SlideShare a Scribd company logo
LESSONS LEARNED
MONITORING THE DATA PIPELINE
AGENDA
• Who am I?
• What’s a Hulu?
• Beacons & the Data Pipeline
• Monitoring – Take One
• Monitoring – Take Two
Lessons Learned - Monitoring the Data Pipeline at Hulu
TRISTAN REID
METRICS & REPORTING TOOLS TEAM LEAD
Help people find and enjoy
the world’s premium content
when, where and how they want
it.
HULU’S MISSION
PREMIUM CONTENT QUALITY AD EXPERIENCE
• Premium Content
• 485+ Content Partners
• 6 of 6 Broadcast Networks
USER CONTROL
• Ads can’t be skipped
• Less ad load than TV
• 100% video completion
rate guarantee
• On Demand
• Across Devices
• Choice Based Ad Formats
WHY IS HULU EFFECTIVE?
7
• Service Oriented
• Small teams, specialized scopes
• Build tools for other developers
• Right tool for the job
Beacons & The Data Pipeline
8
Fire & Forget
HTTP Format
High Availability
Process
Transform
Collect
External View of Beacons
Beacons
80 2013-04-01 00:00:00
/v3/playback/start?
bitrate=650
&cdn=Akamai
&channel=Anime
&client=Explorer
&computerguid=EA8FA1000232B8F6986C3E0BE
55E9333
&contentid=5003673
…
 Which show is the user watching?
 Which pages did they visit?
 How long did they stay?
 Where did they come from?
 Did they become Plus members?
The pipeline
Beacon collection
service
HDFS
Hive
RDBMS
Log Collector / Flume
MapReduce Jobs
Continuous Aggregation /
Selective PublishingReporting
Monitoring
Developers
Business Analysts
Avg. 12,000
events per
second
Peak: ~35K
Data Collection
Data never stops
coming…
and we can’t lose
any data
HDFS
Files bucketed by beacon
type and partitioned by hour
Log Collection
machine #1
Log Collection
…
Load balancer
Devices
Devices
Devices
Log Collection
machine #11
CDN
MapReduce - from beacons to basefacts
video_id 289696
content_partner_id 398
distribution_partner_id 602
distro_platform_id 14
is_on_hulu 0
…
hourid 383149
watched 76426
Hulu MapReduce Metrics Jobs
Definitions of
beacons and
base-facts
Beaconspec
compiler
MapReduce code,
including
metadata lookups
Job Scheduler
BeaconSpec DSL
Scala / Akka
JFlex & CUP Java (Generated)
Documentation
Automated
Validations for
Beacon Generators
In Progress…
UserJobs
 Mention the MVEL coolness
MVEL:
client contains 'Chrome' &&
fullscreen == true &&
(os contains 'Windows' || os contains 'Mac')
Aggregation & Publishing
Hourly Facts
Aggregations
Daily/Weekly/Monthly/Quarterly/Ann
ual
Popular Data
MySQL SQL
Publishing
Data API
Service
Reporting Flow
Reporting
Portal UI
(RP2)
Report
Controller
Scheduler
HiveRunner
Published
DB’s
RP2
DB
Available columns
Date range checks
Submit Report
Execute Report
Check Status
Queue
Run
Generate Query
Lessons Learned - Monitoring the Data Pipeline at Hulu
RP2 UI
Lessons Learned - Monitoring the Data Pipeline at Hulu
Monitoring
Some Issues…
BIG DATA PIPELINE?
I’LL BET THAT’S GOING
GREAT FOR YOU
EMAIL
EXPLOSIONS
GATEKEEPINGOverhead
Consumption
C
H
A
N
G
E
Lots of Monitoring Tools Available
Ingest
Jobs
ClusterOpenTSDB & Graphite
WHAT’s GOING ON??!??
HOW IS OUR CLUSTER? WILL WE MEET OUR SLAs?
HOW FAST DID A JOB RUN?
HOW DID RUNTIME COMPARE TO
HISTORICAL?
HOW IS THIS COMPONENT? HOW IS OUR SYSTEM?
The Design…
Access all your tools in one
place...
…but avoid multitasking
Service Oriented
Architecture
Comprehensive Web UI
Lessons Learned - Monitoring the Data Pipeline at Hulu
Lessons Learned - Monitoring the Data Pipeline at Hulu
Lessons Learned - Monitoring the Data Pipeline at Hulu
Lessons Learned - Monitoring the Data Pipeline at Hulu
Does this solve our problems?
32
• Single Point of Access?
• Maintain services separately?
TAKE THAT
DATA
PIPELINE
ISSUES!!
Our Users’ Perspective?
• We detect platform issues
• We quickly troubleshoot errors
• We track relative performance
• We know where we are re: SLAs
…but is detection of a problem
enough?
A PROBLEM
DETECTION
USERS
We need to think of things from
the report users’ perspectives
The User Perspective
User
Group
Report
User
Report
User
Report
UserReport
User
Report
UserReport
UserUser
Group
Report
Report
Report
Report
Report
Report
Run
Report
Run
Report
Run
Report
Run
Report
Run
Data
Pipeline
Resources
ETC!
Schedule
Contextual Troubleshooting Model
• Connect issues to business units
• Better impact assessment
• Tune performance per user needs
We need a graph data structure,
populated with the stuff we care
about
Something like this
Why a Graph?
 …instead of RDBMS
 Indeterminate # of Joins
 Query for graph connectedness is trivial and short
 Query for connectedness w/ SQL relies on knowing the
intermediate resources
 …instead of a tree?
 Data is sometimes recombinant (e.g. a metric in
multiple reports to same user)
Lessons Learned - Monitoring the Data Pipeline at Hulu
Let’s investigate… These failed before getting to a data store
Most of the hive failures were the same
table, but it’s a common table
As we filter, the matched reports show up
on the bottom of the page. The log link
shows us the details
Each service implements a log-fetching interface,
specific to the resources used for a particular report
SUCCESS!!!
In Summary…
 Find the Important Questions => Measure the Right Data
 Make troubleshooting easy
 Small distinct services are easy to create, maintain, and
wire together
Questions?
• Muthu…the Platform GrandMaster
• All of Metrics Platform, Tools, Reporting for making this stuff
• Mohamed, Chris, Charlie, Robert, Phong, AJ, Ratheesh, Adi, Matt, Shashank, Joanne,
Siddhartha, Tamir, Jun, James, Dr. Kevin, Hang
• All of the Hulu DEV team for general awesomeness
• Prasan…thanks for the impetus to do this. I’ll look u up
• Kevin…thanks for Hulu. I’ll send u a snap
Thanks to…
Ad

