
Storm AM
Manage Topology
Containers
Runs topology tasks
YARN NM
Process Management
Storm’s resource management system
maps very naturally to the YARN model.
Storm on YARN
Nimbus
Resource Management, Scheduling
Supervisor
Node and Process management
Workers
Runs topology tasks
YARN RM
Resource Management
Storm AM
Manage Topology
Containers
Runs topology tasks
YARN NM
Process Management
High Availability
Storm on YARN
Nimbus
Resource Management, Scheduling
Supervisor
Node and Process management
Workers
Runs topology tasks
YARN RM
Resource Management
Storm AM
Manage Topology
Containers
Runs topology tasks
YARN NM
Process Management
Detect and scale around bottlenecks
Storm on YARN
Nimbus
Resource Management, Scheduling
Supervisor
Node and Process management
Workers
Runs topology tasks
YARN RM
Resource Management
Storm AM
Manage Topology
Containers
Runs topology tasks
YARN NM
Process Management
Optimize for available resources
Shameless
Plug
https://www.packtpub.com/
storm-distributed-real-time-
computation-blueprints/book
Thank You!
Contributions welcome.
Join the storm community at:
http://storm.incubator.apache.org
P. Taylor Goetz
tgoetz@hortonworks.com
@ptgoetz
Ad

More Related Content

What's hot (20)

Realtime Analytics with Storm and Hadoop
Realtime Analytics with Storm and HadoopRealtime Analytics with Storm and Hadoop
Realtime Analytics with Storm and Hadoop
DataWorks Summit
 
Storm Anatomy
Storm AnatomyStorm Anatomy
Storm Anatomy
Eiichiro Uchiumi
 
Learning Stream Processing with Apache Storm
Learning Stream Processing with Apache StormLearning Stream Processing with Apache Storm
Learning Stream Processing with Apache Storm
Eugene Dvorkin
 
Introduction to Storm
Introduction to StormIntroduction to Storm
Introduction to Storm
Eugene Dvorkin
 
STORM
STORMSTORM
STORM
Kasper Grud Skat Madsen
 
Real Time Graph Computations in Storm, Neo4J, Python - PyCon India 2013
Real Time Graph Computations in Storm, Neo4J, Python - PyCon India 2013Real Time Graph Computations in Storm, Neo4J, Python - PyCon India 2013
Real Time Graph Computations in Storm, Neo4J, Python - PyCon India 2013
Sonal Raj
 
Multi-Tenant Storm Service on Hadoop Grid
Multi-Tenant Storm Service on Hadoop GridMulti-Tenant Storm Service on Hadoop Grid
Multi-Tenant Storm Service on Hadoop Grid
DataWorks Summit
 
Cassandra and Storm at Health Market Sceince
Cassandra and Storm at Health Market SceinceCassandra and Storm at Health Market Sceince
Cassandra and Storm at Health Market Sceince
P. Taylor Goetz
 
Scaling Apache Storm (Hadoop Summit 2015)
Scaling Apache Storm (Hadoop Summit 2015)Scaling Apache Storm (Hadoop Summit 2015)
Scaling Apache Storm (Hadoop Summit 2015)
Robert Evans
 
Storm
StormStorm
Storm
Pouyan Rezazadeh
 
Real time and reliable processing with Apache Storm
Real time and reliable processing with Apache StormReal time and reliable processing with Apache Storm
Real time and reliable processing with Apache Storm
Andrea Iacono
 
Improved Reliable Streaming Processing: Apache Storm as example
Improved Reliable Streaming Processing: Apache Storm as exampleImproved Reliable Streaming Processing: Apache Storm as example
Improved Reliable Streaming Processing: Apache Storm as example
DataWorks Summit/Hadoop Summit
 
Introduction to Apache Storm
Introduction to Apache StormIntroduction to Apache Storm
Introduction to Apache Storm
Tiziano De Matteis
 
