SlideShare a Scribd company logo
Tensor Flow
Tensors: n-dimensional arrays
A sequence of tensor operations
Deep learning process are flows of tensors
Vector: 1-D tensor
Matrix: 2-D tensor
Can represent also many machine learning algorithms
A simple ReLU network
a1 b1 c1
a0 b0 c0
w
a1=a0wa,a+b0wb,a+c0wc,a
b1=a0wa,b+b0wb,b+c0wc,b
c1=a0wa,c+b0wb,c+c0wc,c
Apply relu(…) on a1, b1, c1
Slower approach
Per-neuron operation
More efficient approach
Matrix operation
As matrix operations
a0
a1 b1 c1
a0 b0 c0
w
. =
=relu( )
b0 c0 a1 b1 c1
a1a1
=relu( )b1b1
=relu( )c1c1
wa,a
wb,a
wc,a
wa,b
wb,b
wc,b
wa,c
wb,c
wc,c
With TensorFlow
a1 b1 c1
a0 b0 c0
w
out = tf.nn.relu(y)
y = tf.matmul(x, w)
x w
a0 . =b0 c0
wa,a
wb,a
wc,a
wa,b
wb,b
wc,b
wa,c
wb,c
wc,c
a1 b1 c1
=relu( )a1a1
=relu( )b1b1
=relu( )c1c1
import tensorflow as tf
Define Tensors
xa,a
xb,a
xc,a
xa,b
xb,b
xc,b
xa,c
xb,c
xc,c
w
Variable(<initial-value>,
name=<optional-name>)
w = tf.Variable(tf.random_normal([3, 3]), name='w')
import tensorflow as tf
y = tf.matmul(x, w)
relu_out = tf.nn.relu(y)
Variable stores the state of current execution
Others are operations
TensorFlow
Code so far defines a data flow graph
MatMul
ReLU
Variable
x
w = tf.Variable(tf.random_normal([3, 3]), name='w')
import tensorflow as tf
y = tf.matmul(x, w)
relu_out = tf.nn.relu(y)
Each variable corresponds to a
node in the graph, not the result
Can be confusing at the beginning
TensorFlow
Code so far defines a data flow graph
Needs to specify how we
want to execute the graph MatMul
ReLU
Variable
x
Session
Manage resource for graph execution
w = tf.Variable(tf.random_normal([3, 3]), name='w')
sess = tf.Session()
y = tf.matmul(x, w)
relu_out = tf.nn.relu(y)
import tensorflow as tf
result = sess.run(relu_out)
Graph
Fetch
Retrieve content from a node
w = tf.Variable(tf.random_normal([3, 3]), name='w')
sess = tf.Session()
y = tf.matmul(x, w)
relu_out = tf.nn.relu(y)
import tensorflow as tf
print sess.run(relu_out)
MatMul
ReLU
Variable
x
Fetch
We have assembled the pipes
Fetch the liquid
Graph
sess = tf.Session()
y = tf.matmul(x, w)
relu_out = tf.nn.relu(y)
import tensorflow as tf
print sess.run(relu_out)
sess.run(tf.initialize_all_variables())
w = tf.Variable(tf.random_normal([3, 3]), name='w')
InitializeVariable
Variable is an empty node
MatMul
ReLU
Variable
x
Fetch
Fill in the content of a
Variable node
Graph
sess = tf.Session()
y = tf.matmul(x, w)
relu_out = tf.nn.relu(y)
import tensorflow as tf
print sess.run(relu_out)
sess.run(tf.initialize_all_variables())
w = tf.Variable(tf.random_normal([3, 3]), name='w')
x = tf.placeholder("float", [1, 3])
Placeholder
How about x?
MatMul
ReLU
Variable
x
Fetch
placeholder(<data type>,
shape=<optional-shape>,
name=<optional-name>)
Its content will be fed
Graph
import numpy as np
import tensorflow as tf
sess = tf.Session()
x = tf.placeholder("float", [1, 3])
w = tf.Variable(tf.random_normal([3, 3]), name='w')
y = tf.matmul(x, w)
relu_out = tf.nn.relu(y)
sess.run(tf.initialize_all_variables())
print sess.run(relu_out, feed_dict={x:np.array([[1.0, 2.0, 3.0]])})
Feed
MatMul
ReLU
Variable
x
FetchPump liquid into the pipe
Feed
Session management
Needs to release resource after use
sess.close()
Common usage
with tf.Session() as sess:
…
Interactive
sess = InteractiveSession()
Prediction
import numpy as np
import tensorflow as tf
with tf.Session() as sess:
x = tf.placeholder("float", [1, 3])
w = tf.Variable(tf.random_normal([3, 3]), name='w')
relu_out = tf.nn.relu(tf.matmul(x, w))
softmax = tf.nn.softmax(relu_out)
sess.run(tf.initialize_all_variables())
print sess.run(softmax, feed_dict={x:np.array([[1.0, 2.0, 3.0]])})
Softmax
Make predictions for n targets that sum to 1
Prediction Difference
import numpy as np
import tensorflow as tf
with tf.Session() as sess:
x = tf.placeholder("float", [1, 3])
w = tf.Variable(tf.random_normal([3, 3]), name='w')
relu_out = tf.nn.relu(tf.matmul(x, w))
softmax = tf.nn.softmax(relu_out)
sess.run(tf.initialize_all_variables())
answer = np.array([[0.0, 1.0, 0.0]])
print answer - sess.run(softmax, feed_dict={x:np.array([[1.0, 2.0, 3.0]])})
Learn parameters: Loss
Define loss function
Loss function for softmax
softmax_cross_entropy_with_logits(
logits, labels, name=<optional-name>)
labels = tf.placeholder("float", [1, 3])
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
relu_out, labels, name='xentropy')
Learn parameters: Optimization
Gradient descent
class GradientDescentOptimizer
GradientDescentOptimizer(learning rate)
labels = tf.placeholder("float", [1, 3])
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
relu_out, labels, name='xentropy')
optimizer = tf.train.GradientDescentOptimizer(0.1)
train_op = optimizer.minimize(cross_entropy)
sess.run(train_op,
feed_dict= {x:np.array([[1.0, 2.0, 3.0]]), labels:answer})
learning rate = 0.1
Iterative update
labels = tf.placeholder("float", [1, 3])
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
relu_out, labels, name=‘xentropy')
optimizer = tf.train.GradientDescentOptimizer(0.1)
train_op = optimizer.minimize(cross_entropy)
for step in range(10):
sess.run(train_op,