More Related Content

What's hot (20)

Apache Flink Stream Processing
Apache Flink Stream ProcessingApache Flink Stream Processing
Apache Flink Stream Processing
Suneel Marthi
 
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Spark Summit
 
Big Data Pipelines and Machine Learning at Uber
Big Data Pipelines and Machine Learning at UberBig Data Pipelines and Machine Learning at Uber
Big Data Pipelines and Machine Learning at Uber
Sudhir Tonse
 
Modernizing Infrastructure Monitoring and Management with AIOps
Modernizing Infrastructure Monitoring and Management with AIOpsModernizing Infrastructure Monitoring and Management with AIOps
Modernizing Infrastructure Monitoring and Management with AIOps
OpsRamp
 
Spotify architecture - Pressing play
Spotify architecture - Pressing playSpotify architecture - Pressing play
Spotify architecture - Pressing play
Niklas Gustavsson
 
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan EwenAdvanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
confluent
 
DevOps cultura y herramientas
DevOps cultura y herramientasDevOps cultura y herramientas
DevOps cultura y herramientas
José Juan Mora Pérez
 
Machine Learning for Fraud Detection
Machine Learning for Fraud DetectionMachine Learning for Fraud Detection
Machine Learning for Fraud Detection
Nitesh Kumar
 
From Mainframe to Microservice: An Introduction to Distributed Systems
From Mainframe to Microservice: An Introduction to Distributed SystemsFrom Mainframe to Microservice: An Introduction to Distributed Systems
From Mainframe to Microservice: An Introduction to Distributed Systems
Tyler Treat
 
Handling GDPR with Apache Kafka: How to Comply Without Freaking Out? (David J...
Handling GDPR with Apache Kafka: How to Comply Without Freaking Out? (David J...Handling GDPR with Apache Kafka: How to Comply Without Freaking Out? (David J...
Handling GDPR with Apache Kafka: How to Comply Without Freaking Out? (David J...
confluent
 
Open core summit: Observability for data pipelines with OpenLineage
Open core summit: Observability for data pipelines with OpenLineageOpen core summit: Observability for data pipelines with OpenLineage
Open core summit: Observability for data pipelines with OpenLineage
Julien Le Dem
 
GDPR and Data Lake
GDPR and Data LakeGDPR and Data Lake
GDPR and Data Lake
shadidc
 
Apache Flink and what it is used for
Apache Flink and what it is used forApache Flink and what it is used for
Apache Flink and what it is used for
Aljoscha Krettek
 
Hadoop Query Performance Smackdown
Hadoop Query Performance SmackdownHadoop Query Performance Smackdown
Hadoop Query Performance Smackdown
DataWorks Summit
 
Slides: Success Stories for Data-to-Cloud
Slides: Success Stories for Data-to-CloudSlides: Success Stories for Data-to-Cloud
Slides: Success Stories for Data-to-Cloud
DATAVERSITY
 
Screw DevOps, Let's Talk DataOps
Screw DevOps, Let's Talk DataOpsScrew DevOps, Let's Talk DataOps
Screw DevOps, Let's Talk DataOps
Kellyn Pot'Vin-Gorman
 
Approximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupApproximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetup
Erik Bernhardsson
 
Kafka Connect - debezium
Kafka Connect - debeziumKafka Connect - debezium
Kafka Connect - debezium
Kasun Don
 
Resilience testing! Why should you
Resilience testing! Why should youResilience testing! Why should you
Resilience testing! Why should you
Geoffrey van der Tas
 
AI & Big Data - Personalização da Jornada - PicPay - TDC
AI & Big Data - Personalização da Jornada - PicPay - TDCAI & Big Data - Personalização da Jornada - PicPay - TDC
AI & Big Data - Personalização da Jornada - PicPay - TDC
Renan Moreira de Oliveira
 
Apache Flink Stream Processing
Apache Flink Stream ProcessingApache Flink Stream Processing
Apache Flink Stream Processing
Suneel Marthi
 
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Data Storage Tips for Optimal Spark Performance-(Vida Ha, Databricks)
Spark Summit
 
Big Data Pipelines and Machine Learning at Uber
Big Data Pipelines and Machine Learning at UberBig Data Pipelines and Machine Learning at Uber
Big Data Pipelines and Machine Learning at Uber
Sudhir Tonse
 
Modernizing Infrastructure Monitoring and Management with AIOps
Modernizing Infrastructure Monitoring and Management with AIOpsModernizing Infrastructure Monitoring and Management with AIOps
Modernizing Infrastructure Monitoring and Management with AIOps
OpsRamp
 
Spotify architecture - Pressing play
Spotify architecture - Pressing playSpotify architecture - Pressing play
Spotify architecture - Pressing play
Niklas Gustavsson
 
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan EwenAdvanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
Advanced Streaming Analytics with Apache Flink and Apache Kafka, Stephan Ewen
confluent
 
Machine Learning for Fraud Detection
Machine Learning for Fraud DetectionMachine Learning for Fraud Detection
Machine Learning for Fraud Detection
Nitesh Kumar
 
From Mainframe to Microservice: An Introduction to Distributed Systems
From Mainframe to Microservice: An Introduction to Distributed SystemsFrom Mainframe to Microservice: An Introduction to Distributed Systems
From Mainframe to Microservice: An Introduction to Distributed Systems
Tyler Treat
 
Handling GDPR with Apache Kafka: How to Comply Without Freaking Out? (David J...
Handling GDPR with Apache Kafka: How to Comply Without Freaking Out? (David J...Handling GDPR with Apache Kafka: How to Comply Without Freaking Out? (David J...
Handling GDPR with Apache Kafka: How to Comply Without Freaking Out? (David J...
confluent
 
Open core summit: Observability for data pipelines with OpenLineage
Open core summit: Observability for data pipelines with OpenLineageOpen core summit: Observability for data pipelines with OpenLineage
Open core summit: Observability for data pipelines with OpenLineage
Julien Le Dem
 
GDPR and Data Lake
GDPR and Data LakeGDPR and Data Lake
GDPR and Data Lake
shadidc
 
Apache Flink and what it is used for
Apache Flink and what it is used forApache Flink and what it is used for
Apache Flink and what it is used for
Aljoscha Krettek
 
Hadoop Query Performance Smackdown
Hadoop Query Performance SmackdownHadoop Query Performance Smackdown
Hadoop Query Performance Smackdown
DataWorks Summit
 
Slides: Success Stories for Data-to-Cloud
Slides: Success Stories for Data-to-CloudSlides: Success Stories for Data-to-Cloud
Slides: Success Stories for Data-to-Cloud
DATAVERSITY
 
Approximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetupApproximate nearest neighbor methods and vector models – NYC ML meetup
Approximate nearest neighbor methods and vector models – NYC ML meetup
Erik Bernhardsson
 
Kafka Connect - debezium
Kafka Connect - debeziumKafka Connect - debezium
Kafka Connect - debezium
Kasun Don
 
Resilience testing! Why should you
Resilience testing! Why should youResilience testing! Why should you
Resilience testing! Why should you
Geoffrey van der Tas
 
AI & Big Data - Personalização da Jornada - PicPay - TDC
AI & Big Data - Personalização da Jornada - PicPay - TDCAI & Big Data - Personalização da Jornada - PicPay - TDC
AI & Big Data - Personalização da Jornada - PicPay - TDC
Renan Moreira de Oliveira
 

Viewers also liked (15)

Inside Hulu's Data platform (BigDataCamp LA 2013)
Inside Hulu's Data platform (BigDataCamp LA 2013)Inside Hulu's Data platform (BigDataCamp LA 2013)
Inside Hulu's Data platform (BigDataCamp LA 2013)
Prasan Samtani
 
Case Study Analysis for Hulu by Nicole Raymond
Case Study Analysis for Hulu by Nicole RaymondCase Study Analysis for Hulu by Nicole Raymond
Case Study Analysis for Hulu by Nicole Raymond
Nicole Raymond
 
