Welcome to the Supervised Machine Learning and Data Sciences.
Algorithms for building models. Support Vector Machines.
Classification algorithm explanation and code in Python ( SVM ) .
Support Vector Machine ppt presentationAyanaRukasar
Support vector machines (SVM) is a supervised machine learning algorithm used for both classification and regression problems. However, it is primarily used for classification. The goal of SVM is to create the best decision boundary, known as a hyperplane, that separates clusters of data points. It chooses extreme data points as support vectors to define the hyperplane. SVM is effective for problems that are not linearly separable by transforming them into higher dimensional spaces. It works well when there is a clear margin of separation between classes and is effective for high dimensional data. An example use case in Python is presented.
A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data (supervised learning), the algorithm outputs an optimal hyperplane which categorizes new examples. In two dimentional space this hyperplane is a line dividing a plane in two parts where in each class lay in either side.
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...Simplilearn
This document discusses support vector machines (SVM) and provides an example of using SVM for classification. It begins with common applications of SVM like face detection and image classification. It then provides an overview of SVM, explaining how it finds the optimal separating hyperplane between two classes by maximizing the margin between them. An example demonstrates SVM by classifying people as male or female based on height and weight data. It also discusses how kernels can be used to handle non-linearly separable data. The document concludes by showing an implementation of SVM on a zoos dataset to classify animals as crocodiles or alligators.
The document discusses the K-nearest neighbors (KNN) algorithm, a simple machine learning algorithm used for classification problems. KNN works by finding the K training examples that are closest in distance to a new data point, and assigning the most common class among those K examples as the prediction for the new data point. The document covers how KNN calculates distances between data points, how to choose the K value, techniques for handling different data types, and the strengths and weaknesses of the KNN algorithm.
Support vector machines are a type of supervised machine learning algorithm used for classification and regression analysis. They work by mapping data to high-dimensional feature spaces to find optimal linear separations between classes. Key advantages are effectiveness in high dimensions, memory efficiency using support vectors, and versatility through kernel functions. Hyperparameters like kernel type, gamma, and C must be tuned for best performance. Common kernels include linear, polynomial, and radial basis function kernels.
In machine learning, support vector machines (SVMs, also support vector networks[1]) are supervised learning models with associated learning algorithms that analyze data and recognize patterns, used for classification and regression analysis. The basic SVM takes a set of input data and predicts, for each given input, which of two possible classes forms the output, making it a non-probabilistic binary linear classifier.
This document provides an overview of support vector machines (SVM). It explains that SVM is a supervised machine learning algorithm used for classification and regression. It works by finding the optimal separating hyperplane that maximizes the margin between different classes of data points. The document discusses key SVM concepts like slack variables, kernels, hyperparameters like C and gamma, and how the kernel trick allows SVMs to fit non-linear decision boundaries.
Decision tree is a type of supervised learning algorithm (having a pre-defined target variable) that is mostly used in classification problems. It is a tree in which each branch node represents a choice between a number of alternatives, and each leaf node represents a decision.
Decision trees are a type of supervised learning algorithm used for classification and regression. ID3 and C4.5 are algorithms that generate decision trees by choosing the attribute with the highest information gain at each step. Random forest is an ensemble method that creates multiple decision trees and aggregates their results, improving accuracy. It introduces randomness when building trees to decrease variance.
This presentation introduces naive Bayesian classification. It begins with an overview of Bayes' theorem and defines a naive Bayes classifier as one that assumes conditional independence between predictor variables given the class. The document provides examples of text classification using naive Bayes and discusses its advantages of simplicity and accuracy, as well as its limitation of assuming independence. It concludes that naive Bayes is a commonly used and effective classification technique.
This document provides an overview of decision trees, including:
- Decision trees classify records by sorting them down the tree from root to leaf node, where each leaf represents a classification outcome.
- Trees are constructed top-down by selecting the most informative attribute to split on at each node, usually based on information gain.
- Trees can handle both numerical and categorical data and produce classification rules from paths in the tree.
- Examples of decision tree algorithms like ID3 that use information gain to select the best splitting attribute are described. The concepts of entropy and information gain are defined for selecting splits.
This document discusses and provides examples of supervised and unsupervised learning. Supervised learning involves using labeled training data to learn relationships between inputs and outputs and make predictions. An example is using data on patients' attributes to predict the likelihood of a heart attack. Unsupervised learning involves discovering hidden patterns in unlabeled data by grouping or clustering items with similar attributes, like grouping fruits by color without labels. The goal of supervised learning is to build models that can make predictions when new examples are presented.
This document provides an overview of machine learning concepts including supervised learning, unsupervised learning, and reinforcement learning. It explains that supervised learning involves learning from labeled examples, unsupervised learning involves categorizing without labels, and reinforcement learning involves learning behaviors to achieve goals through interaction. The document also discusses regression vs classification problems, the learning and testing process, and examples of machine learning applications like customer profiling, face recognition, and handwritten character recognition.