feed_dict= {x:np.array([[1.0, 2.0, 3.0]]), labels:answer})
Gradient descent usually needs more than one step
Run multiple times
Add parameters for Softmax
…
softmax_w = tf.Variable(tf.random_normal([3, 3]))
logit = tf.matmul(relu_out, softmax_w)
softmax = tf.nn.softmax(logit)
…
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
logit, labels, name=‘xentropy')
…
Do not want to use only non-negative input
Softmax layer
Add biases
…
w = tf.Variable(tf.random_normal([3, 3]))
b = tf.Variable(tf.zeros([1, 3]))
relu_out = tf.nn.relu(tf.matmul(x, w) + b)
softmax_w = tf.Variable(tf.random_normal([3, 3]))
softmax_b = tf.Variable(tf.zeros([1, 3]))
logit = tf.matmul(relu_out, softmax_w) + softmax_b
softmax = tf.nn.softmax(logit)
…
Biases initialized to zero
Make it deep
…
x = tf.placeholder("float", [1, 3])
relu_out = x
num_layers = 2
for layer in range(num_layers):
w = tf.Variable(tf.random_normal([3, 3]))
b = tf.Variable(tf.zeros([1, 3]))
relu_out = tf.nn.relu(tf.matmul(relu_out, w) + b)
…
Add layers
Visualize the graph
TensorBoard
writer = tf.train.SummaryWriter(
'/tmp/tf_logs', sess.graph_def)
tensorboard --logdir=/tmp/tf_logs
Improve naming, improve visualization
name_scope(name)
Help specify hierarchical names
…
for layer in range(num_layers):
with tf.name_scope('relu'):
w = tf.Variable(tf.random_normal([3, 3]))
b = tf.Variable(tf.zeros([1, 3]))
relu_out = tf.nn.relu(tf.matmul(relu_out, w) + b)
…
Will help visualizer to better
understand hierarchical relation
Move to outside the loop?
Add name_scope for softmax
Before After
Add regularization to the loss
eg. L2 regularize on the Softmax layer parameters
…
l2reg = tf.reduce_sum(tf.square(softmax_w))
loss = cross_entropy + l2reg
train_op = optimizer.minimize(loss)
…
print sess.run(l2reg)
…
Add it to the loss
Automatic gradient calculation
Add a parallel path
Use activation as bias
Everything is a tensor
Residual learning
ILSVRC 2015 classification task winer
He et al. 2015
Visualize states
Add summaries
scalar_summary histogram_summary
merged_summaries = tf.merge_all_summaries()
results = sess.run([train_op, merged_summaries],
feed_dict=…)
writer.add_summary(results[1], step)
Save and load models
tf.train.Saver(…)
Default will associate with all variables
all_variables()
save(sess, save_path, …)
restore(sess, save_path, …)
Replace initialization
That’s why we need to run initialization
separately
Convolution
conv2d(input, filter, strides, padding,
use_cudnn_on_gpu=None, name=None)
LSTM
# Parameters of gates are concatenated into one multiply for efficiency.
c, h = array_ops.split(1, 2, state)
concat = linear([inputs, h], 4 * self._num_units,True)
# i = input_gate, j = new_input, f = forget_gate, o = output_gate
i, j, f, o = array_ops.split(1, 4, concat)
new_c = c * sigmoid(f + self._forget_bias) + sigmoid(i) * tanh(j)
new_h = tanh(new_c) * sigmoid(o)
BasicLSTMCell
Word2Vec with TensorFlow
# Look up embeddings for inputs.
embeddings = tf.Variable(
tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0))
embed = tf.nn.embedding_lookup(embeddings, train_inputs)
# Construct the variables for the NCE loss
nce_weights = tf.Variable(
tf.truncated_normal([vocabulary_size, embedding_size],
stddev=1.0 / math.sqrt(embedding_size)))
nce_biases = tf.Variable(tf.zeros([vocabulary_size]))
# Compute the average NCE loss for the batch.
# tf.nce_loss automatically draws a new sample of the negative labels each
# time we evaluate the loss.
loss = tf.reduce_mean(
tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels,
num_sampled, vocabulary_size))
Reuse Pre-trained models
Image recognition
Inception-v3
military uniform (866): 0.647296
suit (794): 0.0477196
academic gown (896): 0.0232411
bow tie (817): 0.0157356
bolo tie (940): 0.0145024
Try it on your Android
github.com/tensorflow/tensorflow/tree/master/tensorflow/
examples/android
Uses a Google Inception model to classify camera
frames in real-time, displaying the top results in an
overlay on the camera image.
Tensorflow Android Camera Demo
github.com/nivwusquorum/tensorflow-deepq
Reinforcement Learning using Tensor Flow
github.com/asrivat1/DeepLearningVideoGames
Using Deep Q Networks to LearnVideo Game Strategies
github.com/woodrush/neural-art-tf
Neural art
github.com/sherjilozair/char-rnn-tensorflow
github.com/fchollet/keras
github.com/jazzsaxmafia/show_and_tell.tensorflow
github.com/jikexueyuanwiki/tensorflow-zh
Google Brain Residency Program
Learn to conduct deep learning research w/experts in our team
Fixed one-year employment with salary, benefits, ...
Interesting problems,TensorFlow, and access to
computational resources
Goal after one year is to have conducted several research
projects
New one year immersion program in deep learning research
Google Brain Residency Program
Who should apply?
People with BSc, MSc or PhD, ideally in CS,
mathematics or statistics
Completed coursework in calculus, linear
algebra, and probability, or equiv.
Motivated, hard working, and have a strong
interest in deep learning
Programming experience
Google Brain Residency Program
Program Application & Timeline
DEADLINE: January 15, 2016
Thanks for your attention!