BDTC2015 hulu-梁宇明-voidbox - docker on yarn
BDTC2015 hulu-梁宇明-voidbox - docker on yarnBDTC2015 hulu-梁宇明-voidbox - docker on yarn
BDTC2015 hulu-梁宇明-voidbox - docker on yarn
Jerry Wen
 
Cassandra Day SV 2014: Scaling Hulu’s Video Progress Tracking Service with Ap...
Cassandra Day SV 2014: Scaling Hulu’s Video Progress Tracking Service with Ap...Cassandra Day SV 2014: Scaling Hulu’s Video Progress Tracking Service with Ap...
Cassandra Day SV 2014: Scaling Hulu’s Video Progress Tracking Service with Ap...
DataStax Academy
 
HBR Hulu Case Study Analysis
HBR Hulu Case Study Analysis HBR Hulu Case Study Analysis
HBR Hulu Case Study Analysis
Sheryl Kantrowitz
 
Spark and cassandra (Hulu Talk)
Spark and cassandra (Hulu Talk)Spark and cassandra (Hulu Talk)
Spark and cassandra (Hulu Talk)
Jon Haddad
 
Monitoring distributed (micro-)services
Monitoring distributed (micro-)servicesMonitoring distributed (micro-)services
Monitoring distributed (micro-)services
Rafael Winterhalter
 
Intro to Cassandra
Intro to CassandraIntro to Cassandra
Intro to Cassandra
Jon Haddad
 
Introduction to Hive and HCatalog
Introduction to Hive and HCatalogIntroduction to Hive and HCatalog
Introduction to Hive and HCatalog
markgrover
 
Microservices Tracing with Spring Cloud and Zipkin
Microservices Tracing with Spring Cloud and ZipkinMicroservices Tracing with Spring Cloud and Zipkin
Microservices Tracing with Spring Cloud and Zipkin
Marcin Grzejszczak
 
Airflow - An Open Source Platform to Author and Monitor Data Pipelines
Airflow - An Open Source Platform to Author and Monitor Data PipelinesAirflow - An Open Source Platform to Author and Monitor Data Pipelines
Airflow - An Open Source Platform to Author and Monitor Data Pipelines
DataWorks Summit
 
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
Yahoo Developer Network
 
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
Yahoo Developer Network
 
Netflix Data Pipeline With Kafka
Netflix Data Pipeline With KafkaNetflix Data Pipeline With Kafka
Netflix Data Pipeline With Kafka
Allen (Xiaozhong) Wang
 
August 2016 HUG: Recent development in Apache Oozie
August 2016 HUG: Recent development in Apache OozieAugust 2016 HUG: Recent development in Apache Oozie
August 2016 HUG: Recent development in Apache Oozie
Yahoo Developer Network
 
Inside Hulu's Data platform (BigDataCamp LA 2013)
Inside Hulu's Data platform (BigDataCamp LA 2013)Inside Hulu's Data platform (BigDataCamp LA 2013)
Inside Hulu's Data platform (BigDataCamp LA 2013)
Prasan Samtani
 
Case Study Analysis for Hulu by Nicole Raymond
Case Study Analysis for Hulu by Nicole RaymondCase Study Analysis for Hulu by Nicole Raymond
Case Study Analysis for Hulu by Nicole Raymond
Nicole Raymond
 
BDTC2015 hulu-梁宇明-voidbox - docker on yarn
BDTC2015 hulu-梁宇明-voidbox - docker on yarnBDTC2015 hulu-梁宇明-voidbox - docker on yarn
BDTC2015 hulu-梁宇明-voidbox - docker on yarn
Jerry Wen
 
Cassandra Day SV 2014: Scaling Hulu’s Video Progress Tracking Service with Ap...
Cassandra Day SV 2014: Scaling Hulu’s Video Progress Tracking Service with Ap...Cassandra Day SV 2014: Scaling Hulu’s Video Progress Tracking Service with Ap...
Cassandra Day SV 2014: Scaling Hulu’s Video Progress Tracking Service with Ap...
DataStax Academy
 
HBR Hulu Case Study Analysis
HBR Hulu Case Study Analysis HBR Hulu Case Study Analysis
HBR Hulu Case Study Analysis
Sheryl Kantrowitz
 
Spark and cassandra (Hulu Talk)
Spark and cassandra (Hulu Talk)Spark and cassandra (Hulu Talk)
Spark and cassandra (Hulu Talk)
Jon Haddad
 
Monitoring distributed (micro-)services
Monitoring distributed (micro-)servicesMonitoring distributed (micro-)services
Monitoring distributed (micro-)services
Rafael Winterhalter
 
Intro to Cassandra
Intro to CassandraIntro to Cassandra
Intro to Cassandra
Jon Haddad
 