This presentation provides an introduction to the artificial neural networks topic, its learning, network architecture, back propagation training algorithm, and its applications.
This document summarizes support vector machines (SVMs), a machine learning technique for classification and regression. SVMs find the optimal separating hyperplane that maximizes the margin between positive and negative examples in the training data. This is achieved by solving a convex optimization problem that minimizes a quadratic function under linear constraints. SVMs can perform non-linear classification by implicitly mapping inputs into a higher-dimensional feature space using kernel functions. They have applications in areas like text categorization due to their ability to handle high-dimensional sparse data.
DBScan stands for Density-Based Spatial Clustering of Applications with Noise.
DBScan Concepts
DBScan Parameters
DBScan Connectivity and Reachability
DBScan Algorithm , Flowchart and Example
Advantages and Disadvantages of DBScan
DBScan Complexity
Outliers related question and its solution.
Ensemble Learning is a technique that creates multiple models and then combines them to produce improved results.
Ensemble learning usually produces more accurate solutions than a single model would.
Visit our Website for More Info: https://thetrendshunters.com/custom-acrylic-glass-spotify-music-plaque/
Feature Engineering in Machine LearningKnoldus Inc.
In this Knolx we are going to explore Data Preprocessing and Feature Engineering Techniques. We will also understand what is Feature Engineering and its importance in Machine Learning. How Feature Engineering can help in getting the best results from the algorithms.
The document discusses artificial neural networks and backpropagation. It provides an overview of backpropagation algorithms, including how they were developed over time, the basic methodology of propagating errors backwards, and typical network architectures. It also gives examples of applying backpropagation to problems like robotics, space robots, handwritten digit recognition, and face recognition.
This document provides an overview of PAC (Probably Approximately Correct) learning theory. It discusses how PAC learning relates the probability of successful learning to the number of training examples, complexity of the hypothesis space, and accuracy of approximating the target function. Key concepts explained include training error vs true error, overfitting, the VC dimension as a measure of hypothesis space complexity, and how PAC learning bounds can be derived for finite and infinite hypothesis spaces based on factors like the training size and VC dimension.
This document provides an overview of genetic algorithms. It discusses that genetic algorithms are a type of evolutionary algorithm inspired by biological evolution that is used to find optimal or near-optimal solutions to problems by mimicking natural selection. The document outlines the basic concepts of genetic algorithms including encoding, representation, search space, fitness functions, and the main operators of selection, crossover and mutation. It also provides examples of applications in bioinformatics and highlights advantages like being easy to understand while also noting potential disadvantages like requiring more computational time.
Data preprocessing involves transforming raw data into an understandable and consistent format. It includes data cleaning, integration, transformation, and reduction. Data cleaning aims to fill missing values, smooth noise, and resolve inconsistencies. Data integration combines data from multiple sources. Data transformation handles tasks like normalization and aggregation to prepare the data for mining. Data reduction techniques obtain a reduced representation of data that maintains analytical results but reduces volume, such as through aggregation, dimensionality reduction, discretization, and sampling.
SVM is a supervised machine learning algorithm that outputs an optimal hyperplane to categorize data points. It finds the hyperplane that maximizes the margin between the different categories. The data points closest to the hyperplane are the support vectors. There are different types of kernels that can be used to transform nonlinear data into a higher dimension to allow for linear separation. Key parameters that affect the SVM model are the kernel type, regularization parameter C, gamma value, and margin.
Support vector machines (SVMs) are classifiers that output an optimal separating hyperplane to categorize data points. SVMs can handle both linearly and non-linearly separable data using techniques like kernels, regularization, tuning the gamma and margin parameters. Key aspects of SVMs include maximizing the margin distance between the hyperplane and closest data points (support vectors), using kernels to transform data non-linearly, and adjusting regularization (C parameter) to control overfitting/underfitting.
Decision trees are a type of supervised learning algorithm used for classification and regression. ID3 and C4.5 are algorithms that generate decision trees by choosing the attribute with the highest information gain at each step. Random forest is an ensemble method that creates multiple decision trees and aggregates their results, improving accuracy. It introduces randomness when building trees to decrease variance.
This presentation introduces naive Bayesian classification. It begins with an overview of Bayes' theorem and defines a naive Bayes classifier as one that assumes conditional independence between predictor variables given the class. The document provides examples of text classification using naive Bayes and discusses its advantages of simplicity and accuracy, as well as its limitation of assuming independence. It concludes that naive Bayes is a commonly used and effective classification technique.
This document provides an overview of decision trees, including:
- Decision trees classify records by sorting them down the tree from root to leaf node, where each leaf represents a classification outcome.
- Trees are constructed top-down by selecting the most informative attribute to split on at each node, usually based on information gain.
- Trees can handle both numerical and categorical data and produce classification rules from paths in the tree.
- Examples of decision tree algorithms like ID3 that use information gain to select the best splitting attribute are described. The concepts of entropy and information gain are defined for selecting splits.
