SlideShare a Scribd company logo
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Rock Or A Mine Prediction
TensorFlow Tutorial
You have been hired by US navy to create a model, that can detect the difference between a mine and
a rock.
A naval mine is a self-contained
explosive device placed in water
to damage or destroy surface
ships or submarines.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Rock Or Mine Prediction
We are going to identify whether the obstacle is a Rock or a Mine on the basis of various parameters
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Rock Or A Mine Prediction
TensorFlow Tutorial
You have been hired by US navy to create a model, that can detect the difference between a mine and
a rock.
A naval mine is a self-contained
explosive device placed in water
to damage or destroy surface
ships or submarines.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Rock Or A Mine Prediction
In order to train the model, we will use Sonar dataset. The dataset looks like this:
TensorFlow Tutorial
The label associated with each record contains the letter
"R" if the object is a rock and "M" if it is a mine
It contains 208 patterns obtained by bouncing sonar signals off a metal
cylinder and a rock at various angles and under various conditions.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
How To Create This Model?
Let’s see how we will implement this model
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
How To Create This Model?
TensorFlow Tutorial
Start
Read the
Dataset
Define features
and labels
Divide the dataset into two
parts for training and testing
TensorFlow data structure for
holding features, labels etc..
Implement the model
Train the model
Reduce MSE (actual output –
desired output)
End
Repeat the process to
decrease the loss
Pre-processing of dataset
Make prediction on the test
data
TensorFlow Tutorial
Encode The Dependent
variable
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
To Create This Model We Will Use
TensorFlow
Let’s understand TensorFlow first, but before that let’s look at what are tensors?
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What Are Tensors?
 Tensors are the standard way of representing data in TensorFlow (deep learning).
 Tensors are multidimensional arrays, an extension of two-dimensional tables (matrices) to data
with higher dimension.
Tensor of
dimension[1]
Tensor of
dimensions[2]
Tensor of
dimensions[3]
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensors Rank
TensorFlow Tutorial
Rank Math Entity Python Example
0 Scalar (magnitude
only)
s = 483
1 Vector (magnitude
and direction)
v = [1.1, 2.2, 3.3]
2 Matrix (table of
numbers)
m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
3 3-Tensor (cube of
numbers)
t =
[[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18
]]]
n n-Tensor (you get
the idea)
....
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensor Data Types
In addition to dimensionality Tensors have different data types as well, you can assign any one of
these data types to a Tensor
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What Is TensorFlow?
Now, is the time explore TensorFlow.
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
What Is TensorFlow?
 TensorFlow is a Python library used to implement deep networks.
 In TensorFlow, computation is approached as a dataflow graph.
3.2 -1.4 5.1 …
-1.0 -2 2.4 …
… … … …
… … … …
Tensor Flow
Matmul
W X
Add
Relu
B
Computational
Graph
Functions
Tensors TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
TensorFlow Code-Basics
Let’s understand the fundamentals of TensorFlow
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
TensorFlow Code-Basics
TensorFlow core programs consists of two discrete sections:
Building a computational graph Running a computational graph
A computational graph is a series of TensorFlow
operations arranged into a graph of nodes
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
TensorFlow Building And Running A Graph
Building a computational graph Running a computational graph
import tensorflow as tf
node1 = tf.constant(3.0, tf.float32)
node2 = tf.constant(4.0)
print(node1, node2)
Constant nodes
sess = tf.Session()
print(sess.run([node1, node2]))
To actually evaluate the nodes, we must run
the computational graph within a session.
As the session encapsulates the control and
state of the TensorFlow runtime.
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
5.0
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Computational Graph
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
b
5.0
6.0
Const
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Computational Graph
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
b c
5.0
6.0
Const Mul
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Computational Graph
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Tensorflow Example
a
b c
5.0
6.0
Const Mul
30.0
Constimport tensorflow as tf
# Build a graph
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b
# Launch the graph in a session
sess = tf.Session()
# Evaluate the tensor 'C'
print(sess.run(c))
Running The Computational Graph
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Graph Visualization
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Graph Visualization
 For visualizing TensorFlow graphs, we use TensorBoard.
 The first argument when creating the FileWriter is an output directory name, which will be created
if it doesn't exist.
File_writer = tf.summary.FileWriter('log_simple_graph', sess.graph)
TensorBoard runs as a local web app, on port 6006. (this
is default port, “6006” is “ ” upside-down.)oo
TensorFlow Tutorial
tensorboard --logdir = “path_to_the_graph”
Execute this command in the cmd
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Constants, Placeholders and Variables
Let’s understand what are constants, placeholders and variables
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Constant
One type of a node is a constant. It takes no inputs, and it outputs a value
it stores internally.
import tensorflow as tf
node1 = tf.constant(3.0, tf.float32)
node2 = tf.constant(4.0)
print(node1, node2)
Constant nodes
Constant
Placeholder
Variable
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Constant