Introduction to Hive and HCatalog
Introduction to Hive and HCatalogIntroduction to Hive and HCatalog
Introduction to Hive and HCatalog
markgrover
 
Microservices Tracing with Spring Cloud and Zipkin
Microservices Tracing with Spring Cloud and ZipkinMicroservices Tracing with Spring Cloud and Zipkin
Microservices Tracing with Spring Cloud and Zipkin
Marcin Grzejszczak
 
Airflow - An Open Source Platform to Author and Monitor Data Pipelines
Airflow - An Open Source Platform to Author and Monitor Data PipelinesAirflow - An Open Source Platform to Author and Monitor Data Pipelines
Airflow - An Open Source Platform to Author and Monitor Data Pipelines
DataWorks Summit
 
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
August 2016 HUG: Open Source Big Data Ingest with StreamSets Data Collector
Yahoo Developer Network
 
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
August 2016 HUG: Better together: Fast Data with Apache Spark™ and Apache Ign...
Yahoo Developer Network
 
August 2016 HUG: Recent development in Apache Oozie
August 2016 HUG: Recent development in Apache OozieAugust 2016 HUG: Recent development in Apache Oozie
August 2016 HUG: Recent development in Apache Oozie
Yahoo Developer Network
 
Ad

Similar to Lessons Learned - Monitoring the Data Pipeline at Hulu (20)

Architecting an Open Source AI Platform 2018 edition
Architecting an Open Source AI Platform   2018 editionArchitecting an Open Source AI Platform   2018 edition
Architecting an Open Source AI Platform 2018 edition
David Talby
 
How to create custom dashboards in Elastic Search / Kibana with Performance V...
How to create custom dashboards in Elastic Search / Kibana with Performance V...How to create custom dashboards in Elastic Search / Kibana with Performance V...
How to create custom dashboards in Elastic Search / Kibana with Performance V...
PerformanceVision (previously SecurActive)
 
PXL Data Engineering Workshop By Selligent
PXL Data Engineering Workshop By Selligent PXL Data Engineering Workshop By Selligent
PXL Data Engineering Workshop By Selligent
Jonny Daenen
 
Maintainable Machine Learning Products
Maintainable Machine Learning ProductsMaintainable Machine Learning Products
Maintainable Machine Learning Products
Andrew Musselman
 
The Hadoop Guarantee: Keeping Analytics Running On Time
The Hadoop Guarantee: Keeping Analytics Running On TimeThe Hadoop Guarantee: Keeping Analytics Running On Time
The Hadoop Guarantee: Keeping Analytics Running On Time
Inside Analysis
 
How to address operational aspects effectively with Agile practices - Matthew...
How to address operational aspects effectively with Agile practices - Matthew...How to address operational aspects effectively with Agile practices - Matthew...
How to address operational aspects effectively with Agile practices - Matthew...
Skelton Thatcher Consulting Ltd
 
Accelerate Self-Service Analytics with Virtualization and Visualisation (Thai)
Accelerate Self-Service Analytics with Virtualization and Visualisation (Thai)Accelerate Self-Service Analytics with Virtualization and Visualisation (Thai)
Accelerate Self-Service Analytics with Virtualization and Visualisation (Thai)
Denodo
 
Customer Applications Of Hadoop On Red Hat Storage Server
Customer Applications Of Hadoop On Red Hat Storage ServerCustomer Applications Of Hadoop On Red Hat Storage Server
Customer Applications Of Hadoop On Red Hat Storage Server
Red_Hat_Storage
 
Qubole on AWS - White paper
Qubole on AWS - White paper Qubole on AWS - White paper
Qubole on AWS - White paper
Vasu S
 
Using Machine Learning to Understand Kafka Runtime Behavior (Shivanath Babu, ...
Using Machine Learning to Understand Kafka Runtime Behavior (Shivanath Babu, ...Using Machine Learning to Understand Kafka Runtime Behavior (Shivanath Babu, ...
Using Machine Learning to Understand Kafka Runtime Behavior (Shivanath Babu, ...
confluent
 
Artur Borycki - Beyond Lambda - how to get from logical to physical - code.ta...
Artur Borycki - Beyond Lambda - how to get from logical to physical - code.ta...Artur Borycki - Beyond Lambda - how to get from logical to physical - code.ta...
Artur Borycki - Beyond Lambda - how to get from logical to physical - code.ta...
AboutYouGmbH
 
Denodo DataFest 2016: Comparing and Contrasting Data Virtualization With Data...
Denodo DataFest 2016: Comparing and Contrasting Data Virtualization With Data...Denodo DataFest 2016: Comparing and Contrasting Data Virtualization With Data...
Denodo DataFest 2016: Comparing and Contrasting Data Virtualization With Data...
Denodo
 
Has Traditional MDM Finally Met its Match?
Has Traditional MDM Finally Met its Match?Has Traditional MDM Finally Met its Match?
Has Traditional MDM Finally Met its Match?
Inside Analysis
 