This document discusses and provides examples of supervised and unsupervised learning. Supervised learning involves using labeled training data to learn relationships between inputs and outputs and make predictions. An example is using data on patients' attributes to predict the likelihood of a heart attack. Unsupervised learning involves discovering hidden patterns in unlabeled data by grouping or clustering items with similar attributes, like grouping fruits by color without labels. The goal of supervised learning is to build models that can make predictions when new examples are presented.
This document provides an overview of machine learning concepts including supervised learning, unsupervised learning, and reinforcement learning. It explains that supervised learning involves learning from labeled examples, unsupervised learning involves categorizing without labels, and reinforcement learning involves learning behaviors to achieve goals through interaction. The document also discusses regression vs classification problems, the learning and testing process, and examples of machine learning applications like customer profiling, face recognition, and handwritten character recognition.
This presentation provides an introduction to the artificial neural networks topic, its learning, network architecture, back propagation training algorithm, and its applications.
This document summarizes support vector machines (SVMs), a machine learning technique for classification and regression. SVMs find the optimal separating hyperplane that maximizes the margin between positive and negative examples in the training data. This is achieved by solving a convex optimization problem that minimizes a quadratic function under linear constraints. SVMs can perform non-linear classification by implicitly mapping inputs into a higher-dimensional feature space using kernel functions. They have applications in areas like text categorization due to their ability to handle high-dimensional sparse data.
DBScan stands for Density-Based Spatial Clustering of Applications with Noise.
DBScan Concepts
DBScan Parameters
DBScan Connectivity and Reachability
DBScan Algorithm , Flowchart and Example
Advantages and Disadvantages of DBScan
DBScan Complexity
Outliers related question and its solution.
Ensemble Learning is a technique that creates multiple models and then combines them to produce improved results.
Ensemble learning usually produces more accurate solutions than a single model would.
Visit our Website for More Info: https://thetrendshunters.com/custom-acrylic-glass-spotify-music-plaque/
Feature Engineering in Machine LearningKnoldus Inc.
In this Knolx we are going to explore Data Preprocessing and Feature Engineering Techniques. We will also understand what is Feature Engineering and its importance in Machine Learning. How Feature Engineering can help in getting the best results from the algorithms.
The document discusses artificial neural networks and backpropagation. It provides an overview of backpropagation algorithms, including how they were developed over time, the basic methodology of propagating errors backwards, and typical network architectures. It also gives examples of applying backpropagation to problems like robotics, space robots, handwritten digit recognition, and face recognition.
This document provides an overview of PAC (Probably Approximately Correct) learning theory. It discusses how PAC learning relates the probability of successful learning to the number of training examples, complexity of the hypothesis space, and accuracy of approximating the target function. Key concepts explained include training error vs true error, overfitting, the VC dimension as a measure of hypothesis space complexity, and how PAC learning bounds can be derived for finite and infinite hypothesis spaces based on factors like the training size and VC dimension.
This document provides an overview of genetic algorithms. It discusses that genetic algorithms are a type of evolutionary algorithm inspired by biological evolution that is used to find optimal or near-optimal solutions to problems by mimicking natural selection. The document outlines the basic concepts of genetic algorithms including encoding, representation, search space, fitness functions, and the main operators of selection, crossover and mutation. It also provides examples of applications in bioinformatics and highlights advantages like being easy to understand while also noting potential disadvantages like requiring more computational time.
Data preprocessing involves transforming raw data into an understandable and consistent format. It includes data cleaning, integration, transformation, and reduction. Data cleaning aims to fill missing values, smooth noise, and resolve inconsistencies. Data integration combines data from multiple sources. Data transformation handles tasks like normalization and aggregation to prepare the data for mining. Data reduction techniques obtain a reduced representation of data that maintains analytical results but reduces volume, such as through aggregation, dimensionality reduction, discretization, and sampling.
SVM is a supervised machine learning algorithm that outputs an optimal hyperplane to categorize data points. It finds the hyperplane that maximizes the margin between the different categories. The data points closest to the hyperplane are the support vectors. There are different types of kernels that can be used to transform nonlinear data into a higher dimension to allow for linear separation. Key parameters that affect the SVM model are the kernel type, regularization parameter C, gamma value, and margin.
Support vector machines (SVMs) are classifiers that output an optimal separating hyperplane to categorize data points. SVMs can handle both linearly and non-linearly separable data using techniques like kernels, regularization, tuning the gamma and margin parameters. Key aspects of SVMs include maximizing the margin distance between the hyperplane and closest data points (support vectors), using kernels to transform data non-linearly, and adjusting regularization (C parameter) to control overfitting/underfitting.
Support Vector machine(SVM) and Random Forestumarcybermind
This document discusses classification algorithms, beginning with an overview of support vector machines (SVMs). SVMs find a hyperplane that maximally separates classes in training data. Key parameters that control SVM performance are the kernel, gamma value, and C parameter. Applications of SVMs include face detection and gene classification. Random forests are also covered, which create decision trees on data samples and aggregate their predictions through voting. Random forests reduce overfitting and can handle large datasets accurately. The random forest algorithm and parameters like n_estimators and max_depth are explained.