More Related Content

What's hot (20)

Tensor board
Tensor boardTensor board
Tensor board
Sung Kim
 
Gentlest Introduction to Tensorflow - Part 2
Gentlest Introduction to Tensorflow - Part 2Gentlest Introduction to Tensorflow - Part 2
Gentlest Introduction to Tensorflow - Part 2
Khor SoonHin
 
Machine Learning - Introduction to Tensorflow
Machine Learning - Introduction to TensorflowMachine Learning - Introduction to Tensorflow
Machine Learning - Introduction to Tensorflow
Andrew Ferlitsch
 
30 分鐘學會實作 Python Feature Selection
30 分鐘學會實作 Python Feature Selection30 分鐘學會實作 Python Feature Selection
30 分鐘學會實作 Python Feature Selection
James Huang
 
H2 o berkeleydltf
H2 o berkeleydltfH2 o berkeleydltf
H2 o berkeleydltf
Oswald Campesato
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
Oswald Campesato
 
Working with tf.data (TF 2)
Working with tf.data (TF 2)Working with tf.data (TF 2)
Working with tf.data (TF 2)
Oswald Campesato
 
Introduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and TensorflowIntroduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and Tensorflow
Oswald Campesato
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
Oswald Campesato
 
Introduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and KerasIntroduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and Keras
Oswald Campesato
 
TensorFlow in Your Browser
TensorFlow in Your BrowserTensorFlow in Your Browser
TensorFlow in Your Browser
Oswald Campesato
 
NTU ML TENSORFLOW
NTU ML TENSORFLOWNTU ML TENSORFLOW
NTU ML TENSORFLOW
Mark Chang
 
Python book
Python bookPython book
Python book
Victor Rabinovich
 
TensorFlow 深度學習快速上手班--電腦視覺應用
TensorFlow 深度學習快速上手班--電腦視覺應用TensorFlow 深度學習快速上手班--電腦視覺應用
TensorFlow 深度學習快速上手班--電腦視覺應用
Mark Chang
 
Intro to Python (High School) Unit #3
Intro to Python (High School) Unit #3Intro to Python (High School) Unit #3
Intro to Python (High School) Unit #3
Jay Coskey
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlow
Oswald Campesato
 
Dive Into PyTorch
Dive Into PyTorchDive Into PyTorch
Dive Into PyTorch
Illarion Khlestov
 
About RNN
About RNNAbout RNN
About RNN
Young Oh Jeong
 
About RNN
About RNNAbout RNN
About RNN
Young Oh Jeong
 
NTC_Tensor flow 深度學習快速上手班_Part1 -機器學習
NTC_Tensor flow 深度學習快速上手班_Part1 -機器學習NTC_Tensor flow 深度學習快速上手班_Part1 -機器學習
NTC_Tensor flow 深度學習快速上手班_Part1 -機器學習
NTC.im(Notch Training Center)
 