One type of a node is a constant. It takes no inputs, and it outputs a value
it stores internally.
import tensorflow as tf
node1 = tf.constant(3.0, tf.float32)
node2 = tf.constant(4.0)
print(node1, node2)
Constant nodes
Constant
Placeholder
Variable
What if I want the
graph to accept
external inputs?
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Placeholder
Constant
Placeholder
Variable
A graph can be parameterized to accept external inputs, known as placeholders.
A placeholder is a promise to provide a value later.
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Placeholder
Constant
Placeholder
Variable
A graph can be parameterized to accept external inputs, known as placeholders.
A placeholder is a promise to provide a value later.
How to modify the
graph, if I want new
output for the same
input ?
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Variable
Constant
Placeholder
Variable
To make the model trainable, we need to be able to modify the graph to get
new outputs with the same input. Variables allow us to add trainable
parameters to a graph
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Let Us Now Create A Model
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Simple Linear Model
import tensorflow as tf
W = tf.Variable([.3], tf.float32)
b = tf.Variable([-.3], tf.float32)
x = tf.placeholder(tf.float32)
linear_model = W * x + b
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
print(sess.run(linear_model, {x:[1,2,3,4]}))
We've created a model, but we
don't know how good it is yet
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
How To Increase The Efficiency Of The Model?
Calculate the loss
Model
Update the Variables
Repeat the process until the loss becomes very small
A loss function measures how
far apart the current model is
from the provided data.
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Calculating The Loss
In order to understand how good the Model is, we should know the loss/error.
To evaluate the model on training data, we need a y i.e. a
placeholder to provide the desired values, and we need to
write a loss function.
We'll use a standard loss model for linear regression.
(linear_model – y ) creates a vector where each element is
the corresponding example's error delta.
tf.square is used to square that error.
tf.reduce_sum is used to sum all the squared error.
y = tf.placeholder(tf.float32)
squared_deltas = tf.square(linear_model - y)
loss = tf.reduce_sum(squared_deltas)
print(sess.run(loss, {x:[1,2,3,4], y:[0,-1,-2,-3]}))
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
Optimizer modifies each variable according to the magnitude of the derivative of loss with
respect to that variable. Here we will use Gradient Descent Optimizer
How Gradient Descent Actually
Works?
Let’s understand this
with an analogy
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
• Suppose you are at the top of a mountain, and you have to reach a lake which is at the lowest
point of the mountain (a.k.a valley).
• A twist is that you are blindfolded and you have zero visibility to see where you are headed. So,
what approach will you take to reach the lake?
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
• The best way is to check the ground near you and observe where the land tends to descend.
• This will give an idea in what direction you should take your first step. If you follow the
descending path, it is very likely you would reach the lake.
Consider the length of the step as learning rate
Consider the position of the hiker as weight
Consider the process of climbing down
the mountain as cost function/loss
function
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
Global Cost/Loss
Minimum
Jmin(w)
J(w)
Let us
understand the
math behind
Gradient
Descent
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
The magnitude and direction
of the weight update is
computed by taking a step in
the opposite direction of the
cost gradient
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
The magnitude and direction
of the weight update is
computed by taking a step in
the opposite direction of the
cost gradient
The weights are then updated
after each epoch via the
following update rule:
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Batch Gradient Descent
The weights are updated
incrementally after each
epoch. The cost function J(⋅),
the sum of squared errors
(SSE), can be written as:
The magnitude and direction
of the weight update is
computed by taking a step in
the opposite direction of the
cost gradient
The weights are then updated
after each epoch via the
following update rule:
Here, Δw is a vector that
contains the weight
updates of each weight
coefficient w, which are
computed as follows:
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Reducing The Loss
Suppose, we want to find the best parameters (W) for our learning algorithm. We can apply the
same analogy and find the best possible values for that parameter. Consider the example below:
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)
sess.run(init)
for i in range(1000):
sess.run(train, {x:[1,2,3,4], y:[0,-1,-2,-3]})
print(sess.run([W, b]))
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Implementation Of The Use-Case
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Implementation Of The Use-Case
Start
Read the
Dataset
Define features
and labels
Encode The Dependent
variable
Divide the dataset into two
parts for training and testing
Pre-processing of dataset
TensorFlow Tutorial
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Implementation Of The Use-Case
Start
Read the
Dataset
Define features
and labels
Divide the dataset into two
parts for training and testing
TensorFlow data structure for
holding features, labels etc..
Implement the model
Train the model
Reduce MSE (actual output –
desired output)
End
Repeat the process to
decrease the loss
Pre-processing of dataset
Make prediction on the test
data
TensorFlow Tutorial
Encode The Dependent
variable
Copyright © 2017, edureka and/or its affiliates. All rights reserved.
Session In A Minute
Use-Case What Are Tensors? What Is TensorFlow?
TensorFlow Code-Basics TensorFlow Datastructures Implementation Of The Use-Case
TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Python | Edureka
Ad