SVM introduction for machine learning engineersabigailjudith8
In essence, the AWS Machine Learning Foundations program serves as a starting point for those looking to build a solid understanding of machine learning principles and gain practical experience using AWS’s powerful machine learning services. It emphasizes scalable model development, deployment, and management within the cloud infrastructure provided by AWS.
Sandy Ryza – Software Engineer, Cloudera at MLconf ATLMLconf
The document discusses clustering algorithms like K-means and how they can be implemented using Apache Spark. It describes how Spark allows these algorithms to be highly parallelized and run on large datasets. Specifically, it covers how K-means clustering works, its limitations in choosing initial cluster centers, and how K-means++ and K-means|| algorithms aim to address this by sampling points from the dataset to select better initial centers in a parallel manner that is scalable for big data.
Supervised learning uses labeled training data to predict outcomes for new data. Unsupervised learning uses unlabeled data to discover patterns. Some key machine learning algorithms are described, including decision trees, naive Bayes classification, k-nearest neighbors, and support vector machines. Performance metrics for classification problems like accuracy, precision, recall, F1 score, and specificity are discussed.
Anomaly detection using deep one class classifier홍배 김
The document discusses anomaly detection techniques using deep one-class classifiers and generative adversarial networks (GANs). It proposes using an autoencoder to extract features from normal images, training a GAN on those features to model the distribution, and using a one-class support vector machine (SVM) to determine if new images are within the normal distribution. The method detects and localizes anomalies by generating a binary mask for abnormal regions. It also discusses Gaussian mixture models and the expectation-maximization algorithm for modeling multiple distributions in data.
For more info visit us at: http://www.siliconmentor.com/
Support vector machines are widely used binary classifiers known for its ability to handle high dimensional data that classifies data by separating classes with a hyper-plane that maximizes the margin between them. The data points that are closest to hyper-plane are known as support vectors. Thus the selected decision boundary will be the one that minimizes the generalization error (by maximizing the margin between classes).
The document provides legal notices and disclaimers for an Intel presentation. It states that the presentation is for informational purposes only and that Intel makes no warranties. It also notes that Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration. The document further states that sample source code is released under the Intel Sample Source Code License Agreement and that Intel and its logo are trademarks.
This document provides an overview of various machine learning algorithms and concepts, including supervised learning techniques like linear regression, logistic regression, decision trees, random forests, and support vector machines. It also discusses unsupervised learning methods like principal component analysis and kernel-based PCA. Key aspects of linear regression, logistic regression, and random forests are summarized, such as cost functions, gradient descent, sigmoid functions, and bagging. Kernel methods are also introduced, explaining how the kernel trick can allow solving non-linear problems by mapping data to a higher-dimensional feature space.
This document describes a machine learning project that uses support vector machines (SVM) and k-nearest neighbors (k-NN) algorithms to segment gesture phases based on radial basis function (RBF) kernels and k-nearest neighbors. The project aims to classify frames of movement data into five gesture phases (rest, preparation, stroke, hold, retraction) using two classifiers. The SVM approach achieved 53.27% accuracy on test data while the k-NN approach achieved significantly higher accuracy of 92.53%. The document provides details on the dataset, feature extraction methods, model selection process and results of applying each classifier to the test data.
This document provides an overview of support vector machines (SVM) including:
1) Maximal margin classifiers which find the optimal separating hyperplane with the maximum margin between classes. Support vectors are the data points that determine the hyperplane.
2) Support vector classifiers which allow some misclassified data points by introducing slack variables. This makes the classifier more robust.
3) SVM can handle non-linear decision boundaries using kernel methods to map data into higher dimensional feature spaces where a linear separator can be found. Common kernels include linear, polynomial and radial basis function kernels.
4) Multi-class classification with SVM can be done with one-vs-one or one-vs-all approaches.
5) SVM
The document discusses the Support Vector Machine (SVM) algorithm. It begins by explaining that SVM is a supervised learning algorithm used for classification and regression. It then describes how SVM finds the optimal decision boundary or "hyperplane" that separates cases in different categories by the maximum margin. The extreme cases that define this margin are called "support vectors." The document provides an example of using SVM to classify images as cats or dogs. It explains the differences between linear and non-linear SVM models and provides code to implement SVM in Python.
A brief description of clustering, two relevant clustering algorithms(K-means and Fuzzy C-means), clustering validation, two inner validity indices(Dunn-n-Dunn and Devies Bouldin) .