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Precisely
 
Build your open source data science platform
Build your open source data science platformBuild your open source data science platform
Build your open source data science platform
David Talby
 
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid WarehouseUsing the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Rizaldy Ignacio
 
Solving Data Discovery Challenges at Lyft with Amundsen, an Open-source Metad...
Solving Data Discovery Challenges at Lyft with Amundsen, an Open-source Metad...Solving Data Discovery Challenges at Lyft with Amundsen, an Open-source Metad...
Solving Data Discovery Challenges at Lyft with Amundsen, an Open-source Metad...
Databricks
 
Dr. Christian Kurze from Denodo, "Data Virtualization: Fulfilling the Promise...
Dr. Christian Kurze from Denodo, "Data Virtualization: Fulfilling the Promise...Dr. Christian Kurze from Denodo, "Data Virtualization: Fulfilling the Promise...
Dr. Christian Kurze from Denodo, "Data Virtualization: Fulfilling the Promise...
Dataconomy Media
 
Hadoop Master Class : A concise overview
Hadoop Master Class : A concise overviewHadoop Master Class : A concise overview
Hadoop Master Class : A concise overview
Abhishek Roy
 
Microsoft Azure BI Solutions in the Cloud
Microsoft Azure BI Solutions in the CloudMicrosoft Azure BI Solutions in the Cloud
Microsoft Azure BI Solutions in the Cloud
Mark Kromer
 
Architecting an Open Source AI Platform 2018 edition
Architecting an Open Source AI Platform   2018 editionArchitecting an Open Source AI Platform   2018 edition
Architecting an Open Source AI Platform 2018 edition
David Talby
 
How to create custom dashboards in Elastic Search / Kibana with Performance V...
How to create custom dashboards in Elastic Search / Kibana with Performance V...How to create custom dashboards in Elastic Search / Kibana with Performance V...
How to create custom dashboards in Elastic Search / Kibana with Performance V...
PerformanceVision (previously SecurActive)
 
PXL Data Engineering Workshop By Selligent
PXL Data Engineering Workshop By Selligent PXL Data Engineering Workshop By Selligent
PXL Data Engineering Workshop By Selligent
Jonny Daenen
 
Maintainable Machine Learning Products
Maintainable Machine Learning ProductsMaintainable Machine Learning Products
Maintainable Machine Learning Products
Andrew Musselman
 
The Hadoop Guarantee: Keeping Analytics Running On Time
The Hadoop Guarantee: Keeping Analytics Running On TimeThe Hadoop Guarantee: Keeping Analytics Running On Time
The Hadoop Guarantee: Keeping Analytics Running On Time
Inside Analysis
 
How to address operational aspects effectively with Agile practices - Matthew...
How to address operational aspects effectively with Agile practices - Matthew...How to address operational aspects effectively with Agile practices - Matthew...
How to address operational aspects effectively with Agile practices - Matthew...
Skelton Thatcher Consulting Ltd
 
Accelerate Self-Service Analytics with Virtualization and Visualisation (Thai)
Accelerate Self-Service Analytics with Virtualization and Visualisation (Thai)Accelerate Self-Service Analytics with Virtualization and Visualisation (Thai)
Accelerate Self-Service Analytics with Virtualization and Visualisation (Thai)
Denodo
 
Customer Applications Of Hadoop On Red Hat Storage Server
Customer Applications Of Hadoop On Red Hat Storage ServerCustomer Applications Of Hadoop On Red Hat Storage Server
Customer Applications Of Hadoop On Red Hat Storage Server
Red_Hat_Storage
 
Qubole on AWS - White paper
Qubole on AWS - White paper Qubole on AWS - White paper
Qubole on AWS - White paper
Vasu S
 
Using Machine Learning to Understand Kafka Runtime Behavior (Shivanath Babu, ...
Using Machine Learning to Understand Kafka Runtime Behavior (Shivanath Babu, ...Using Machine Learning to Understand Kafka Runtime Behavior (Shivanath Babu, ...
Using Machine Learning to Understand Kafka Runtime Behavior (Shivanath Babu, ...
confluent
 
Artur Borycki - Beyond Lambda - how to get from logical to physical - code.ta...
Artur Borycki - Beyond Lambda - how to get from logical to physical - code.ta...Artur Borycki - Beyond Lambda - how to get from logical to physical - code.ta...
Artur Borycki - Beyond Lambda - how to get from logical to physical - code.ta...
AboutYouGmbH
 
Denodo DataFest 2016: Comparing and Contrasting Data Virtualization With Data...
Denodo DataFest 2016: Comparing and Contrasting Data Virtualization With Data...Denodo DataFest 2016: Comparing and Contrasting Data Virtualization With Data...
Denodo DataFest 2016: Comparing and Contrasting Data Virtualization With Data...
Denodo
 