More Related Content

What's hot (20)

Pythonはどうやってlen関数で長さを手にいれているの?
Pythonはどうやってlen関数で長さを手にいれているの?Pythonはどうやってlen関数で長さを手にいれているの?
Pythonはどうやってlen関数で長さを手にいれているの?
Takayuki Shimizukawa
 
捗るリコメンドシステムの裏事情(ハッカドール)
捗るリコメンドシステムの裏事情(ハッカドール)捗るリコメンドシステムの裏事情(ハッカドール)
捗るリコメンドシステムの裏事情(ハッカドール)
mosa siru
 
PWNの超入門 大和セキュリティ神戸 2018-03-25
PWNの超入門 大和セキュリティ神戸 2018-03-25PWNの超入門 大和セキュリティ神戸 2018-03-25
PWNの超入門 大和セキュリティ神戸 2018-03-25
Isaac Mathis
 
最新C++事情 C++14-C++20 (2018年10月)
最新C++事情 C++14-C++20 (2018年10月)最新C++事情 C++14-C++20 (2018年10月)
最新C++事情 C++14-C++20 (2018年10月)
Akihiko Matuura
 
CTF超入門 (for 第12回セキュリティさくら)
CTF超入門 (for 第12回セキュリティさくら)CTF超入門 (for 第12回セキュリティさくら)
CTF超入門 (for 第12回セキュリティさくら)
kikuchan98
 
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭する
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭するCEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭する
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭する
Yoshifumi Kawai
 
実務で役立つデータベースの活用法
実務で役立つデータベースの活用法実務で役立つデータベースの活用法
実務で役立つデータベースの活用法
Soudai Sone
 
AI勉強会用スライド
AI勉強会用スライドAI勉強会用スライド
AI勉強会用スライド
harmonylab
 
Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Yasutomo Kawanishi
 
Pandas
PandasPandas
Pandas
zekeLabs Technologies
 
自然方策勾配法の基礎と応用
自然方策勾配法の基礎と応用自然方策勾配法の基礎と応用
自然方策勾配法の基礎と応用
Ryo Iwaki
 
画像認識における特徴表現 -SSII技術マップの再考-
画像認識における特徴表現 -SSII技術マップの再考-画像認識における特徴表現 -SSII技術マップの再考-
画像認識における特徴表現 -SSII技術マップの再考-
Hironobu Fujiyoshi
 
[DL輪読会]Non-Autoregressive Machine Translation with Latent Alignments
[DL輪読会]Non-Autoregressive Machine Translation with Latent Alignments[DL輪読会]Non-Autoregressive Machine Translation with Latent Alignments
[DL輪読会]Non-Autoregressive Machine Translation with Latent Alignments
Deep Learning JP
 
ダブル配列の豆知識
ダブル配列の豆知識ダブル配列の豆知識
ダブル配列の豆知識
s5yata
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
Motokawa Tetsuya
 
Python
PythonPython
Python
대갑 김
 
汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22
汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22
汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22
Matlantis
 
【AI論文解説】Consistency ModelとRectified Flow
【AI論文解説】Consistency ModelとRectified Flow【AI論文解説】Consistency ModelとRectified Flow
【AI論文解説】Consistency ModelとRectified Flow
Sony - Neural Network Libraries
 
言語の設計判断
言語の設計判断言語の設計判断
言語の設計判断
nishio
 
最速C# 7.x
最速C# 7.x最速C# 7.x
最速C# 7.x
Yamamoto Reki
 
Pythonはどうやってlen関数で長さを手にいれているの?
Pythonはどうやってlen関数で長さを手にいれているの?Pythonはどうやってlen関数で長さを手にいれているの?
Pythonはどうやってlen関数で長さを手にいれているの?
Takayuki Shimizukawa
 
捗るリコメンドシステムの裏事情(ハッカドール)
捗るリコメンドシステムの裏事情(ハッカドール)捗るリコメンドシステムの裏事情(ハッカドール)
捗るリコメンドシステムの裏事情(ハッカドール)
mosa siru
 
PWNの超入門 大和セキュリティ神戸 2018-03-25
PWNの超入門 大和セキュリティ神戸 2018-03-25PWNの超入門 大和セキュリティ神戸 2018-03-25
PWNの超入門 大和セキュリティ神戸 2018-03-25
Isaac Mathis
 
最新C++事情 C++14-C++20 (2018年10月)
最新C++事情 C++14-C++20 (2018年10月)最新C++事情 C++14-C++20 (2018年10月)
最新C++事情 C++14-C++20 (2018年10月)
Akihiko Matuura
 
CTF超入門 (for 第12回セキュリティさくら)
CTF超入門 (for 第12回セキュリティさくら)CTF超入門 (for 第12回セキュリティさくら)
CTF超入門 (for 第12回セキュリティさくら)
kikuchan98
 
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭する
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭するCEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭する
CEDEC 2018 最速のC#の書き方 - C#大統一理論へ向けて性能的課題を払拭する
Yoshifumi Kawai
 
実務で役立つデータベースの活用法
実務で役立つデータベースの活用法実務で役立つデータベースの活用法
実務で役立つデータベースの活用法
Soudai Sone
 
AI勉強会用スライド
AI勉強会用スライドAI勉強会用スライド
AI勉強会用スライド
harmonylab
 
Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Pythonによる機械学習入門 ~SVMからDeep Learningまで~
Yasutomo Kawanishi
 
自然方策勾配法の基礎と応用
自然方策勾配法の基礎と応用自然方策勾配法の基礎と応用
自然方策勾配法の基礎と応用
Ryo Iwaki
 
画像認識における特徴表現 -SSII技術マップの再考-
画像認識における特徴表現 -SSII技術マップの再考-画像認識における特徴表現 -SSII技術マップの再考-
画像認識における特徴表現 -SSII技術マップの再考-
Hironobu Fujiyoshi
 
[DL輪読会]Non-Autoregressive Machine Translation with Latent Alignments
[DL輪読会]Non-Autoregressive Machine Translation with Latent Alignments[DL輪読会]Non-Autoregressive Machine Translation with Latent Alignments
[DL輪読会]Non-Autoregressive Machine Translation with Latent Alignments
Deep Learning JP
 
ダブル配列の豆知識
ダブル配列の豆知識ダブル配列の豆知識
ダブル配列の豆知識
s5yata
 
Optimizer入門&最新動向
Optimizer入門&最新動向Optimizer入門&最新動向
Optimizer入門&最新動向
Motokawa Tetsuya
 
汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22
汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22
汎用なNeural Network Potential「Matlantis」を使った新素材探索_2022応用物理学会_2022/3/22
Matlantis
 
言語の設計判断
言語の設計判断言語の設計判断
言語の設計判断
nishio
 

Similar to TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Python | Edureka (20)

Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tuto...
Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tuto...Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tuto...
Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tuto...
Edureka!
 