Tensor board
Tensor boardTensor board
Tensor board
Sung Kim
 
Gentlest Introduction to Tensorflow - Part 2
Gentlest Introduction to Tensorflow - Part 2Gentlest Introduction to Tensorflow - Part 2
Gentlest Introduction to Tensorflow - Part 2
Khor SoonHin
 
Machine Learning - Introduction to Tensorflow
Machine Learning - Introduction to TensorflowMachine Learning - Introduction to Tensorflow
Machine Learning - Introduction to Tensorflow
Andrew Ferlitsch
 
30 分鐘學會實作 Python Feature Selection
30 分鐘學會實作 Python Feature Selection30 分鐘學會實作 Python Feature Selection
30 分鐘學會實作 Python Feature Selection
James Huang
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
Oswald Campesato
 
Working with tf.data (TF 2)
Working with tf.data (TF 2)Working with tf.data (TF 2)
Working with tf.data (TF 2)
Oswald Campesato
 
Introduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and TensorflowIntroduction to Deep Learning, Keras, and Tensorflow
Introduction to Deep Learning, Keras, and Tensorflow
Oswald Campesato
 
Introduction to TensorFlow 2
Introduction to TensorFlow 2Introduction to TensorFlow 2
Introduction to TensorFlow 2
Oswald Campesato
 
Introduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and KerasIntroduction to TensorFlow 2 and Keras
Introduction to TensorFlow 2 and Keras
Oswald Campesato
 
TensorFlow in Your Browser
TensorFlow in Your BrowserTensorFlow in Your Browser
TensorFlow in Your Browser
Oswald Campesato
 
NTU ML TENSORFLOW
NTU ML TENSORFLOWNTU ML TENSORFLOW
NTU ML TENSORFLOW
Mark Chang
 
TensorFlow 深度學習快速上手班--電腦視覺應用
TensorFlow 深度學習快速上手班--電腦視覺應用TensorFlow 深度學習快速上手班--電腦視覺應用
TensorFlow 深度學習快速上手班--電腦視覺應用
Mark Chang
 
Intro to Python (High School) Unit #3
Intro to Python (High School) Unit #3Intro to Python (High School) Unit #3
Intro to Python (High School) Unit #3
Jay Coskey
 
Deep Learning and TensorFlow
Deep Learning and TensorFlowDeep Learning and TensorFlow
Deep Learning and TensorFlow
Oswald Campesato
 
NTC_Tensor flow 深度學習快速上手班_Part1 -機器學習
NTC_Tensor flow 深度學習快速上手班_Part1 -機器學習NTC_Tensor flow 深度學習快速上手班_Part1 -機器學習
NTC_Tensor flow 深度學習快速上手班_Part1 -機器學習
NTC.im(Notch Training Center)
 

Viewers also liked (20)

Introduction to TensorFlow
Introduction to TensorFlowIntroduction to TensorFlow
Introduction to TensorFlow
Matthias Feys
 
Large Scale Deep Learning with TensorFlow
Large Scale Deep Learning with TensorFlow Large Scale Deep Learning with TensorFlow
Large Scale Deep Learning with TensorFlow
Jen Aman
 
[系列活動] 一日搞懂生成式對抗網路
[系列活動] 一日搞懂生成式對抗網路[系列活動] 一日搞懂生成式對抗網路
[系列活動] 一日搞懂生成式對抗網路
台灣資料科學年會
 
[系列活動] Python爬蟲實戰
[系列活動] Python爬蟲實戰[系列活動] Python爬蟲實戰
[系列活動] Python爬蟲實戰
台灣資料科學年會
 
[系列活動] 無所不在的自然語言處理—基礎概念、技術與工具介紹
[系列活動] 無所不在的自然語言處理—基礎概念、技術與工具介紹[系列活動] 無所不在的自然語言處理—基礎概念、技術與工具介紹
[系列活動] 無所不在的自然語言處理—基礎概念、技術與工具介紹
台灣資料科學年會
 
Machine Intelligence at Google Scale: TensorFlow
Machine Intelligence at Google Scale: TensorFlowMachine Intelligence at Google Scale: TensorFlow
Machine Intelligence at Google Scale: TensorFlow
DataWorks Summit/Hadoop Summit
 
TensorFlow Serving, Deep Learning on Mobile, and Deeplearning4j on the JVM - ...
TensorFlow Serving, Deep Learning on Mobile, and Deeplearning4j on the JVM - ...TensorFlow Serving, Deep Learning on Mobile, and Deeplearning4j on the JVM - ...
TensorFlow Serving, Deep Learning on Mobile, and Deeplearning4j on the JVM - ...
Sam Putnam [Deep Learning]
 
Neural Networks with Google TensorFlow
Neural Networks with Google TensorFlowNeural Networks with Google TensorFlow
Neural Networks with Google TensorFlow
Darshan Patel
 