We consider the problem of finding anomalies in high-dimensional data using popular PCA based anomaly scores. The naive algorithms for computing these scores explicitly compute the PCA of the covariance matrix which uses space quadratic in the dimensionality of the data. We give the first streaming algorithms
that use space that is linear or sublinear in the dimension. We prove general results showing that any sketch of a matrix that satisfies a certain operator norm guarantee can be used to approximate these scores. We instantiate these results with powerful matrix sketching techniques such as Frequent Directions and random projections to derive efficient and practical algorithms for these problems, which we validate over real-world data sets. Our main technical contribution is to prove matrix perturbation
inequalities for operators arising in the computation of these measures.
-Proceedings: https://arxiv.org/abs/1804.03065
-Origin: https://arxiv.org/abs/1804.03065
- Support Vector Machine (SVM) is a supervised machine learning algorithm used for both classification and regression problems, but primarily for classification.
- The goal of SVM is to find the optimal separating hyperplane that maximizes the margin between two classes of data points.
- Support vectors are the data points that are closest to the hyperplane and influence its position. SVM aims to position the hyperplane to best separate the support vectors of different classes.
Support vector machines (SVM) is a supervised machine learning algorithm used for both classification and regression tasks. The goal of SVM is to find the optimal hyperplane that distinctly classifies data points by maximizing the margin between the two classes. It works well for smaller sized data with high dimensional features and performs classification by finding support vectors that are closest to the hyperplane.
This document provides an overview of support vector machines and kernel methods for machine learning.
It discusses how preprocessing input data with nonlinear features can make classification problems linearly separable in high-dimensional space. However, directly using all possible features risks overfitting.
Support vector machines find a maximum-margin separating hyperplane in feature space to minimize overfitting. They use only a subset of training points, called support vectors, to define the decision boundary.
The kernel trick allows support vector machines to implicitly operate in very high-dimensional feature spaces without explicitly computing the feature vectors. All computations can be done using kernel functions that evaluate scalar products in feature space. This makes support vector machines computationally feasible even for huge feature spaces
Why is Python emerging technology?
Python with DataSciences and Machine Learning is future.
Python can also be used with Electronics.
Python as Scripting Language
MySQL is an open-source relational database management system. It stores data in tables that consist of rows and columns, and can be installed on both Windows and Linux systems. Popular tools for working with MySQL include MySQL Workbench and phpMyAdmin. MySQL is available in both a free community edition and a paid enterprise edition that offers additional features like high availability, security, and technical support.
Ruby is an imperative, object-oriented programming language that can be used on all platforms. It has an easy syntax with predefined blocks for loops and conditions. Variables do not require data types and keywords follow basic English. Ruby considers everything an object and makes object creation and inheritance simple. The language supports classes with methods, variables, and single inheritance. It has global, instance, class, block, and pseudo variables. Ranges provide a special feature to iterate over a range of continuous values.
This document summarizes Hatem Zeine's invention of wireless power transmission called COTA. Zeine worked on prototype development for a decade and was granted the first patent in 2007. COTA uses electromagnetic resonance to transmit electric power without wires up to a 30 foot range. It has applications for replacing wired power connections and is safe, automatic and eco-friendly. However, wireless transmission results in some signal loss and limited range.
⭕️➡️ FOR DOWNLOAD LINK : http://drfiles.net/ ⬅️⭕️
Maxon Cinema 4D 2025 is the latest version of the Maxon's 3D software, released in September 2024, and it builds upon previous versions with new tools for procedural modeling and animation, as well as enhancements to particle, Pyro, and rigid body simulations. CG Channel also mentions that Cinema 4D 2025.2, released in April 2025, focuses on spline tools and unified simulation enhancements.
Key improvements and features of Cinema 4D 2025 include:
Procedural Modeling: New tools and workflows for creating models procedurally, including fabric weave and constellation generators.
Procedural Animation: Field Driver tag for procedural animation.
Simulation Enhancements: Improved particle, Pyro, and rigid body simulations.
Spline Tools: Enhanced spline tools for motion graphics and animation, including spline modifiers from Rocket Lasso now included for all subscribers.
Unified Simulation & Particles: Refined physics-based effects and improved particle systems.
Boolean System: Modernized boolean system for precise 3D modeling.
Particle Node Modifier: New particle node modifier for creating particle scenes.
Learning Panel: Intuitive learning panel for new users.
Redshift Integration: Maxon now includes access to the full power of Redshift rendering for all new subscriptions.
In essence, Cinema 4D 2025 is a major update that provides artists with more powerful tools and workflows for creating 3D content, particularly in the fields of motion graphics, VFX, and visualization.
Who Watches the Watchmen (SciFiDevCon 2025)Allon Mureinik
Tests, especially unit tests, are the developers’ superheroes. They allow us to mess around with our code and keep us safe.
We often trust them with the safety of our codebase, but how do we know that we should? How do we know that this trust is well-deserved?
Enter mutation testing – by intentionally injecting harmful mutations into our code and seeing if they are caught by the tests, we can evaluate the quality of the safety net they provide. By watching the watchmen, we can make sure our tests really protect us, and we aren’t just green-washing our IDEs to a false sense of security.