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Edureka!
 
TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016
Andrii Babii
 
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
Simplilearn
 
Natural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usageNatural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usage
hyunyoung Lee
 
A Tour of Tensorflow's APIs
A Tour of Tensorflow's APIsA Tour of Tensorflow's APIs
A Tour of Tensorflow's APIs
Dean Wyatte
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
 
How to use tensorflow
How to use tensorflowHow to use tensorflow
How to use tensorflow
hyunyoung Lee
 
Theano vs TensorFlow | Edureka
Theano vs TensorFlow | EdurekaTheano vs TensorFlow | Edureka
Theano vs TensorFlow | Edureka
Edureka!
 
Introduction To TensorFlow | Deep Learning with TensorFlow | TensorFlow For B...
Introduction To TensorFlow | Deep Learning with TensorFlow | TensorFlow For B...Introduction To TensorFlow | Deep Learning with TensorFlow | TensorFlow For B...
Introduction To TensorFlow | Deep Learning with TensorFlow | TensorFlow For B...
Edureka!
 
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
Big Data Spain
 
Overview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language ProcessingOverview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language Processing
ananth
 
Micro-Benchmarking Considered Harmful
Micro-Benchmarking Considered HarmfulMicro-Benchmarking Considered Harmful
Micro-Benchmarking Considered Harmful
Thomas Wuerthinger
 
Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Tensorflow - Intro (2017)
Tensorflow - Intro (2017)
Alessio Tonioni
 
Parquet Vectorization in Hive
Parquet Vectorization in HiveParquet Vectorization in Hive
Parquet Vectorization in Hive
Sahil Takiar
 
Running Distributed TensorFlow with GPUs on Mesos with DC/OS
Running Distributed TensorFlow with GPUs on Mesos with DC/OS Running Distributed TensorFlow with GPUs on Mesos with DC/OS
Running Distributed TensorFlow with GPUs on Mesos with DC/OS
Mesosphere Inc.
 
TensorFlow.pptx
TensorFlow.pptxTensorFlow.pptx
TensorFlow.pptx
Kavikiran3
 
Advanced Spark and TensorFlow Meetup May 26, 2016
Advanced Spark and TensorFlow Meetup May 26, 2016Advanced Spark and TensorFlow Meetup May 26, 2016
Advanced Spark and TensorFlow Meetup May 26, 2016
Chris Fregly
 
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Raffi Khatchadourian
 
Introduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep LearningIntroduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep Learning
ali alemi
 
Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tuto...
Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tuto...Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tuto...
Introduction To TensorFlow | Deep Learning Using TensorFlow | TensorFlow Tuto...
Edureka!
 
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Deep Learning Tutorial | Deep Learning Tutorial for Beginners | Neural Networ...
Edureka!
 
TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016
Andrii Babii
 
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
What is TensorFlow? | Introduction to TensorFlow | TensorFlow Tutorial For Be...
Simplilearn
 
Natural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usageNatural language processing open seminar For Tensorflow usage
Natural language processing open seminar For Tensorflow usage
hyunyoung Lee
 
A Tour of Tensorflow's APIs
A Tour of Tensorflow's APIsA Tour of Tensorflow's APIs
A Tour of Tensorflow's APIs
Dean Wyatte
 
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
TensorFlow Tutorial | Deep Learning With TensorFlow | TensorFlow Tutorial For...
Simplilearn
 
How to use tensorflow
How to use tensorflowHow to use tensorflow
How to use tensorflow
hyunyoung Lee
 
Theano vs TensorFlow | Edureka
Theano vs TensorFlow | EdurekaTheano vs TensorFlow | Edureka
Theano vs TensorFlow | Edureka
Edureka!
 
Introduction To TensorFlow | Deep Learning with TensorFlow | TensorFlow For B...
Introduction To TensorFlow | Deep Learning with TensorFlow | TensorFlow For B...Introduction To TensorFlow | Deep Learning with TensorFlow | TensorFlow For B...
Introduction To TensorFlow | Deep Learning with TensorFlow | TensorFlow For B...
Edureka!
 
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
TENSORFLOW: ARCHITECTURE AND USE CASE - NASA SPACE APPS CHALLENGE by Gema Par...
Big Data Spain
 
Overview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language ProcessingOverview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language Processing
ananth
 
Micro-Benchmarking Considered Harmful
Micro-Benchmarking Considered HarmfulMicro-Benchmarking Considered Harmful
Micro-Benchmarking Considered Harmful
Thomas Wuerthinger
 
Tensorflow - Intro (2017)
Tensorflow - Intro (2017)Tensorflow - Intro (2017)
Tensorflow - Intro (2017)
Alessio Tonioni
 
Parquet Vectorization in Hive
Parquet Vectorization in HiveParquet Vectorization in Hive
Parquet Vectorization in Hive
Sahil Takiar
 
Running Distributed TensorFlow with GPUs on Mesos with DC/OS
Running Distributed TensorFlow with GPUs on Mesos with DC/OS Running Distributed TensorFlow with GPUs on Mesos with DC/OS
Running Distributed TensorFlow with GPUs on Mesos with DC/OS
Mesosphere Inc.
 