Introducing TensorFlow: The game changer in building "intelligent" applications
Introducing TensorFlow: The game changer in building "intelligent" applicationsIntroducing TensorFlow: The game changer in building "intelligent" applications
Introducing TensorFlow: The game changer in building "intelligent" applications
Rokesh Jankie
 
On-device machine learning: TensorFlow on Android
On-device machine learning: TensorFlow on AndroidOn-device machine learning: TensorFlow on Android
On-device machine learning: TensorFlow on Android
Yufeng Guo
 
TensorFlow 深度學習講座
TensorFlow 深度學習講座TensorFlow 深度學習講座
TensorFlow 深度學習講座
Mark Chang
 
Deep Learning for Data Scientists - Data Science ATL Meetup Presentation, 201...
Deep Learning for Data Scientists - Data Science ATL Meetup Presentation, 201...Deep Learning for Data Scientists - Data Science ATL Meetup Presentation, 201...
Deep Learning for Data Scientists - Data Science ATL Meetup Presentation, 201...
Andrew Gardner
 
Machine Learning Preliminaries and Math Refresher
Machine Learning Preliminaries and Math RefresherMachine Learning Preliminaries and Math Refresher
Machine Learning Preliminaries and Math Refresher
butest
 
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
Alex Pinto
 
Machine Learning without the Math: An overview of Machine Learning
Machine Learning without the Math: An overview of Machine LearningMachine Learning without the Math: An overview of Machine Learning
Machine Learning without the Math: An overview of Machine Learning
Arshad Ahmed
 
[系列活動] 資料探勘速遊
[系列活動] 資料探勘速遊[系列活動] 資料探勘速遊
[系列活動] 資料探勘速遊
台灣資料科學年會
 
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
Sri Ambati
 
02 math essentials
02 math essentials02 math essentials
02 math essentials
Poongodi Mano
 
Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...
Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...
Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...
Chris Fregly
 
Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...
Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...
Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...
Chris Fregly
 
Introduction to TensorFlow
Introduction to TensorFlowIntroduction to TensorFlow
Introduction to TensorFlow
Matthias Feys
 
Large Scale Deep Learning with TensorFlow
Large Scale Deep Learning with TensorFlow Large Scale Deep Learning with TensorFlow
Large Scale Deep Learning with TensorFlow
Jen Aman
 
[系列活動] 一日搞懂生成式對抗網路
[系列活動] 一日搞懂生成式對抗網路[系列活動] 一日搞懂生成式對抗網路
[系列活動] 一日搞懂生成式對抗網路
台灣資料科學年會
 
[系列活動] 無所不在的自然語言處理—基礎概念、技術與工具介紹
[系列活動] 無所不在的自然語言處理—基礎概念、技術與工具介紹[系列活動] 無所不在的自然語言處理—基礎概念、技術與工具介紹
[系列活動] 無所不在的自然語言處理—基礎概念、技術與工具介紹
台灣資料科學年會
 
TensorFlow Serving, Deep Learning on Mobile, and Deeplearning4j on the JVM - ...
TensorFlow Serving, Deep Learning on Mobile, and Deeplearning4j on the JVM - ...TensorFlow Serving, Deep Learning on Mobile, and Deeplearning4j on the JVM - ...
TensorFlow Serving, Deep Learning on Mobile, and Deeplearning4j on the JVM - ...
Sam Putnam [Deep Learning]
 
Neural Networks with Google TensorFlow
Neural Networks with Google TensorFlowNeural Networks with Google TensorFlow
Neural Networks with Google TensorFlow
Darshan Patel
 
Introducing TensorFlow: The game changer in building "intelligent" applications
Introducing TensorFlow: The game changer in building "intelligent" applicationsIntroducing TensorFlow: The game changer in building "intelligent" applications
Introducing TensorFlow: The game changer in building "intelligent" applications
Rokesh Jankie
 
On-device machine learning: TensorFlow on Android
On-device machine learning: TensorFlow on AndroidOn-device machine learning: TensorFlow on Android
On-device machine learning: TensorFlow on Android
Yufeng Guo
 
TensorFlow 深度學習講座
TensorFlow 深度學習講座TensorFlow 深度學習講座
TensorFlow 深度學習講座
Mark Chang
 
Deep Learning for Data Scientists - Data Science ATL Meetup Presentation, 201...
Deep Learning for Data Scientists - Data Science ATL Meetup Presentation, 201...Deep Learning for Data Scientists - Data Science ATL Meetup Presentation, 201...
Deep Learning for Data Scientists - Data Science ATL Meetup Presentation, 201...
Andrew Gardner
 
Machine Learning Preliminaries and Math Refresher
Machine Learning Preliminaries and Math RefresherMachine Learning Preliminaries and Math Refresher
Machine Learning Preliminaries and Math Refresher
butest
 
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
Secure Because Math: A Deep-Dive on Machine Learning-Based Monitoring (#Secur...
Alex Pinto
 