Talk from SciFiDevCon 2025
https://www.scifidevcon.com/courses/2025-scifidevcon/contents/680efa43ae4f5
Adobe Master Collection CC Crack Advance Version 2025kashifyounis067
🌍📱👉COPY LINK & PASTE ON GOOGLE http://drfiles.net/ 👈🌍
Adobe Master Collection CC (Creative Cloud) is a comprehensive subscription-based package that bundles virtually all of Adobe's creative software applications. It provides access to a wide range of tools for graphic design, video editing, web development, photography, and more. Essentially, it's a one-stop-shop for creatives needing a broad set of professional tools.
Key Features and Benefits:
All-in-one access:
The Master Collection includes apps like Photoshop, Illustrator, InDesign, Premiere Pro, After Effects, Audition, and many others.
Subscription-based:
You pay a recurring fee for access to the latest versions of all the software, including new features and updates.
Comprehensive suite:
It offers tools for a wide variety of creative tasks, from photo editing and illustration to video editing and web development.
Cloud integration:
Creative Cloud provides cloud storage, asset sharing, and collaboration features.
Comparison to CS6:
While Adobe Creative Suite 6 (CS6) was a one-time purchase version of the software, Adobe Creative Cloud (CC) is a subscription service. CC offers access to the latest versions, regular updates, and cloud integration, while CS6 is no longer updated.
Examples of included software:
Adobe Photoshop: For image editing and manipulation.
Adobe Illustrator: For vector graphics and illustration.
Adobe InDesign: For page layout and desktop publishing.
Adobe Premiere Pro: For video editing and post-production.
Adobe After Effects: For visual effects and motion graphics.
Adobe Audition: For audio editing and mixing.
Copy & Link Here 👉👉
http://drfiles.net/
Adobe Illustrator is a vector graphics editor and design software, developed and marketed by Adobe, used for creating logos, icons, illustrations, and other graphics that can be scaled without loss of quality. It's a powerful tool for graphic designers, web designers, and artists who need to create crisp, scalable artwork for various applications like print, web, and mobile.
Agentic AI Use Cases using GenAI LLM modelsManish Chopra
This document presents specific use cases for Agentic AI (Artificial Intelligence), featuring Large Language Models (LLMs), Generative AI, and snippets of Python code alongside each use case.
Discover why Wi-Fi 7 is set to transform wireless networking and how Router Architects is leading the way with next-gen router designs built for speed, reliability, and innovation.
Proactive Vulnerability Detection in Source Code Using Graph Neural Networks:...Ranjan Baisak
As software complexity grows, traditional static analysis tools struggle to detect vulnerabilities with both precision and context—often triggering high false positive rates and developer fatigue. This article explores how Graph Neural Networks (GNNs), when applied to source code representations like Abstract Syntax Trees (ASTs), Control Flow Graphs (CFGs), and Data Flow Graphs (DFGs), can revolutionize vulnerability detection. We break down how GNNs model code semantics more effectively than flat token sequences, and how techniques like attention mechanisms, hybrid graph construction, and feedback loops significantly reduce false positives. With insights from real-world datasets and recent research, this guide shows how to build more reliable, proactive, and interpretable vulnerability detection systems using GNNs.
Solidworks Crack 2025 latest new + license codeaneelaramzan63
Copy & Paste On Google >>> https://dr-up-community.info/
The two main methods for installing standalone licenses of SOLIDWORKS are clean installation and parallel installation (the process is different ...
Disable your internet connection to prevent the software from performing online checks during installation
Join Ajay Sarpal and Miray Vu to learn about key Marketo Engage enhancements. Discover improved in-app Salesforce CRM connector statistics for easy monitoring of sync health and throughput. Explore new Salesforce CRM Synch Dashboards providing up-to-date insights into weekly activity usage, thresholds, and limits with drill-down capabilities. Learn about proactive notifications for both Salesforce CRM sync and product usage overages. Get an update on improved Salesforce CRM synch scale and reliability coming in Q2 2025.
Key Takeaways:
Improved Salesforce CRM User Experience: Learn how self-service visibility enhances satisfaction.
Utilize Salesforce CRM Synch Dashboards: Explore real-time weekly activity data.
Monitor Performance Against Limits: See threshold limits for each product level.
Get Usage Over-Limit Alerts: Receive notifications for exceeding thresholds.
Learn About Improved Salesforce CRM Scale: Understand upcoming cloud-based incremental sync.
Exploring Wayland: A Modern Display Server for the FutureICS
Wayland is revolutionizing the way we interact with graphical interfaces, offering a modern alternative to the X Window System. In this webinar, we’ll delve into the architecture and benefits of Wayland, including its streamlined design, enhanced performance, and improved security features.
Mastering OOP: Understanding the Four Core PillarsMarcel David
Visit for updated note:
https://www.notion.so/Four-Pillars-of-Object-Oriented-Programming-OOP-1e2d7d9612808079b7c5f938afd62a7b?pvs=4
Dive into the essential concepts of Object-Oriented Programming (OOP) with a detailed explanation of its four key pillars: Encapsulation, Inheritance, Polymorphism, and Abstraction. Understand how these principles contribute to robust, maintainable, and scalable software development.