Apache Storm Internals
Apache Storm InternalsApache Storm Internals
Apache Storm Internals
Humoyun Ahmedov
 
Storm-on-YARN: Convergence of Low-Latency and Big-Data
Storm-on-YARN: Convergence of Low-Latency and Big-DataStorm-on-YARN: Convergence of Low-Latency and Big-Data
Storm-on-YARN: Convergence of Low-Latency and Big-Data
DataWorks Summit
 
Yahoo compares Storm and Spark
Yahoo compares Storm and SparkYahoo compares Storm and Spark
Yahoo compares Storm and Spark
Chicago Hadoop Users Group
 
Resource Aware Scheduling in Apache Storm
Resource Aware Scheduling in Apache StormResource Aware Scheduling in Apache Storm
Resource Aware Scheduling in Apache Storm
DataWorks Summit/Hadoop Summit
 
Introduction to Apache Storm - Concept & Example
Introduction to Apache Storm - Concept & ExampleIntroduction to Apache Storm - Concept & Example
Introduction to Apache Storm - Concept & Example
Dung Ngua
 
Scaling Apache Storm - Strata + Hadoop World 2014
Scaling Apache Storm - Strata + Hadoop World 2014Scaling Apache Storm - Strata + Hadoop World 2014
Scaling Apache Storm - Strata + Hadoop World 2014
P. Taylor Goetz
 
Streams processing with Storm
Streams processing with StormStreams processing with Storm
Streams processing with Storm
Mariusz Gil
 
Realtime Analytics with Storm and Hadoop
Realtime Analytics with Storm and HadoopRealtime Analytics with Storm and Hadoop
Realtime Analytics with Storm and Hadoop
DataWorks Summit
 
Learning Stream Processing with Apache Storm
Learning Stream Processing with Apache StormLearning Stream Processing with Apache Storm
Learning Stream Processing with Apache Storm
Eugene Dvorkin
 
Real Time Graph Computations in Storm, Neo4J, Python - PyCon India 2013
Real Time Graph Computations in Storm, Neo4J, Python - PyCon India 2013Real Time Graph Computations in Storm, Neo4J, Python - PyCon India 2013
Real Time Graph Computations in Storm, Neo4J, Python - PyCon India 2013
Sonal Raj
 
Multi-Tenant Storm Service on Hadoop Grid
Multi-Tenant Storm Service on Hadoop GridMulti-Tenant Storm Service on Hadoop Grid
Multi-Tenant Storm Service on Hadoop Grid
DataWorks Summit
 
Cassandra and Storm at Health Market Sceince
Cassandra and Storm at Health Market SceinceCassandra and Storm at Health Market Sceince
Cassandra and Storm at Health Market Sceince
P. Taylor Goetz
 
Scaling Apache Storm (Hadoop Summit 2015)
Scaling Apache Storm (Hadoop Summit 2015)Scaling Apache Storm (Hadoop Summit 2015)
Scaling Apache Storm (Hadoop Summit 2015)
Robert Evans
 
Real time and reliable processing with Apache Storm
Real time and reliable processing with Apache StormReal time and reliable processing with Apache Storm
Real time and reliable processing with Apache Storm
Andrea Iacono
 
Improved Reliable Streaming Processing: Apache Storm as example
Improved Reliable Streaming Processing: Apache Storm as exampleImproved Reliable Streaming Processing: Apache Storm as example
Improved Reliable Streaming Processing: Apache Storm as example
DataWorks Summit/Hadoop Summit
 
Storm-on-YARN: Convergence of Low-Latency and Big-Data
Storm-on-YARN: Convergence of Low-Latency and Big-DataStorm-on-YARN: Convergence of Low-Latency and Big-Data
Storm-on-YARN: Convergence of Low-Latency and Big-Data
DataWorks Summit
 
Introduction to Apache Storm - Concept & Example
Introduction to Apache Storm - Concept & ExampleIntroduction to Apache Storm - Concept & Example
Introduction to Apache Storm - Concept & Example
Dung Ngua
 