TensorFlow.pptx
TensorFlow.pptxTensorFlow.pptx
TensorFlow.pptx
Kavikiran3
 
Advanced Spark and TensorFlow Meetup May 26, 2016
Advanced Spark and TensorFlow Meetup May 26, 2016Advanced Spark and TensorFlow Meetup May 26, 2016
Advanced Spark and TensorFlow Meetup May 26, 2016
Chris Fregly
 
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Towards Safe Automated Refactoring of Imperative Deep Learning Programs to Gr...
Raffi Khatchadourian
 
Introduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep LearningIntroduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep Learning
ali alemi
 
Ad

More from Edureka! (20)

What to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | EdurekaWhat to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | Edureka
Edureka!
 
Top 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | EdurekaTop 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | Edureka
Edureka!
 
Top 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | EdurekaTop 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | Edureka
Edureka!
 
Tableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | EdurekaTableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | Edureka
Edureka!
 
Python Programming Tutorial | Edureka
Python Programming Tutorial | EdurekaPython Programming Tutorial | Edureka
Python Programming Tutorial | Edureka
Edureka!
 
Top 5 PMP Certifications | Edureka
Top 5 PMP Certifications | EdurekaTop 5 PMP Certifications | Edureka
Top 5 PMP Certifications | Edureka
Edureka!
 
Top Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | EdurekaTop Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | Edureka
Edureka!
 
Linux Mint Tutorial | Edureka
Linux Mint Tutorial | EdurekaLinux Mint Tutorial | Edureka
Linux Mint Tutorial | Edureka
Edureka!
 
How to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| EdurekaHow to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| Edureka
Edureka!
 
Importance of Digital Marketing | Edureka
Importance of Digital Marketing | EdurekaImportance of Digital Marketing | Edureka
Importance of Digital Marketing | Edureka
Edureka!
 
RPA in 2020 | Edureka
RPA in 2020 | EdurekaRPA in 2020 | Edureka
RPA in 2020 | Edureka
Edureka!
 
Email Notifications in Jenkins | Edureka
Email Notifications in Jenkins | EdurekaEmail Notifications in Jenkins | Edureka
Email Notifications in Jenkins | Edureka
Edureka!
 
EA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | EdurekaEA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | Edureka
Edureka!
 
Cognitive AI Tutorial | Edureka
Cognitive AI Tutorial | EdurekaCognitive AI Tutorial | Edureka
Cognitive AI Tutorial | Edureka
Edureka!
 
AWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | EdurekaAWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | Edureka
Edureka!
 
Blue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | EdurekaBlue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | Edureka
Edureka!
 
Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka
Edureka!
 
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | EdurekaA star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
Edureka!
 
Kubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | EdurekaKubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | Edureka
Edureka!
 
Introduction to DevOps | Edureka
Introduction to DevOps | EdurekaIntroduction to DevOps | Edureka
Introduction to DevOps | Edureka
Edureka!
 
What to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | EdurekaWhat to learn during the 21 days Lockdown | Edureka
What to learn during the 21 days Lockdown | Edureka
Edureka!
 
Top 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | EdurekaTop 10 Dying Programming Languages in 2020 | Edureka
Top 10 Dying Programming Languages in 2020 | Edureka
Edureka!
 
Top 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | EdurekaTop 5 Trending Business Intelligence Tools | Edureka
Top 5 Trending Business Intelligence Tools | Edureka
Edureka!
 
Tableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | EdurekaTableau Tutorial for Data Science | Edureka
Tableau Tutorial for Data Science | Edureka
Edureka!
 
Python Programming Tutorial | Edureka
Python Programming Tutorial | EdurekaPython Programming Tutorial | Edureka
Python Programming Tutorial | Edureka
Edureka!
 
Top 5 PMP Certifications | Edureka
Top 5 PMP Certifications | EdurekaTop 5 PMP Certifications | Edureka
Top 5 PMP Certifications | Edureka
Edureka!
 
Top Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | EdurekaTop Maven Interview Questions in 2020 | Edureka
Top Maven Interview Questions in 2020 | Edureka
Edureka!
 
Linux Mint Tutorial | Edureka
Linux Mint Tutorial | EdurekaLinux Mint Tutorial | Edureka
Linux Mint Tutorial | Edureka
Edureka!
 
How to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| EdurekaHow to Deploy Java Web App in AWS| Edureka
How to Deploy Java Web App in AWS| Edureka
Edureka!
 
Importance of Digital Marketing | Edureka
Importance of Digital Marketing | EdurekaImportance of Digital Marketing | Edureka
Importance of Digital Marketing | Edureka
Edureka!
 
RPA in 2020 | Edureka
RPA in 2020 | EdurekaRPA in 2020 | Edureka
RPA in 2020 | Edureka
Edureka!
 