Designing AI-Powered APIs on Azure: Best Practices& ConsiderationsDinusha Kumarasiri
AI is transforming APIs, enabling smarter automation, enhanced decision-making, and seamless integrations. This presentation explores key design principles for AI-infused APIs on Azure, covering performance optimization, security best practices, scalability strategies, and responsible AI governance. Learn how to leverage Azure API Management, machine learning models, and cloud-native architectures to build robust, efficient, and intelligent API solutions
Adobe After Effects Crack FREE FRESH version 2025kashifyounis067
🌍📱👉COPY LINK & PASTE ON GOOGLE http://drfiles.net/ 👈🌍
Adobe After Effects is a software application used for creating motion graphics, special effects, and video compositing. It's widely used in TV and film post-production, as well as for creating visuals for online content, presentations, and more. While it can be used to create basic animations and designs, its primary strength lies in adding visual effects and motion to videos and graphics after they have been edited.
Here's a more detailed breakdown:
Motion Graphics:
.
After Effects is powerful for creating animated titles, transitions, and other visual elements to enhance the look of videos and presentations.
Visual Effects:
.
It's used extensively in film and television for creating special effects like green screen compositing, object manipulation, and other visual enhancements.
Video Compositing:
.
After Effects allows users to combine multiple video clips, images, and graphics to create a final, cohesive visual.
Animation:
.
It uses keyframes to create smooth, animated sequences, allowing for precise control over the movement and appearance of objects.
Integration with Adobe Creative Cloud:
.
After Effects is part of the Adobe Creative Cloud, a suite of software that includes other popular applications like Photoshop and Premiere Pro.
Post-Production Tool:
.
After Effects is primarily used in the post-production phase, meaning it's used to enhance the visuals after the initial editing of footage has been completed.
Download Wondershare Filmora Crack [2025] With Latesttahirabibi60507
Copy & Past Link 👉👉
http://drfiles.net/
Wondershare Filmora is a video editing software and app designed for both beginners and experienced users. It's known for its user-friendly interface, drag-and-drop functionality, and a wide range of tools and features for creating and editing videos. Filmora is available on Windows, macOS, iOS (iPhone/iPad), and Android platforms.
Avast Premium Security Crack FREE Latest Version 2025mu394968
🌍📱👉COPY LINK & PASTE ON GOOGLE https://dr-kain-geera.info/👈🌍
Avast Premium Security is a paid subscription service that provides comprehensive online security and privacy protection for multiple devices. It includes features like antivirus, firewall, ransomware protection, and website scanning, all designed to safeguard against a wide range of online threats, according to Avast.
Key features of Avast Premium Security:
Antivirus: Protects against viruses, malware, and other malicious software, according to Avast.
Firewall: Controls network traffic and blocks unauthorized access to your devices, as noted by All About Cookies.
Ransomware protection: Helps prevent ransomware attacks, which can encrypt your files and hold them hostage.
Website scanning: Checks websites for malicious content before you visit them, according to Avast.
Email Guardian: Scans your emails for suspicious attachments and phishing attempts.
Multi-device protection: Covers up to 10 devices, including Windows, Mac, Android, and iOS, as stated by 2GO Software.
Privacy features: Helps protect your personal data and online privacy.
In essence, Avast Premium Security provides a robust suite of tools to keep your devices and online activity safe and secure, according to Avast.
Exceptional Behaviors: How Frequently Are They Tested? (AST 2025)Andre Hora
Exceptions allow developers to handle error cases expected to occur infrequently. Ideally, good test suites should test both normal and exceptional behaviors to catch more bugs and avoid regressions. While current research analyzes exceptions that propagate to tests, it does not explore other exceptions that do not reach the tests. In this paper, we provide an empirical study to explore how frequently exceptional behaviors are tested in real-world systems. We consider both exceptions that propagate to tests and the ones that do not reach the tests. For this purpose, we run an instrumented version of test suites, monitor their execution, and collect information about the exceptions raised at runtime. We analyze the test suites of 25 Python systems, covering 5,372 executed methods, 17.9M calls, and 1.4M raised exceptions. We find that 21.4% of the executed methods do raise exceptions at runtime. In methods that raise exceptions, on the median, 1 in 10 calls exercise exceptional behaviors. Close to 80% of the methods that raise exceptions do so infrequently, but about 20% raise exceptions more frequently. Finally, we provide implications for researchers and practitioners. We suggest developing novel tools to support exercising exceptional behaviors and refactoring expensive try/except blocks. We also call attention to the fact that exception-raising behaviors are not necessarily “abnormal” or rare.