Scaling Apache Storm - Strata + Hadoop World 2014
Scaling Apache Storm - Strata + Hadoop World 2014Scaling Apache Storm - Strata + Hadoop World 2014
Scaling Apache Storm - Strata + Hadoop World 2014
P. Taylor Goetz
 
Streams processing with Storm
Streams processing with StormStreams processing with Storm
Streams processing with Storm
Mariusz Gil
 

Viewers also liked (8)

Storm: distributed and fault-tolerant realtime computation
Storm: distributed and fault-tolerant realtime computationStorm: distributed and fault-tolerant realtime computation
Storm: distributed and fault-tolerant realtime computation
nathanmarz
 
Resource Aware Scheduling in Apache Storm
Resource Aware Scheduling in Apache StormResource Aware Scheduling in Apache Storm
Resource Aware Scheduling in Apache Storm
DataWorks Summit/Hadoop Summit
 
Apache storm vs. Spark Streaming
Apache storm vs. Spark StreamingApache storm vs. Spark Streaming
Apache storm vs. Spark Streaming
P. Taylor Goetz
 
淺談 Kubernetes於大數據生態系的相關開發近況
淺談 Kubernetes於大數據生態系的相關開發近況淺談 Kubernetes於大數據生態系的相關開發近況
淺談 Kubernetes於大數據生態系的相關開發近況
inwin stack
 
The Future of Apache Storm
The Future of Apache StormThe Future of Apache Storm
The Future of Apache Storm
P. Taylor Goetz
 
Performance Comparison of Streaming Big Data Platforms
Performance Comparison of Streaming Big Data PlatformsPerformance Comparison of Streaming Big Data Platforms
Performance Comparison of Streaming Big Data Platforms
DataWorks Summit/Hadoop Summit
 
Kafka Tutorial Advanced Kafka Consumers
Kafka Tutorial Advanced Kafka ConsumersKafka Tutorial Advanced Kafka Consumers
Kafka Tutorial Advanced Kafka Consumers
Jean-Paul Azar
 
Build your own kubernetes apiserver and resource type
Build your own kubernetes apiserver and resource typeBuild your own kubernetes apiserver and resource type
Build your own kubernetes apiserver and resource type
inwin stack
 
Storm: distributed and fault-tolerant realtime computation
Storm: distributed and fault-tolerant realtime computationStorm: distributed and fault-tolerant realtime computation
Storm: distributed and fault-tolerant realtime computation
nathanmarz
 
Apache storm vs. Spark Streaming
Apache storm vs. Spark StreamingApache storm vs. Spark Streaming
Apache storm vs. Spark Streaming
P. Taylor Goetz
 
淺談 Kubernetes於大數據生態系的相關開發近況
淺談 Kubernetes於大數據生態系的相關開發近況淺談 Kubernetes於大數據生態系的相關開發近況
淺談 Kubernetes於大數據生態系的相關開發近況
inwin stack
 
The Future of Apache Storm
The Future of Apache StormThe Future of Apache Storm
The Future of Apache Storm
P. Taylor Goetz
 
Performance Comparison of Streaming Big Data Platforms
Performance Comparison of Streaming Big Data PlatformsPerformance Comparison of Streaming Big Data Platforms
Performance Comparison of Streaming Big Data Platforms
DataWorks Summit/Hadoop Summit
 
Kafka Tutorial Advanced Kafka Consumers
Kafka Tutorial Advanced Kafka ConsumersKafka Tutorial Advanced Kafka Consumers
Kafka Tutorial Advanced Kafka Consumers
Jean-Paul Azar
 
Build your own kubernetes apiserver and resource type
Build your own kubernetes apiserver and resource typeBuild your own kubernetes apiserver and resource type
Build your own kubernetes apiserver and resource type
inwin stack
 
Ad

Similar to Hadoop Summit Europe 2014: Apache Storm Architecture (20)