Email Notifications in Jenkins | Edureka
Email Notifications in Jenkins | EdurekaEmail Notifications in Jenkins | Edureka
Email Notifications in Jenkins | Edureka
Edureka!
 
EA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | EdurekaEA Algorithm in Machine Learning | Edureka
EA Algorithm in Machine Learning | Edureka
Edureka!
 
Cognitive AI Tutorial | Edureka
Cognitive AI Tutorial | EdurekaCognitive AI Tutorial | Edureka
Cognitive AI Tutorial | Edureka
Edureka!
 
AWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | EdurekaAWS Cloud Practitioner Tutorial | Edureka
AWS Cloud Practitioner Tutorial | Edureka
Edureka!
 
Blue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | EdurekaBlue Prism Top Interview Questions | Edureka
Blue Prism Top Interview Questions | Edureka
Edureka!
 
Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka Big Data on AWS Tutorial | Edureka
Big Data on AWS Tutorial | Edureka
Edureka!
 
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | EdurekaA star algorithm | A* Algorithm in Artificial Intelligence | Edureka
A star algorithm | A* Algorithm in Artificial Intelligence | Edureka
Edureka!
 
Kubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | EdurekaKubernetes Installation on Ubuntu | Edureka
Kubernetes Installation on Ubuntu | Edureka
Edureka!
 
Introduction to DevOps | Edureka
Introduction to DevOps | EdurekaIntroduction to DevOps | Edureka
Introduction to DevOps | Edureka
Edureka!
 
Ad

Recently uploaded (20)

Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Web and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in RajpuraWeb and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in Rajpura
Erginous Technology
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
TrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token ListingTrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token Listing
Trs Labs
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
Social Media App Development Company-EmizenTech
Social Media App Development Company-EmizenTechSocial Media App Development Company-EmizenTech
Social Media App Development Company-EmizenTech
Steve Jonas
 
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In FranceManifest Pre-Seed Update | A Humanoid OEM Deeptech In France
Manifest Pre-Seed Update | A Humanoid OEM Deeptech In France
chb3
 
Semantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AISemantic Cultivators : The Critical Future Role to Enable AI
Semantic Cultivators : The Critical Future Role to Enable AI
artmondano
 
TrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business ConsultingTrsLabs - Fintech Product & Business Consulting
TrsLabs - Fintech Product & Business Consulting
Trs Labs
 
Web and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in RajpuraWeb and Graphics Designing Training in Rajpura
Web and Graphics Designing Training in Rajpura
Erginous Technology
 
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath MaestroDev Dives: Automate and orchestrate your processes with UiPath Maestro
Dev Dives: Automate and orchestrate your processes with UiPath Maestro
UiPathCommunity
 
Rusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond SparkRusty Waters: Elevating Lakehouses Beyond Spark
Rusty Waters: Elevating Lakehouses Beyond Spark
carlyakerly1
 
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
IEDM 2024 Tutorial2_Advances in CMOS Technologies and Future Directions for C...
organizerofv
 
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep DiveDesigning Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
Designing Low-Latency Systems with Rust and ScyllaDB: An Architectural Deep Dive
ScyllaDB
 
Heap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and DeletionHeap, Types of Heap, Insertion and Deletion
Heap, Types of Heap, Insertion and Deletion
Jaydeep Kale
 
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdfThe Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
The Evolution of Meme Coins A New Era for Digital Currency ppt.pdf
Abi john
 
Cybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure ADCybersecurity Identity and Access Solutions using Azure AD
Cybersecurity Identity and Access Solutions using Azure AD
VICTOR MAESTRE RAMIREZ
 
Big Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur MorganBig Data Analytics Quick Research Guide by Arthur Morgan
Big Data Analytics Quick Research Guide by Arthur Morgan
Arthur Morgan
 
TrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token ListingTrsLabs Consultants - DeFi, WEb3, Token Listing
TrsLabs Consultants - DeFi, WEb3, Token Listing
Trs Labs
 
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul Shares 5 Steps to Implement AI Agents for Maximum Business Efficien...
Noah Loul
 
Electronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploitElectronic_Mail_Attacks-1-35.pdf by xploit
Electronic_Mail_Attacks-1-35.pdf by xploit
niftliyevhuseyn
 
AI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global TrendsAI and Data Privacy in 2025: Global Trends
AI and Data Privacy in 2025: Global Trends
InData Labs
 
Cyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of securityCyber Awareness overview for 2025 month of security
Cyber Awareness overview for 2025 month of security
riccardosl1
 
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager APIUiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPath Community Berlin: Orchestrator API, Swagger, and Test Manager API
UiPathCommunity
 
Vaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without HallucinationsVaibhav Gupta BAML: AI work flows without Hallucinations
Vaibhav Gupta BAML: AI work flows without Hallucinations
john409870
 
Social Media App Development Company-EmizenTech
Social Media App Development Company-EmizenTechSocial Media App Development Company-EmizenTech
Social Media App Development Company-EmizenTech
Steve Jonas
 

TensorFlow Tutorial | Deep Learning Using TensorFlow | TensorFlow Tutorial Python | Edureka

