SlideShare a Scribd company logo
Compiled by:
Amar Narayan Tripathi
Roll no:1205213007
IT Final Year
IET Lucknow
 Machine learning is a subfield of computer
science that explores the study and
construction of algorithms that can learn
from and make predictions on data.
 Such algorithms operate by building a model
from example inputs in order to make data-
driven predictions or decisions, rather than
following strictly static program instructions.
 Supervised learning : Learn by examples as
to what a face is in terms of structure, color,
etc so that after several iterations it learns
to define a face.
 Unsupervised learning : since there is no
desired output in this case that is provided
therefore categorization is done so that the
algorithm differentiates correctly between
the face of a horse, cat or human.
 REINFORCEMENT LEARNING:
Learn how to behave successfully to achieve
a goal while interacting with an external
environment .(Learn via Experiences!)
 Supervised learning is the machine learning
task of inferring a function from labeled
training data. The training data consist of a
set of training examples. In supervised
learning, each example is a pair consisting of
an input object and a desired output value. A
supervised learning algorithm analyzes the
training data and produces an inferred
function, which can be used for mapping new
examples.
supervised learning
 Learning (training): Learn a model using
the training data
 Testing: Test the model using unseen test
data to assess the model accuracy
 Accuracy= No. of correct classifications
Total no of test cases
 In order to solve a given problem of supervised learning, one has
to perform the following steps:
1. Determine the type of training examples. Before doing anything
else, the user should decide what kind of data is to be used as a
training set.
2. Gather a training set. Thus, a set of input objects is gathered
and corresponding outputs are also gathered, either from human
experts or from measurements.
3. Determine the structure of the learned function and
corresponding learning algorithm.
4. Complete the design. Run the learning algorithm on the gathered
training set.
5. Evaluate the accuracy of the learned function. After parameter
adjustment and learning, the performance of the resulting function
should be measured on a test set that is separate from the training
set.
 Regression means to predict the output value
using training data.
 Classification means to group the output into
a class.
 e.g. we use regression to predict the house
price from training data and use
classification to predict the Gender.
Learning of binary classification
 Given: a set of m examples (xi,yi) i = 1,2…m
sampled from some distribution D, where xiRn
and yi{-1,+1}
 Find: a function f f: Rn -> {-1,+1} which
classifies ‘well’ examples xj sampled from D.
comments
 The function f is usually a statistical model,
whose parameters are learnt from the set of
examples.
 The set of examples are called – ‘training set’.
 Y is called – ‘target variable’, or ‘target’.
 Examples with yi=+1 are called ‘positive
examples’.
 Examples with yi=-1 are called ‘negative
examples’.
x1
x2 ?
?
?
?
supervised learning
supervised learning
supervised learning
 Customer discovery:
predict whether a customer is likely to
purchase certain goods according to a
database of customer profiles and their
history of shopping activities.
discriminating human faces from non faces.
 Identify handwritten
characters: classify
each image of
character into one of
10 categories ‘0’, ‘1’, ‘2’
…
6132
2056
2014
4283
2064
 Youtube.com
 Wikipedia.com
 Mathswork.com
 Slideshare.com
supervised learning
Ad

More Related Content

What's hot (20)

Decision tree
Decision treeDecision tree
Decision tree
R A Akerkar
 
Support Vector Machines ( SVM )
Support Vector Machines ( SVM ) Support Vector Machines ( SVM )
Support Vector Machines ( SVM )
Mohammad Junaid Khan
 
Classification Based Machine Learning Algorithms
Classification Based Machine Learning AlgorithmsClassification Based Machine Learning Algorithms
Classification Based Machine Learning Algorithms
Md. Main Uddin Rony
 
Clustering
ClusteringClustering
Clustering
M Rizwan Aqeel
 
Machine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural NetworksMachine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural Networks
Francesco Collova'
 
Perceptron (neural network)
Perceptron (neural network)Perceptron (neural network)
Perceptron (neural network)
EdutechLearners
 
Machine Learning Using Python
Machine Learning Using PythonMachine Learning Using Python
Machine Learning Using Python
SavitaHanchinal
 