Has Traditional MDM Finally Met its Match?
Has Traditional MDM Finally Met its Match?Has Traditional MDM Finally Met its Match?
Has Traditional MDM Finally Met its Match?
Inside Analysis
 
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Engineering Machine Learning Data Pipelines Series: Streaming New Data as It ...
Precisely
 
Build your open source data science platform
Build your open source data science platformBuild your open source data science platform
Build your open source data science platform
David Talby
 
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid WarehouseUsing the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Using the Power of Big SQL 3.0 to Build a Big Data-Ready Hybrid Warehouse
Rizaldy Ignacio
 
Solving Data Discovery Challenges at Lyft with Amundsen, an Open-source Metad...
Solving Data Discovery Challenges at Lyft with Amundsen, an Open-source Metad...Solving Data Discovery Challenges at Lyft with Amundsen, an Open-source Metad...
Solving Data Discovery Challenges at Lyft with Amundsen, an Open-source Metad...
Databricks
 
Dr. Christian Kurze from Denodo, "Data Virtualization: Fulfilling the Promise...
Dr. Christian Kurze from Denodo, "Data Virtualization: Fulfilling the Promise...Dr. Christian Kurze from Denodo, "Data Virtualization: Fulfilling the Promise...
Dr. Christian Kurze from Denodo, "Data Virtualization: Fulfilling the Promise...
Dataconomy Media
 
Hadoop Master Class : A concise overview
Hadoop Master Class : A concise overviewHadoop Master Class : A concise overview
Hadoop Master Class : A concise overview
Abhishek Roy
 
Microsoft Azure BI Solutions in the Cloud
Microsoft Azure BI Solutions in the CloudMicrosoft Azure BI Solutions in the Cloud
Microsoft Azure BI Solutions in the Cloud
Mark Kromer
 
Ad

More from DataWorks Summit (20)

Data Science Crash Course
Data Science Crash CourseData Science Crash Course
Data Science Crash Course
DataWorks Summit
 
Floating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache RatisFloating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache Ratis
DataWorks Summit
 
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFiTracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
DataWorks Summit
 
HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...
DataWorks Summit
 
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
DataWorks Summit
 
Managing the Dewey Decimal System
Managing the Dewey Decimal SystemManaging the Dewey Decimal System
Managing the Dewey Decimal System
DataWorks Summit
 
Practical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist ExamplePractical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist Example
DataWorks Summit
 
HBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at UberHBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at Uber
DataWorks Summit
 
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and PhoenixScaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
DataWorks Summit
 
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFiBuilding the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
DataWorks Summit
 
Supporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability ImprovementsSupporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability Improvements
DataWorks Summit
 
Security Framework for Multitenant Architecture
Security Framework for Multitenant ArchitectureSecurity Framework for Multitenant Architecture
Security Framework for Multitenant Architecture
DataWorks Summit
 
Presto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything EnginePresto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything Engine
DataWorks Summit
 
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
DataWorks Summit
 
Extending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google CloudExtending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google Cloud
DataWorks Summit
 
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFiEvent-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
DataWorks Summit
 
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache RangerSecuring Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
DataWorks Summit
 
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
DataWorks Summit
 
Computer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near YouComputer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near You
DataWorks Summit
 
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache SparkBig Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
DataWorks Summit
 
Floating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache RatisFloating on a RAFT: HBase Durability with Apache Ratis
Floating on a RAFT: HBase Durability with Apache Ratis
DataWorks Summit
 
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFiTracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
Tracking Crime as It Occurs with Apache Phoenix, Apache HBase and Apache NiFi
DataWorks Summit
 
HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...HBase Tales From the Trenches - Short stories about most common HBase operati...
HBase Tales From the Trenches - Short stories about most common HBase operati...
DataWorks Summit
 
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
Optimizing Geospatial Operations with Server-side Programming in HBase and Ac...
DataWorks Summit
 
Managing the Dewey Decimal System
Managing the Dewey Decimal SystemManaging the Dewey Decimal System
Managing the Dewey Decimal System
DataWorks Summit
 
Practical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist ExamplePractical NoSQL: Accumulo's dirlist Example
Practical NoSQL: Accumulo's dirlist Example
DataWorks Summit
 
HBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at UberHBase Global Indexing to support large-scale data ingestion at Uber
HBase Global Indexing to support large-scale data ingestion at Uber
DataWorks Summit
 
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and PhoenixScaling Cloud-Scale Translytics Workloads with Omid and Phoenix
Scaling Cloud-Scale Translytics Workloads with Omid and Phoenix
DataWorks Summit
 
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFiBuilding the High Speed Cybersecurity Data Pipeline Using Apache NiFi
Building the High Speed Cybersecurity Data Pipeline Using Apache NiFi
DataWorks Summit
 
Supporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability ImprovementsSupporting Apache HBase : Troubleshooting and Supportability Improvements
Supporting Apache HBase : Troubleshooting and Supportability Improvements
DataWorks Summit
 
Security Framework for Multitenant Architecture
Security Framework for Multitenant ArchitectureSecurity Framework for Multitenant Architecture
Security Framework for Multitenant Architecture
DataWorks Summit
 
Presto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything EnginePresto: Optimizing Performance of SQL-on-Anything Engine
Presto: Optimizing Performance of SQL-on-Anything Engine
DataWorks Summit
 
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
Introducing MlFlow: An Open Source Platform for the Machine Learning Lifecycl...
DataWorks Summit
 
Extending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google CloudExtending Twitter's Data Platform to Google Cloud
Extending Twitter's Data Platform to Google Cloud
DataWorks Summit
 
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFiEvent-Driven Messaging and Actions using Apache Flink and Apache NiFi
Event-Driven Messaging and Actions using Apache Flink and Apache NiFi
DataWorks Summit
 
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache RangerSecuring Data in Hybrid on-premise and Cloud Environments using Apache Ranger
Securing Data in Hybrid on-premise and Cloud Environments using Apache Ranger
DataWorks Summit
 
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
Big Data Meets NVM: Accelerating Big Data Processing with Non-Volatile Memory...
DataWorks Summit
 
Computer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near YouComputer Vision: Coming to a Store Near You
Computer Vision: Coming to a Store Near You
DataWorks Summit
 
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache SparkBig Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
Big Data Genomics: Clustering Billions of DNA Sequences with Apache Spark
DataWorks Summit
 

Recently uploaded (20)

Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Role of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered ManufacturingRole of Data Annotation Services in AI-Powered Manufacturing
Role of Data Annotation Services in AI-Powered Manufacturing
Andrew Leo
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptxSpecial Meetup Edition - TDX Bengaluru Meetup #52.pptx
Special Meetup Edition - TDX Bengaluru Meetup #52.pptx
shyamraj55
 
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes Partner Innovation Updates for May 2025
ThousandEyes
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
Linux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdfLinux Professional Institute LPIC-1 Exam.pdf
Linux Professional Institute LPIC-1 Exam.pdf
RHCSA Guru
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Technology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data AnalyticsTechnology Trends in 2025: AI and Big Data Analytics
Technology Trends in 2025: AI and Big Data Analytics
InData Labs
 
Drupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy ConsumptionDrupalcamp Finland – Measuring Front-end Energy Consumption
Drupalcamp Finland – Measuring Front-end Energy Consumption
Exove
 
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
Transcript: #StandardsGoals for 2025: Standards & certification roundup - Tec...
BookNet Canada
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
Quantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur MorganQuantum Computing Quick Research Guide by Arthur Morgan
Quantum Computing Quick Research Guide by Arthur Morgan
Arthur Morgan
 
2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx2025-05-Q4-2024-Investor-Presentation.pptx
2025-05-Q4-2024-Investor-Presentation.pptx
Samuele Fogagnolo
 
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded DevelopersLinux Support for SMARC: How Toradex Empowers Embedded Developers
Linux Support for SMARC: How Toradex Empowers Embedded Developers
Toradex
 
How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?How Can I use the AI Hype in my Business Context?
How Can I use the AI Hype in my Business Context?
Daniel Lehner
 
Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.Greenhouse_Monitoring_Presentation.pptx.
Greenhouse_Monitoring_Presentation.pptx.
hpbmnnxrvb
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptxIncreasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Increasing Retail Store Efficiency How can Planograms Save Time and Money.pptx
Anoop Ashok
 
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
#StandardsGoals for 2025: Standards & certification roundup - Tech Forum 2025
BookNet Canada
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 

Lessons Learned - Monitoring the Data Pipeline at Hulu

Editor's Notes

  • #15: Each of the log collection machine are running Nginx. The nginx access logs are then processed by flume, and bucketed by beacon types, partitioned by hour, and stored on hdfs.
  • #16: majority of our MapReduce jobs: Select a set of dimensions that we are concerned about Clean up any incomplete/malformed beacons Perform some lookups against metadata tables (for example mapping a video id to a show name) Group by the selected dimensions and aggregate on some attribute (for example, the number of minutes watched) We have about 100 different MR jobs that run every hour – if we handwrote each MR job that would be painful
  • #17: The BeaconSpec tool parses a beacon specification file and provides an object model of beacons and base fact. The tool also supports useful tasks, like generating base fact scrubber code, harpy data definitions, and validation tests. The MetStat dashboard uses BeaconSpec to automate the creation of processing jobs. Three basic components of any modern compiler: - Lexer - Parser - Code generator Jflex and CUP are modeled on Flex and Bison, which are in turn modeled on lex and yacc
  • #42: “There will always be problems…make it easy to troubleshoot”
  • #43: Next steps: data quality