This document summarizes a research paper that presents a task-decomposition based anomaly detection system for analyzing massive and highly volatile session data from the Science Information Network (SINET), Japan's academic backbone network. The system uses a master-worker design with dynamic task scheduling to process over 1 billion sessions per day. It discriminates incoming and outgoing traffic using GPU parallelization and generates histograms of traffic volumes over time. Long short-term memory (LSTM) neural networks detect anomalies like spikes in incoming traffic volumes. The experiment analyzed SINET data from February 27 to March 8, 2021, detecting some anomalies while processing 500-650 gigabytes of daily session data.