Decision Trees
Decision TreesDecision Trees
Decision Trees
Student
 
K mean-clustering algorithm
K mean-clustering algorithmK mean-clustering algorithm
K mean-clustering algorithm
parry prabhu
 
Bias and variance trade off
Bias and variance trade offBias and variance trade off
Bias and variance trade off
VARUN KUMAR
 
Machine Learning with Decision trees
Machine Learning with Decision treesMachine Learning with Decision trees
Machine Learning with Decision trees
Knoldus Inc.
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
 
Linear regression
Linear regressionLinear regression
Linear regression
MartinHogg9
 
Knowledge representation In Artificial Intelligence
Knowledge representation In Artificial IntelligenceKnowledge representation In Artificial Intelligence
Knowledge representation In Artificial Intelligence
Ramla Sheikh
 
Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...
Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...
Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...
Simplilearn
 
Machine Learning and Real-World Applications
Machine Learning and Real-World ApplicationsMachine Learning and Real-World Applications
Machine Learning and Real-World Applications
MachinePulse
 
Deep learning
Deep learningDeep learning
Deep learning
Ratnakar Pandey
 
Machine Learning With Logistic Regression
Machine Learning  With Logistic RegressionMachine Learning  With Logistic Regression
Machine Learning With Logistic Regression
Knoldus Inc.
 
Neural networks.ppt
Neural networks.pptNeural networks.ppt
Neural networks.ppt
SrinivashR3
 
Artificial Neural Networks - ANN
Artificial Neural Networks - ANNArtificial Neural Networks - ANN
Artificial Neural Networks - ANN
Mohamed Talaat
 
Classification Based Machine Learning Algorithms
Classification Based Machine Learning AlgorithmsClassification Based Machine Learning Algorithms
Classification Based Machine Learning Algorithms
Md. Main Uddin Rony
 
Machine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural NetworksMachine Learning: Introduction to Neural Networks
Machine Learning: Introduction to Neural Networks
Francesco Collova'
 
Perceptron (neural network)
Perceptron (neural network)Perceptron (neural network)
Perceptron (neural network)
EdutechLearners
 
Machine Learning Using Python
Machine Learning Using PythonMachine Learning Using Python
Machine Learning Using Python
SavitaHanchinal
 
Decision Trees
Decision TreesDecision Trees
Decision Trees
Student
 
K mean-clustering algorithm
K mean-clustering algorithmK mean-clustering algorithm
K mean-clustering algorithm
parry prabhu
 
Bias and variance trade off
Bias and variance trade offBias and variance trade off
Bias and variance trade off
VARUN KUMAR
 
Machine Learning with Decision trees
Machine Learning with Decision treesMachine Learning with Decision trees
Machine Learning with Decision trees
Knoldus Inc.
 
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
What Is Deep Learning? | Introduction to Deep Learning | Deep Learning Tutori...
Simplilearn
 
Linear regression
Linear regressionLinear regression
Linear regression
MartinHogg9
 
Knowledge representation In Artificial Intelligence
Knowledge representation In Artificial IntelligenceKnowledge representation In Artificial Intelligence
Knowledge representation In Artificial Intelligence
Ramla Sheikh
 
Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...
Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...
Supervised and Unsupervised Learning In Machine Learning | Machine Learning T...
Simplilearn
 
Machine Learning and Real-World Applications
Machine Learning and Real-World ApplicationsMachine Learning and Real-World Applications
Machine Learning and Real-World Applications
MachinePulse
 
Machine Learning With Logistic Regression
Machine Learning  With Logistic RegressionMachine Learning  With Logistic Regression
Machine Learning With Logistic Regression
Knoldus Inc.
 
