The document provides an introduction to supervised machine learning, including definitions, techniques, and applications. It discusses how supervised machine learning involves training algorithms using labeled input data to make predictions on unlabeled data. Some common supervised learning algorithms mentioned are naive Bayes, decision trees, linear regression, support vector machines, and neural networks. Applications discussed include self-driving cars, online recommendations, fraud detection, and spam filtering. The key difference between supervised and unsupervised learning is that supervised learning uses labeled training data while unsupervised learning does not have pre-existing labels.