Let'swift "Concurrency in swift"
Let'swift "Concurrency in swift"Let'swift "Concurrency in swift"
Let'swift "Concurrency in swift"
Hyuk Hur
 
Storm
StormStorm
Storm
Premnath Thimma, CSM/PMP
 
The Need for Async @ ScalaWorld
The Need for Async @ ScalaWorldThe Need for Async @ ScalaWorld
The Need for Async @ ScalaWorld
Konrad Malawski
 
Server side JavaScript: going all the way
Server side JavaScript: going all the wayServer side JavaScript: going all the way
Server side JavaScript: going all the way
Oleg Podsechin
 
Clojure: Simple By Design
Clojure: Simple By DesignClojure: Simple By Design
Clojure: Simple By Design
All Things Open
 
BWB Meetup: Storm - distributed realtime computation system
BWB Meetup: Storm - distributed realtime computation systemBWB Meetup: Storm - distributed realtime computation system
BWB Meetup: Storm - distributed realtime computation system
Andrii Gakhov
 
LCA2014 - Introduction to Go
LCA2014 - Introduction to GoLCA2014 - Introduction to Go
LCA2014 - Introduction to Go
dreamwidth
 
Real-Time Streaming with Apache Spark Streaming and Apache Storm
Real-Time Streaming with Apache Spark Streaming and Apache StormReal-Time Streaming with Apache Spark Streaming and Apache Storm
Real-Time Streaming with Apache Spark Streaming and Apache Storm
Davorin Vukelic
 
storm-170531123446.dotx.pptx
storm-170531123446.dotx.pptxstorm-170531123446.dotx.pptx
storm-170531123446.dotx.pptx
IbrahimBenhadhria
 
Go Reactive: Event-Driven, Scalable, Resilient & Responsive Systems
Go Reactive: Event-Driven, Scalable, Resilient & Responsive SystemsGo Reactive: Event-Driven, Scalable, Resilient & Responsive Systems
Go Reactive: Event-Driven, Scalable, Resilient & Responsive Systems
Jonas Bonér
 
Serializing EMF models with Xtext
Serializing EMF models with XtextSerializing EMF models with Xtext
Serializing EMF models with Xtext
meysholdt
 
Golang Performance : microbenchmarks, profilers, and a war story
Golang Performance : microbenchmarks, profilers, and a war storyGolang Performance : microbenchmarks, profilers, and a war story
Golang Performance : microbenchmarks, profilers, and a war story
Aerospike
 
Akka.NET streams and reactive streams
Akka.NET streams and reactive streamsAkka.NET streams and reactive streams
Akka.NET streams and reactive streams
Bartosz Sypytkowski
 
Concurrency Constructs Overview
Concurrency Constructs OverviewConcurrency Constructs Overview
Concurrency Constructs Overview
stasimus
 
Presto anatomy
Presto anatomyPresto anatomy
Presto anatomy
Dongmin Yu
 
Haskell for data science
Haskell for data scienceHaskell for data science
Haskell for data science
John Cant
 
A Survey of Concurrency Constructs
A Survey of Concurrency ConstructsA Survey of Concurrency Constructs
A Survey of Concurrency Constructs
Ted Leung
 
Reactive programming on Android
Reactive programming on AndroidReactive programming on Android
Reactive programming on Android
Tomáš Kypta
 
Bigdata roundtable-storm
Bigdata roundtable-stormBigdata roundtable-storm
Bigdata roundtable-storm
Tobias Schlottke
 
Real Time Analytics - Stream Processing (Colombo big data meetup 18/05/2017)
Real Time Analytics - Stream Processing (Colombo big data meetup 18/05/2017)Real Time Analytics - Stream Processing (Colombo big data meetup 18/05/2017)
Real Time Analytics - Stream Processing (Colombo big data meetup 18/05/2017)
mahesh madushanka
 