Neural networks.ppt
Neural networks.pptNeural networks.ppt
Neural networks.ppt
SrinivashR3
 
Artificial Neural Networks - ANN
Artificial Neural Networks - ANNArtificial Neural Networks - ANN
Artificial Neural Networks - ANN
Mohamed Talaat
 

Similar to supervised learning (20)

supervised_learning_PRESENTATION___.pptx
supervised_learning_PRESENTATION___.pptxsupervised_learning_PRESENTATION___.pptx
supervised_learning_PRESENTATION___.pptx
MahevishFatima
 
An-Overview-of-Machine-Learning.pptx
An-Overview-of-Machine-Learning.pptxAn-Overview-of-Machine-Learning.pptx
An-Overview-of-Machine-Learning.pptx
someyamohsen3
 
Name.pptx
Name.pptxName.pptx
Name.pptx
Ayan974999
 
Machine Learning by Rj
Machine Learning by RjMachine Learning by Rj
Machine Learning by Rj
Shree M.L.Kakadiya MCA mahila college, Amreli
 
Machine Learning techniques
Machine Learning techniques Machine Learning techniques
Machine Learning techniques
Jigar Patel
 
Machine learning basics
Machine learning   basicsMachine learning   basics
Machine learning basics
AtheenaPandian Enterprises
 
Supervised Learning (Data Science).pptx
Supervised Learning  (Data Science).pptxSupervised Learning  (Data Science).pptx
Supervised Learning (Data Science).pptx
TARIKU ENDALE
 
Machine learning with ADA Boost
Machine learning with ADA BoostMachine learning with ADA Boost
Machine learning with ADA Boost
Aman Patel
 
Chapter 05 Machine Learning.pptx
Chapter 05 Machine Learning.pptxChapter 05 Machine Learning.pptx
Chapter 05 Machine Learning.pptx
ssuser957b41
 
Mlmlmlmlmlmlmlmlmlmlmlmlmlmlmlml.lmlmlmlmlm
Mlmlmlmlmlmlmlmlmlmlmlmlmlmlmlml.lmlmlmlmlmMlmlmlmlmlmlmlmlmlmlmlmlmlmlmlml.lmlmlmlmlm
Mlmlmlmlmlmlmlmlmlmlmlmlmlmlmlml.lmlmlmlmlm
akshithasamudrala951
 
ML_lec1.pdf
ML_lec1.pdfML_lec1.pdf
ML_lec1.pdf
Abdulrahman181781
 
ML_Lec1 introduction to machine learning.pdf
ML_Lec1 introduction to machine learning.pdfML_Lec1 introduction to machine learning.pdf
ML_Lec1 introduction to machine learning.pdf
BeshoyArnest
 
UNIT 1 Machine Learning [KCS-055] (1).pptx
UNIT 1 Machine Learning [KCS-055] (1).pptxUNIT 1 Machine Learning [KCS-055] (1).pptx
UNIT 1 Machine Learning [KCS-055] (1).pptx
RohanPathak30
 
Introduction to Machine Learning for btech 7th sem
Introduction to Machine Learning for btech 7th semIntroduction to Machine Learning for btech 7th sem
Introduction to Machine Learning for btech 7th sem
cse21216
 
AI_06_Machine Learning.pptx
AI_06_Machine Learning.pptxAI_06_Machine Learning.pptx
AI_06_Machine Learning.pptx
Yousef Aburawi
 
Machine Learning Basics_Dr.Balamurugan.pdf
Machine Learning Basics_Dr.Balamurugan.pdfMachine Learning Basics_Dr.Balamurugan.pdf
Machine Learning Basics_Dr.Balamurugan.pdf
Dr. Balamurugan M
 
Machine Learning Interview Questions and Answers
Machine Learning Interview Questions and AnswersMachine Learning Interview Questions and Answers
Machine Learning Interview Questions and Answers
Satyam Jaiswal
 
Classification of Machine Learning Algorithms
Classification of Machine Learning AlgorithmsClassification of Machine Learning Algorithms
Classification of Machine Learning Algorithms
AM Publications
 
Machine Learning Seminar
Machine Learning SeminarMachine Learning Seminar
Machine Learning Seminar
Edwin Efraín Jiménez Lepe
 
Chapter 6 - Learning data and analytics course
Chapter 6 - Learning data and analytics courseChapter 6 - Learning data and analytics course
Chapter 6 - Learning data and analytics course
gideymichael
 
supervised_learning_PRESENTATION___.pptx
supervised_learning_PRESENTATION___.pptxsupervised_learning_PRESENTATION___.pptx
supervised_learning_PRESENTATION___.pptx
MahevishFatima
 