  • 1. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Rock Or A Mine Prediction TensorFlow Tutorial You have been hired by US navy to create a model, that can detect the difference between a mine and a rock. A naval mine is a self-contained explosive device placed in water to damage or destroy surface ships or submarines.
  • 2. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Rock Or Mine Prediction We are going to identify whether the obstacle is a Rock or a Mine on the basis of various parameters
  • 3. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Rock Or A Mine Prediction TensorFlow Tutorial You have been hired by US navy to create a model, that can detect the difference between a mine and a rock. A naval mine is a self-contained explosive device placed in water to damage or destroy surface ships or submarines.
  • 4. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Rock Or A Mine Prediction In order to train the model, we will use Sonar dataset. The dataset looks like this: TensorFlow Tutorial The label associated with each record contains the letter "R" if the object is a rock and "M" if it is a mine It contains 208 patterns obtained by bouncing sonar signals off a metal cylinder and a rock at various angles and under various conditions.
  • 5. Copyright © 2017, edureka and/or its affiliates. All rights reserved. How To Create This Model? Let’s see how we will implement this model
  • 6. Copyright © 2017, edureka and/or its affiliates. All rights reserved. How To Create This Model? TensorFlow Tutorial Start Read the Dataset Define features and labels Divide the dataset into two parts for training and testing TensorFlow data structure for holding features, labels etc.. Implement the model Train the model Reduce MSE (actual output – desired output) End Repeat the process to decrease the loss Pre-processing of dataset Make prediction on the test data TensorFlow Tutorial Encode The Dependent variable
  • 7. Copyright © 2017, edureka and/or its affiliates. All rights reserved. To Create This Model We Will Use TensorFlow Let’s understand TensorFlow first, but before that let’s look at what are tensors?
  • 8. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What Are Tensors?  Tensors are the standard way of representing data in TensorFlow (deep learning).  Tensors are multidimensional arrays, an extension of two-dimensional tables (matrices) to data with higher dimension. Tensor of dimension[1] Tensor of dimensions[2] Tensor of dimensions[3] TensorFlow Tutorial
  • 9. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensors Rank TensorFlow Tutorial Rank Math Entity Python Example 0 Scalar (magnitude only) s = 483 1 Vector (magnitude and direction) v = [1.1, 2.2, 3.3] 2 Matrix (table of numbers) m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] 3 3-Tensor (cube of numbers) t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18 ]]] n n-Tensor (you get the idea) ....
  • 10. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensor Data Types In addition to dimensionality Tensors have different data types as well, you can assign any one of these data types to a Tensor TensorFlow Tutorial
  • 11. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What Is TensorFlow? Now, is the time explore TensorFlow.
  • 12. Copyright © 2017, edureka and/or its affiliates. All rights reserved. What Is TensorFlow?  TensorFlow is a Python library used to implement deep networks.  In TensorFlow, computation is approached as a dataflow graph. 3.2 -1.4 5.1 … -1.0 -2 2.4 … … … … … … … … … Tensor Flow Matmul W X Add Relu B Computational Graph Functions Tensors TensorFlow Tutorial
  • 13. Copyright © 2017, edureka and/or its affiliates. All rights reserved. TensorFlow Code-Basics Let’s understand the fundamentals of TensorFlow
  • 14. Copyright © 2017, edureka and/or its affiliates. All rights reserved. TensorFlow Code-Basics TensorFlow core programs consists of two discrete sections: Building a computational graph Running a computational graph A computational graph is a series of TensorFlow operations arranged into a graph of nodes TensorFlow Tutorial
  • 15. Copyright © 2017, edureka and/or its affiliates. All rights reserved. TensorFlow Building And Running A Graph Building a computational graph Running a computational graph import tensorflow as tf node1 = tf.constant(3.0, tf.float32) node2 = tf.constant(4.0) print(node1, node2) Constant nodes sess = tf.Session() print(sess.run([node1, node2])) To actually evaluate the nodes, we must run the computational graph within a session. As the session encapsulates the control and state of the TensorFlow runtime. TensorFlow Tutorial
  • 16. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a 5.0 Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Computational Graph TensorFlow Tutorial
  • 17. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a b 5.0 6.0 Const Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Computational Graph TensorFlow Tutorial
  • 18. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a b c 5.0 6.0 Const Mul Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Computational Graph TensorFlow Tutorial
  • 19. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Tensorflow Example a b c 5.0 6.0 Const Mul 30.0 Constimport tensorflow as tf # Build a graph a = tf.constant(5.0) b = tf.constant(6.0) c = a * b # Launch the graph in a session sess = tf.Session() # Evaluate the tensor 'C' print(sess.run(c)) Running The Computational Graph TensorFlow Tutorial
  • 20. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Graph Visualization
  • 21. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Graph Visualization  For visualizing TensorFlow graphs, we use TensorBoard.  The first argument when creating the FileWriter is an output directory name, which will be created if it doesn't exist. File_writer = tf.summary.FileWriter('log_simple_graph', sess.graph) TensorBoard runs as a local web app, on port 6006. (this is default port, “6006” is “ ” upside-down.)oo TensorFlow Tutorial tensorboard --logdir = “path_to_the_graph” Execute this command in the cmd
  • 22. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Constants, Placeholders and Variables Let’s understand what are constants, placeholders and variables
  • 23. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Constant One type of a node is a constant. It takes no inputs, and it outputs a value it stores internally. import tensorflow as tf node1 = tf.constant(3.0, tf.float32) node2 = tf.constant(4.0) print(node1, node2) Constant nodes Constant Placeholder Variable TensorFlow Tutorial