Machine Learning without the Math: An overview of Machine Learning
Machine Learning without the Math: An overview of Machine LearningMachine Learning without the Math: An overview of Machine Learning
Machine Learning without the Math: An overview of Machine Learning
Arshad Ahmed
 
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
qconsf 2013: Top 10 Performance Gotchas for scaling in-memory Algorithms - Sr...
Sri Ambati
 
Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...
Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...
Kafka Summit SF Apr 26 2016 - Generating Real-time Recommendations with NiFi,...
Chris Fregly
 
Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...
Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...
Big Data Spain - Nov 17 2016 - Madrid Continuously Deploy Spark ML and Tensor...
Chris Fregly
 

Similar to Google TensorFlow Tutorial (20)

TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016
Andrii Babii
 
TensorFlow Tutorial.pdf
TensorFlow Tutorial.pdfTensorFlow Tutorial.pdf
TensorFlow Tutorial.pdf
Antonio Espinosa
 
Tensor flow description of ML Lab. document
Tensor flow description of ML Lab. documentTensor flow description of ML Lab. document
Tensor flow description of ML Lab. document
jeongok1
 
Introduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowIntroduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlow
Oswald Campesato
 
Introduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlowIntroduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlow
Sri Ambati
 
Intro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsIntro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.js
Oswald Campesato
 
Deep Learning in Your Browser
Deep Learning in Your BrowserDeep Learning in Your Browser
Deep Learning in Your Browser
Oswald Campesato
 
Lucio Floretta - TensorFlow and Deep Learning without a PhD - Codemotion Mila...
Lucio Floretta - TensorFlow and Deep Learning without a PhD - Codemotion Mila...Lucio Floretta - TensorFlow and Deep Learning without a PhD - Codemotion Mila...
Lucio Floretta - TensorFlow and Deep Learning without a PhD - Codemotion Mila...
Codemotion
 
TensorFlow for IITians
TensorFlow for IITiansTensorFlow for IITians
TensorFlow for IITians
Ashish Bansal
 
A Tour of Tensorflow's APIs
A Tour of Tensorflow's APIsA Tour of Tensorflow's APIs
A Tour of Tensorflow's APIs
Dean Wyatte
 
Deep Learning, Scala, and Spark
Deep Learning, Scala, and SparkDeep Learning, Scala, and Spark
Deep Learning, Scala, and Spark
Oswald Campesato
 
Introduction To TensorFlow | Deep Learning Using TensorFlow | CloudxLab
Introduction To TensorFlow | Deep Learning Using TensorFlow | CloudxLabIntroduction To TensorFlow | Deep Learning Using TensorFlow | CloudxLab
Introduction To TensorFlow | Deep Learning Using TensorFlow | CloudxLab
CloudxLab
 
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
Databricks
 
Introduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep LearningIntroduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep Learning
ali alemi
 
The TensorFlow dance craze
The TensorFlow dance crazeThe TensorFlow dance craze
The TensorFlow dance craze
Gabriel Hamilton
 
Introduction to TensorFlow, by Machine Learning at Berkeley
Introduction to TensorFlow, by Machine Learning at BerkeleyIntroduction to TensorFlow, by Machine Learning at Berkeley
Introduction to TensorFlow, by Machine Learning at Berkeley
Ted Xiao
 
TensorFlow and Keras: An Overview
TensorFlow and Keras: An OverviewTensorFlow and Keras: An Overview
TensorFlow and Keras: An Overview
Poo Kuan Hoong
 
maXbox starter65 machinelearning3
maXbox starter65 machinelearning3maXbox starter65 machinelearning3
maXbox starter65 machinelearning3
Max Kleiner
 
Language translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlowLanguage translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlow
S N
 
Машинное обучение на JS. С чего начать и куда идти | Odessa Frontend Meetup #12
Машинное обучение на JS. С чего начать и куда идти | Odessa Frontend Meetup #12Машинное обучение на JS. С чего начать и куда идти | Odessa Frontend Meetup #12
Машинное обучение на JS. С чего начать и куда идти | Odessa Frontend Meetup #12
OdessaFrontend
 
TensorFlow example for AI Ukraine2016
TensorFlow example  for AI Ukraine2016TensorFlow example  for AI Ukraine2016
TensorFlow example for AI Ukraine2016
Andrii Babii
 
Tensor flow description of ML Lab. document
Tensor flow description of ML Lab. documentTensor flow description of ML Lab. document
Tensor flow description of ML Lab. document
jeongok1
 
Introduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlowIntroduction to Deep Learning and TensorFlow
Introduction to Deep Learning and TensorFlow
Oswald Campesato
 
Introduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlowIntroduction to Deep Learning, Keras, and TensorFlow
Introduction to Deep Learning, Keras, and TensorFlow
Sri Ambati
 
Intro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.jsIntro to Deep Learning, TensorFlow, and tensorflow.js
Intro to Deep Learning, TensorFlow, and tensorflow.js
Oswald Campesato
 