An-Overview-of-Machine-Learning.pptx
An-Overview-of-Machine-Learning.pptxAn-Overview-of-Machine-Learning.pptx
An-Overview-of-Machine-Learning.pptx
someyamohsen3
 
Machine Learning techniques
Machine Learning techniques Machine Learning techniques
Machine Learning techniques
Jigar Patel
 
Supervised Learning (Data Science).pptx
Supervised Learning  (Data Science).pptxSupervised Learning  (Data Science).pptx
Supervised Learning (Data Science).pptx
TARIKU ENDALE
 
Machine learning with ADA Boost
Machine learning with ADA BoostMachine learning with ADA Boost
Machine learning with ADA Boost
Aman Patel
 
Chapter 05 Machine Learning.pptx
Chapter 05 Machine Learning.pptxChapter 05 Machine Learning.pptx
Chapter 05 Machine Learning.pptx
ssuser957b41
 
Mlmlmlmlmlmlmlmlmlmlmlmlmlmlmlml.lmlmlmlmlm
Mlmlmlmlmlmlmlmlmlmlmlmlmlmlmlml.lmlmlmlmlmMlmlmlmlmlmlmlmlmlmlmlmlmlmlmlml.lmlmlmlmlm
Mlmlmlmlmlmlmlmlmlmlmlmlmlmlmlml.lmlmlmlmlm
akshithasamudrala951
 
ML_Lec1 introduction to machine learning.pdf
ML_Lec1 introduction to machine learning.pdfML_Lec1 introduction to machine learning.pdf
ML_Lec1 introduction to machine learning.pdf
BeshoyArnest
 
UNIT 1 Machine Learning [KCS-055] (1).pptx
UNIT 1 Machine Learning [KCS-055] (1).pptxUNIT 1 Machine Learning [KCS-055] (1).pptx
UNIT 1 Machine Learning [KCS-055] (1).pptx
RohanPathak30
 
Introduction to Machine Learning for btech 7th sem
Introduction to Machine Learning for btech 7th semIntroduction to Machine Learning for btech 7th sem
Introduction to Machine Learning for btech 7th sem
cse21216
 
AI_06_Machine Learning.pptx
AI_06_Machine Learning.pptxAI_06_Machine Learning.pptx
AI_06_Machine Learning.pptx
Yousef Aburawi
 
Machine Learning Basics_Dr.Balamurugan.pdf
Machine Learning Basics_Dr.Balamurugan.pdfMachine Learning Basics_Dr.Balamurugan.pdf
Machine Learning Basics_Dr.Balamurugan.pdf
Dr. Balamurugan M
 
Machine Learning Interview Questions and Answers
Machine Learning Interview Questions and AnswersMachine Learning Interview Questions and Answers
Machine Learning Interview Questions and Answers
Satyam Jaiswal
 
Classification of Machine Learning Algorithms
Classification of Machine Learning AlgorithmsClassification of Machine Learning Algorithms
Classification of Machine Learning Algorithms
AM Publications
 
Chapter 6 - Learning data and analytics course
Chapter 6 - Learning data and analytics courseChapter 6 - Learning data and analytics course
Chapter 6 - Learning data and analytics course
gideymichael
 
Ad

Recently uploaded (20)

Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko
Fwdays
 
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical DebtBuckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Lynda Kane
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your UsersAutomation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Lynda Kane
 
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from AnywhereAutomation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Lynda Kane
 
Hands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordDataHands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordData
Lynda Kane
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
"PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System""PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System"
Jainul Musani
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdfComplete Guide to Advanced Logistics Management Software in Riyadh.pdf
Complete Guide to Advanced Logistics Management Software in Riyadh.pdf
Software Company
 
"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko"Rebranding for Growth", Anna Velykoivanenko
"Rebranding for Growth", Anna Velykoivanenko
Fwdays
 
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical DebtBuckeye Dreamin 2024: Assessing and Resolving Technical Debt
Buckeye Dreamin 2024: Assessing and Resolving Technical Debt
Lynda Kane
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)Into The Box Conference Keynote Day 1 (ITB2025)
Into The Box Conference Keynote Day 1 (ITB2025)
Ortus Solutions, Corp
 
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptxDevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
DevOpsDays Atlanta 2025 - Building 10x Development Organizations.pptx
Justin Reock
 
Procurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptxProcurement Insights Cost To Value Guide.pptx
Procurement Insights Cost To Value Guide.pptx
Jon Hansen
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Enhancing ICU Intelligence: How Our Functional Testing Enabled a Healthcare I...
Impelsys Inc.
 