Let'swift "Concurrency in swift"
Let'swift "Concurrency in swift"Let'swift "Concurrency in swift"
Let'swift "Concurrency in swift"
Hyuk Hur
 
The Need for Async @ ScalaWorld
The Need for Async @ ScalaWorldThe Need for Async @ ScalaWorld
The Need for Async @ ScalaWorld
Konrad Malawski
 
Server side JavaScript: going all the way
Server side JavaScript: going all the wayServer side JavaScript: going all the way
Server side JavaScript: going all the way
Oleg Podsechin
 
Clojure: Simple By Design
Clojure: Simple By DesignClojure: Simple By Design
Clojure: Simple By Design
All Things Open
 
BWB Meetup: Storm - distributed realtime computation system
BWB Meetup: Storm - distributed realtime computation systemBWB Meetup: Storm - distributed realtime computation system
BWB Meetup: Storm - distributed realtime computation system
Andrii Gakhov
 
LCA2014 - Introduction to Go
LCA2014 - Introduction to GoLCA2014 - Introduction to Go
LCA2014 - Introduction to Go
dreamwidth
 
Real-Time Streaming with Apache Spark Streaming and Apache Storm
Real-Time Streaming with Apache Spark Streaming and Apache StormReal-Time Streaming with Apache Spark Streaming and Apache Storm
Real-Time Streaming with Apache Spark Streaming and Apache Storm
Davorin Vukelic
 
storm-170531123446.dotx.pptx
storm-170531123446.dotx.pptxstorm-170531123446.dotx.pptx
storm-170531123446.dotx.pptx
IbrahimBenhadhria
 
Go Reactive: Event-Driven, Scalable, Resilient & Responsive Systems
Go Reactive: Event-Driven, Scalable, Resilient & Responsive SystemsGo Reactive: Event-Driven, Scalable, Resilient & Responsive Systems
Go Reactive: Event-Driven, Scalable, Resilient & Responsive Systems
Jonas Bonér
 
Serializing EMF models with Xtext
Serializing EMF models with XtextSerializing EMF models with Xtext
Serializing EMF models with Xtext
meysholdt
 
Golang Performance : microbenchmarks, profilers, and a war story
Golang Performance : microbenchmarks, profilers, and a war storyGolang Performance : microbenchmarks, profilers, and a war story
Golang Performance : microbenchmarks, profilers, and a war story
Aerospike
 
Akka.NET streams and reactive streams
Akka.NET streams and reactive streamsAkka.NET streams and reactive streams
Akka.NET streams and reactive streams
Bartosz Sypytkowski
 
Concurrency Constructs Overview
Concurrency Constructs OverviewConcurrency Constructs Overview
Concurrency Constructs Overview
stasimus
 
Presto anatomy
Presto anatomyPresto anatomy
Presto anatomy
Dongmin Yu
 
Haskell for data science
Haskell for data scienceHaskell for data science
Haskell for data science
John Cant
 
A Survey of Concurrency Constructs
A Survey of Concurrency ConstructsA Survey of Concurrency Constructs
A Survey of Concurrency Constructs
Ted Leung
 
Reactive programming on Android
Reactive programming on AndroidReactive programming on Android
Reactive programming on Android
Tomáš Kypta
 
Real Time Analytics - Stream Processing (Colombo big data meetup 18/05/2017)
Real Time Analytics - Stream Processing (Colombo big data meetup 18/05/2017)Real Time Analytics - Stream Processing (Colombo big data meetup 18/05/2017)
Real Time Analytics - Stream Processing (Colombo big data meetup 18/05/2017)
mahesh madushanka
 
Ad

Recently uploaded (20)

Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025
kashifyounis067
 
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
Solidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license codeSolidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license code
aneelaramzan63
 
Not So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java WebinarNot So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java Webinar
Tier1 app
 
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
Andre Hora
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 
Automation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath CertificateAutomation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath Certificate
VICTOR MAESTRE RAMIREZ
 