Deep Learning in Your Browser
Deep Learning in Your BrowserDeep Learning in Your Browser
Deep Learning in Your Browser
Oswald Campesato
 
Lucio Floretta - TensorFlow and Deep Learning without a PhD - Codemotion Mila...
Lucio Floretta - TensorFlow and Deep Learning without a PhD - Codemotion Mila...Lucio Floretta - TensorFlow and Deep Learning without a PhD - Codemotion Mila...
Lucio Floretta - TensorFlow and Deep Learning without a PhD - Codemotion Mila...
Codemotion
 
TensorFlow for IITians
TensorFlow for IITiansTensorFlow for IITians
TensorFlow for IITians
Ashish Bansal
 
A Tour of Tensorflow's APIs
A Tour of Tensorflow's APIsA Tour of Tensorflow's APIs
A Tour of Tensorflow's APIs
Dean Wyatte
 
Deep Learning, Scala, and Spark
Deep Learning, Scala, and SparkDeep Learning, Scala, and Spark
Deep Learning, Scala, and Spark
Oswald Campesato
 
Introduction To TensorFlow | Deep Learning Using TensorFlow | CloudxLab
Introduction To TensorFlow | Deep Learning Using TensorFlow | CloudxLabIntroduction To TensorFlow | Deep Learning Using TensorFlow | CloudxLab
Introduction To TensorFlow | Deep Learning Using TensorFlow | CloudxLab
CloudxLab
 
Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0Introduction to TensorFlow 2.0
Introduction to TensorFlow 2.0
Databricks
 
Introduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep LearningIntroduction To Using TensorFlow & Deep Learning
Introduction To Using TensorFlow & Deep Learning
ali alemi
 
The TensorFlow dance craze
The TensorFlow dance crazeThe TensorFlow dance craze
The TensorFlow dance craze
Gabriel Hamilton
 
Introduction to TensorFlow, by Machine Learning at Berkeley
Introduction to TensorFlow, by Machine Learning at BerkeleyIntroduction to TensorFlow, by Machine Learning at Berkeley
Introduction to TensorFlow, by Machine Learning at Berkeley
Ted Xiao
 
TensorFlow and Keras: An Overview
TensorFlow and Keras: An OverviewTensorFlow and Keras: An Overview
TensorFlow and Keras: An Overview
Poo Kuan Hoong
 
maXbox starter65 machinelearning3
maXbox starter65 machinelearning3maXbox starter65 machinelearning3
maXbox starter65 machinelearning3
Max Kleiner
 
Language translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlowLanguage translation with Deep Learning (RNN) with TensorFlow
Language translation with Deep Learning (RNN) with TensorFlow
S N
 
Машинное обучение на JS. С чего начать и куда идти | Odessa Frontend Meetup #12
Машинное обучение на JS. С чего начать и куда идти | Odessa Frontend Meetup #12Машинное обучение на JS. С чего начать и куда идти | Odessa Frontend Meetup #12
Машинное обучение на JS. С чего начать и куда идти | Odessa Frontend Meetup #12
OdessaFrontend
 

More from 台灣資料科學年會 (20)

[台灣人工智慧學校] 人工智慧技術發展與應用
[台灣人工智慧學校] 人工智慧技術發展與應用[台灣人工智慧學校] 人工智慧技術發展與應用
[台灣人工智慧學校] 人工智慧技術發展與應用
台灣資料科學年會
 
[台灣人工智慧學校] 執行長報告
[台灣人工智慧學校] 執行長報告[台灣人工智慧學校] 執行長報告
[台灣人工智慧學校] 執行長報告
台灣資料科學年會
 
[台灣人工智慧學校] 工業 4.0 與智慧製造的發展趨勢與挑戰
[台灣人工智慧學校] 工業 4.0 與智慧製造的發展趨勢與挑戰[台灣人工智慧學校] 工業 4.0 與智慧製造的發展趨勢與挑戰
[台灣人工智慧學校] 工業 4.0 與智慧製造的發展趨勢與挑戰
台灣資料科學年會
 
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
台灣資料科學年會
 
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
台灣資料科學年會
 
[台灣人工智慧學校] 台北總校第三期結業典禮 - 執行長談話
[台灣人工智慧學校] 台北總校第三期結業典禮 - 執行長談話[台灣人工智慧學校] 台北總校第三期結業典禮 - 執行長談話
[台灣人工智慧學校] 台北總校第三期結業典禮 - 執行長談話
台灣資料科學年會
 
[TOxAIA台中分校] AI 引爆新工業革命,智慧機械首都台中轉型論壇
[TOxAIA台中分校] AI 引爆新工業革命,智慧機械首都台中轉型論壇[TOxAIA台中分校] AI 引爆新工業革命,智慧機械首都台中轉型論壇
[TOxAIA台中分校] AI 引爆新工業革命,智慧機械首都台中轉型論壇
台灣資料科學年會
 