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your UsersAutomation Dreamin' 2022: Sharing Some Gratitude with Your Users
Automation Dreamin' 2022: Sharing Some Gratitude with Your Users
Lynda Kane
 
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from AnywhereAutomation Hour 1/28/2022: Capture User Feedback from Anywhere
Automation Hour 1/28/2022: Capture User Feedback from Anywhere
Lynda Kane
 
Hands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordDataHands On: Create a Lightning Aura Component with force:RecordData
Hands On: Create a Lightning Aura Component with force:RecordData
Lynda Kane
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
"PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System""PHP and MySQL CRUD Operations for Student Management System"
"PHP and MySQL CRUD Operations for Student Management System"
Jainul Musani
 
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
AI Changes Everything – Talk at Cardiff Metropolitan University, 29th April 2...
Alan Dix
 
Ad

supervised learning

  • 1. Compiled by: Amar Narayan Tripathi Roll no:1205213007 IT Final Year IET Lucknow
  • 2.  Machine learning is a subfield of computer science that explores the study and construction of algorithms that can learn from and make predictions on data.  Such algorithms operate by building a model from example inputs in order to make data- driven predictions or decisions, rather than following strictly static program instructions.
  • 3.  Supervised learning : Learn by examples as to what a face is in terms of structure, color, etc so that after several iterations it learns to define a face.  Unsupervised learning : since there is no desired output in this case that is provided therefore categorization is done so that the algorithm differentiates correctly between the face of a horse, cat or human.
  • 4.  REINFORCEMENT LEARNING: Learn how to behave successfully to achieve a goal while interacting with an external environment .(Learn via Experiences!)
  • 5.  Supervised learning is the machine learning task of inferring a function from labeled training data. The training data consist of a set of training examples. In supervised learning, each example is a pair consisting of an input object and a desired output value. A supervised learning algorithm analyzes the training data and produces an inferred function, which can be used for mapping new examples.
  • 7.  Learning (training): Learn a model using the training data  Testing: Test the model using unseen test data to assess the model accuracy  Accuracy= No. of correct classifications Total no of test cases
  • 8.  In order to solve a given problem of supervised learning, one has to perform the following steps: 1. Determine the type of training examples. Before doing anything else, the user should decide what kind of data is to be used as a training set. 2. Gather a training set. Thus, a set of input objects is gathered and corresponding outputs are also gathered, either from human experts or from measurements. 3. Determine the structure of the learned function and corresponding learning algorithm.
  • 9. 4. Complete the design. Run the learning algorithm on the gathered training set. 5. Evaluate the accuracy of the learned function. After parameter adjustment and learning, the performance of the resulting function should be measured on a test set that is separate from the training set.
  • 10.  Regression means to predict the output value using training data.  Classification means to group the output into a class.  e.g. we use regression to predict the house price from training data and use classification to predict the Gender.
  • 11. Learning of binary classification  Given: a set of m examples (xi,yi) i = 1,2…m sampled from some distribution D, where xiRn and yi{-1,+1}  Find: a function f f: Rn -> {-1,+1} which classifies ‘well’ examples xj sampled from D. comments  The function f is usually a statistical model, whose parameters are learnt from the set of examples.  The set of examples are called – ‘training set’.  Y is called – ‘target variable’, or ‘target’.  Examples with yi=+1 are called ‘positive examples’.  Examples with yi=-1 are called ‘negative examples’.
  • 16.  Customer discovery: predict whether a customer is likely to purchase certain goods according to a database of customer profiles and their history of shopping activities.
  • 17. discriminating human faces from non faces.
  • 18.  Identify handwritten characters: classify each image of character into one of 10 categories ‘0’, ‘1’, ‘2’ … 6132 2056 2014 4283 2064
  • 19.  Youtube.com  Wikipedia.com  Mathswork.com  Slideshare.com