Adobe Illustrator Crack FREE Download 2025 Latest Version
Adobe Illustrator Crack FREE Download 2025 Latest VersionAdobe Illustrator Crack FREE Download 2025 Latest Version
Adobe Illustrator Crack FREE Download 2025 Latest Version
kashifyounis067
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
How can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptxHow can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptx
laravinson24
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
Exploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the FutureExploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the Future
ICS
 
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New VersionPixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
saimabibi60507
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
University of Hawai‘i at Mānoa
 
Download Wondershare Filmora Crack [2025] With Latest
Download Wondershare Filmora Crack [2025] With LatestDownload Wondershare Filmora Crack [2025] With Latest
Download Wondershare Filmora Crack [2025] With Latest
tahirabibi60507
 
Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025Adobe Lightroom Classic Crack FREE Latest link 2025
Adobe Lightroom Classic Crack FREE Latest link 2025
kashifyounis067
 
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRYLEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
LEARN SEO AND INCREASE YOUR KNOWLDGE IN SOFTWARE INDUSTRY
NidaFarooq10
 
Solidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license codeSolidworks Crack 2025 latest new + license code
Solidworks Crack 2025 latest new + license code
aneelaramzan63
 
Not So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java WebinarNot So Common Memory Leaks in Java Webinar
Not So Common Memory Leaks in Java Webinar
Tier1 app
 
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
What Do Contribution Guidelines Say About Software Testing? (MSR 2025)
Andre Hora
 
The Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdfThe Significance of Hardware in Information Systems.pdf
The Significance of Hardware in Information Systems.pdf
drewplanas10
 
WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)WinRAR Crack for Windows (100% Working 2025)
WinRAR Crack for Windows (100% Working 2025)
sh607827
 
Automation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath CertificateAutomation Techniques in RPA - UiPath Certificate
Automation Techniques in RPA - UiPath Certificate
VICTOR MAESTRE RAMIREZ
 
Adobe Illustrator Crack FREE Download 2025 Latest Version
Adobe Illustrator Crack FREE Download 2025 Latest VersionAdobe Illustrator Crack FREE Download 2025 Latest Version
Adobe Illustrator Crack FREE Download 2025 Latest Version
kashifyounis067
 
Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)Who Watches the Watchmen (SciFiDevCon 2025)
Who Watches the Watchmen (SciFiDevCon 2025)
Allon Mureinik
 
How can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptxHow can one start with crypto wallet development.pptx
How can one start with crypto wallet development.pptx
laravinson24
 
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
How to Batch Export Lotus Notes NSF Emails to Outlook PST Easily?
steaveroggers
 
Societal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainabilitySocietal challenges of AI: biases, multilinguism and sustainability
Societal challenges of AI: biases, multilinguism and sustainability
Jordi Cabot
 
PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025PDF Reader Pro Crack Latest Version FREE Download 2025
PDF Reader Pro Crack Latest Version FREE Download 2025
mu394968
 
Exploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the FutureExploring Wayland: A Modern Display Server for the Future
Exploring Wayland: A Modern Display Server for the Future
ICS
 
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New VersionPixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
Pixologic ZBrush Crack Plus Activation Key [Latest 2025] New Version
saimabibi60507
 
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...
Andre Hora
 
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDesigning AI-Powered APIs on Azure: Best Practices& Considerations
Designing AI-Powered APIs on Azure: Best Practices& Considerations
Dinusha Kumarasiri
 
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...Exploring Code Comprehension  in Scientific Programming:  Preliminary Insight...
Exploring Code Comprehension in Scientific Programming: Preliminary Insight...
University of Hawai‘i at Mānoa
 
Download Wondershare Filmora Crack [2025] With Latest
Download Wondershare Filmora Crack [2025] With LatestDownload Wondershare Filmora Crack [2025] With Latest
Download Wondershare Filmora Crack [2025] With Latest
tahirabibi60507
 

Hadoop Summit Europe 2014: Apache Storm Architecture