  • 24. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Constant One type of a node is a constant. It takes no inputs, and it outputs a value it stores internally. import tensorflow as tf node1 = tf.constant(3.0, tf.float32) node2 = tf.constant(4.0) print(node1, node2) Constant nodes Constant Placeholder Variable What if I want the graph to accept external inputs? TensorFlow Tutorial
  • 25. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Placeholder Constant Placeholder Variable A graph can be parameterized to accept external inputs, known as placeholders. A placeholder is a promise to provide a value later. TensorFlow Tutorial
  • 26. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Placeholder Constant Placeholder Variable A graph can be parameterized to accept external inputs, known as placeholders. A placeholder is a promise to provide a value later. How to modify the graph, if I want new output for the same input ? TensorFlow Tutorial
  • 27. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Variable Constant Placeholder Variable To make the model trainable, we need to be able to modify the graph to get new outputs with the same input. Variables allow us to add trainable parameters to a graph TensorFlow Tutorial
  • 28. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Let Us Now Create A Model
  • 29. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Simple Linear Model import tensorflow as tf W = tf.Variable([.3], tf.float32) b = tf.Variable([-.3], tf.float32) x = tf.placeholder(tf.float32) linear_model = W * x + b init = tf.global_variables_initializer() sess = tf.Session() sess.run(init) print(sess.run(linear_model, {x:[1,2,3,4]})) We've created a model, but we don't know how good it is yet TensorFlow Tutorial
  • 30. Copyright © 2017, edureka and/or its affiliates. All rights reserved. How To Increase The Efficiency Of The Model? Calculate the loss Model Update the Variables Repeat the process until the loss becomes very small A loss function measures how far apart the current model is from the provided data. TensorFlow Tutorial
  • 31. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Calculating The Loss In order to understand how good the Model is, we should know the loss/error. To evaluate the model on training data, we need a y i.e. a placeholder to provide the desired values, and we need to write a loss function. We'll use a standard loss model for linear regression. (linear_model – y ) creates a vector where each element is the corresponding example's error delta. tf.square is used to square that error. tf.reduce_sum is used to sum all the squared error. y = tf.placeholder(tf.float32) squared_deltas = tf.square(linear_model - y) loss = tf.reduce_sum(squared_deltas) print(sess.run(loss, {x:[1,2,3,4], y:[0,-1,-2,-3]})) TensorFlow Tutorial
  • 32. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss Optimizer modifies each variable according to the magnitude of the derivative of loss with respect to that variable. Here we will use Gradient Descent Optimizer How Gradient Descent Actually Works? Let’s understand this with an analogy TensorFlow Tutorial
  • 33. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss • Suppose you are at the top of a mountain, and you have to reach a lake which is at the lowest point of the mountain (a.k.a valley). • A twist is that you are blindfolded and you have zero visibility to see where you are headed. So, what approach will you take to reach the lake? TensorFlow Tutorial
  • 34. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss • The best way is to check the ground near you and observe where the land tends to descend. • This will give an idea in what direction you should take your first step. If you follow the descending path, it is very likely you would reach the lake. Consider the length of the step as learning rate Consider the position of the hiker as weight Consider the process of climbing down the mountain as cost function/loss function TensorFlow Tutorial
  • 35. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss Global Cost/Loss Minimum Jmin(w) J(w) Let us understand the math behind Gradient Descent TensorFlow Tutorial
  • 36. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as: TensorFlow Tutorial
  • 37. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as: The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient TensorFlow Tutorial
  • 38. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as: The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient The weights are then updated after each epoch via the following update rule: TensorFlow Tutorial
  • 39. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Batch Gradient Descent The weights are updated incrementally after each epoch. The cost function J(⋅), the sum of squared errors (SSE), can be written as: The magnitude and direction of the weight update is computed by taking a step in the opposite direction of the cost gradient The weights are then updated after each epoch via the following update rule: Here, Δw is a vector that contains the weight updates of each weight coefficient w, which are computed as follows: TensorFlow Tutorial
  • 40. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Reducing The Loss Suppose, we want to find the best parameters (W) for our learning algorithm. We can apply the same analogy and find the best possible values for that parameter. Consider the example below: optimizer = tf.train.GradientDescentOptimizer(0.01) train = optimizer.minimize(loss) sess.run(init) for i in range(1000): sess.run(train, {x:[1,2,3,4], y:[0,-1,-2,-3]}) print(sess.run([W, b])) TensorFlow Tutorial
  • 41. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Implementation Of The Use-Case
  • 42. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Implementation Of The Use-Case Start Read the Dataset Define features and labels Encode The Dependent variable Divide the dataset into two parts for training and testing Pre-processing of dataset TensorFlow Tutorial
  • 43. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Implementation Of The Use-Case Start Read the Dataset Define features and labels Divide the dataset into two parts for training and testing TensorFlow data structure for holding features, labels etc.. Implement the model Train the model Reduce MSE (actual output – desired output) End Repeat the process to decrease the loss Pre-processing of dataset Make prediction on the test data TensorFlow Tutorial Encode The Dependent variable
  • 44. Copyright © 2017, edureka and/or its affiliates. All rights reserved. Session In A Minute Use-Case What Are Tensors? What Is TensorFlow? TensorFlow Code-Basics TensorFlow Datastructures Implementation Of The Use-Case