Minitab 22 Full Crack Plus Product Key Free Download [Latest] 2025wareshashahzadiii
Copy & Past Link 👉👉
http://drfiles.net/
Minitab is a statistical software package designed for data analysis, quality improvement, and Six Sigma applications. It's used by businesses, universities, and individuals to analyze data, identify patterns, and make data-driven decisions.
TestMigrationsInPy: A Dataset of Test Migrations from Unittest to Pytest (MSR...Andre Hora
Unittest and pytest are the most popular testing frameworks in Python. Overall, pytest provides some advantages, including simpler assertion, reuse of fixtures, and interoperability. Due to such benefits, multiple projects in the Python ecosystem have migrated from unittest to pytest. To facilitate the migration, pytest can also run unittest tests, thus, the migration can happen gradually over time. However, the migration can be timeconsuming and take a long time to conclude. In this context, projects would benefit from automated solutions to support the migration process. In this paper, we propose TestMigrationsInPy, a dataset of test migrations from unittest to pytest. TestMigrationsInPy contains 923 real-world migrations performed by developers. Future research proposing novel solutions to migrate frameworks in Python can rely on TestMigrationsInPy as a ground truth. Moreover, as TestMigrationsInPy includes information about the migration type (e.g., changes in assertions or fixtures), our dataset enables novel solutions to be verified effectively, for instance, from simpler assertion migrations to more complex fixture migrations. TestMigrationsInPy is publicly available at: https://github.com/altinoalvesjunior/TestMigrationsInPy.
This presentation explores code comprehension challenges in scientific programming based on a survey of 57 research scientists. It reveals that 57.9% of scientists have no formal training in writing readable code. Key findings highlight a "documentation paradox" where documentation is both the most common readability practice and the biggest challenge scientists face. The study identifies critical issues with naming conventions and code organization, noting that 100% of scientists agree readable code is essential for reproducible research. The research concludes with four key recommendations: expanding programming education for scientists, conducting targeted research on scientific code quality, developing specialized tools, and establishing clearer documentation guidelines for scientific software.
Presented at: The 33rd International Conference on Program Comprehension (ICPC '25)
Date of Conference: April 2025
Conference Location: Ottawa, Ontario, Canada
Preprint: https://arxiv.org/abs/2501.10037
2. Introduction
SVM
A Support Vector Machine
(SVM) is a discriminative
classifier which intakes
training data (supervised
learning), the algorithm
outputs an optimal
hyperplane which
categorizes new examples.
3. What could be drawn to classify the black dots from blue squares?
4. A line drawn between these data points classify the black dots and
blue squares.
Linearly separable data
9. For the previous data the line , if used as a
Hyperplane
● Two black dots also fall in category of
blue squares
● Data separation is not perfect
● It tolerates some outliers in the
classification
10. This type of separator best provides the classification.
But
● It is quite difficult to train a model like this .
● This is termed as Regularisation parameter.
12. Margin
Margin is the perpendicular distance between the
closest data points and the Hyperplane ( on both sides )
The best optimised line ( hyperplane ) with maximum
margin is termed as Margin Maximal Hyperplane.
The closest points where the margin distance is
calculated are considered as the support vectors.
14. Regularization
● Also the ‘ C ‘ parameter in Python’s SkLearn Library
● Optimises SVM classifier to avoid misclassifying the
data.
● C → large Margin of hyperplane → small
● C → small Margin of hyperplane → large
● misclassification(possible)
1. C ---> large , chance of overfit
2. C ---> small , chance of underfitting
16. Gamma
● Defines how far influences the calculation of of
plausible line of separation.
● Low gamma -----> points far from plausible line are
considered for calculation
● High gamma -----> points close to plausible line are
considered for calculation
18. Kernels
● Mathematical functions for transforming data
● using some linear algebra
● Different SVM algorithms use different types of
kernel functions
19. Various kernels available
1. Linear kernel
2. Non - linear kernel
3. Radial basis function ( RBF )
4. Sigmoid
5. Polynomial
6. Exponential
20. Example :
K(x, y) = <f(x), f(y)>
Kernel function dot product of n- dimensional inputs
22. Pros :
● It works really well with clear margin of separation
● It is effective in high dimensional spaces.
● It is effective in cases where number of dimensions is greater
than the number of samples.
● It uses a subset of training points in the decision function
(called support vectors), so it is also memory efficient.
23. Cons :
● It doesn’t perform well, when we have large data set because
the required training time is higher
● It also doesn’t perform very well, when the data set has more
noise i.e. target classes are overlapping
● SVM doesn’t directly provide probability estimates, these are
calculated using an expensive five-fold cross-validation. It is
related SVC method of Python scikit-learn library.
24. Applications :
1. Face detection
2. Text and hypertext categorization
3. Classification of images
4. Bioinformatics
5. Handwriting recognition
6. Protein fold and remote homology detection
7. Generalized predictive control(GPC)
25. Let’s code now
Data used : Iris from Sklearn
Plots : Matplotlib
Kernels : Linear and rbf
File : svm_final.py
Link to code : Click here for code