[TOxAIA台中分校] 2019 台灣數位轉型 與產業升級趨勢觀察
[TOxAIA台中分校] 2019 台灣數位轉型 與產業升級趨勢觀察 [TOxAIA台中分校] 2019 台灣數位轉型 與產業升級趨勢觀察
[TOxAIA台中分校] 2019 台灣數位轉型 與產業升級趨勢觀察
台灣資料科學年會
 
[TOxAIA台中分校] 智慧製造成真! 產線導入AI的致勝關鍵
[TOxAIA台中分校] 智慧製造成真! 產線導入AI的致勝關鍵[TOxAIA台中分校] 智慧製造成真! 產線導入AI的致勝關鍵
[TOxAIA台中分校] 智慧製造成真! 產線導入AI的致勝關鍵
台灣資料科學年會
 
[台灣人工智慧學校] 從經濟學看人工智慧產業應用
[台灣人工智慧學校] 從經濟學看人工智慧產業應用[台灣人工智慧學校] 從經濟學看人工智慧產業應用
[台灣人工智慧學校] 從經濟學看人工智慧產業應用
台灣資料科學年會
 
[台灣人工智慧學校] 台中分校第二期開學典禮 - 執行長報告
[台灣人工智慧學校] 台中分校第二期開學典禮 - 執行長報告[台灣人工智慧學校] 台中分校第二期開學典禮 - 執行長報告
[台灣人工智慧學校] 台中分校第二期開學典禮 - 執行長報告
台灣資料科學年會
 
台灣人工智慧學校成果發表會
台灣人工智慧學校成果發表會台灣人工智慧學校成果發表會
台灣人工智慧學校成果發表會
台灣資料科學年會
 
[台中分校] 第一期結業典禮 - 執行長談話
[台中分校] 第一期結業典禮 - 執行長談話[台中分校] 第一期結業典禮 - 執行長談話
[台中分校] 第一期結業典禮 - 執行長談話
台灣資料科學年會
 
[TOxAIA新竹分校] 工業4.0潛力新應用! 多模式對話機器人
[TOxAIA新竹分校] 工業4.0潛力新應用! 多模式對話機器人[TOxAIA新竹分校] 工業4.0潛力新應用! 多模式對話機器人
[TOxAIA新竹分校] 工業4.0潛力新應用! 多模式對話機器人
台灣資料科學年會
 
[TOxAIA新竹分校] AI整合是重點! 竹科的關鍵轉型思維
[TOxAIA新竹分校] AI整合是重點! 竹科的關鍵轉型思維[TOxAIA新竹分校] AI整合是重點! 竹科的關鍵轉型思維
[TOxAIA新竹分校] AI整合是重點! 竹科的關鍵轉型思維
台灣資料科學年會
 
[TOxAIA新竹分校] 2019 台灣數位轉型與產業升級趨勢觀察
[TOxAIA新竹分校] 2019 台灣數位轉型與產業升級趨勢觀察[TOxAIA新竹分校] 2019 台灣數位轉型與產業升級趨勢觀察
[TOxAIA新竹分校] 2019 台灣數位轉型與產業升級趨勢觀察
台灣資料科學年會
 
[TOxAIA新竹分校] 深度學習與Kaggle實戰
[TOxAIA新竹分校] 深度學習與Kaggle實戰[TOxAIA新竹分校] 深度學習與Kaggle實戰
[TOxAIA新竹分校] 深度學習與Kaggle實戰
台灣資料科學年會
 
[台灣人工智慧學校] Bridging AI to Precision Agriculture through IoT
[台灣人工智慧學校] Bridging AI to Precision Agriculture through IoT[台灣人工智慧學校] Bridging AI to Precision Agriculture through IoT
[台灣人工智慧學校] Bridging AI to Precision Agriculture through IoT
台灣資料科學年會
 
[2018 台灣人工智慧學校校友年會] 產業經驗分享: 如何用最少的訓練樣本,得到最好的深度學習影像分析結果,減少一半人力,提升一倍品質 / 李明達
[2018 台灣人工智慧學校校友年會] 產業經驗分享: 如何用最少的訓練樣本,得到最好的深度學習影像分析結果,減少一半人力,提升一倍品質 / 李明達[2018 台灣人工智慧學校校友年會] 產業經驗分享: 如何用最少的訓練樣本,得到最好的深度學習影像分析結果,減少一半人力,提升一倍品質 / 李明達
[2018 台灣人工智慧學校校友年會] 產業經驗分享: 如何用最少的訓練樣本,得到最好的深度學習影像分析結果,減少一半人力,提升一倍品質 / 李明達
台灣資料科學年會
 
[2018 台灣人工智慧學校校友年會] 啟動物聯網新關鍵 - 未來由你「喚」醒 / 沈品勳
[2018 台灣人工智慧學校校友年會] 啟動物聯網新關鍵 - 未來由你「喚」醒 / 沈品勳[2018 台灣人工智慧學校校友年會] 啟動物聯網新關鍵 - 未來由你「喚」醒 / 沈品勳
[2018 台灣人工智慧學校校友年會] 啟動物聯網新關鍵 - 未來由你「喚」醒 / 沈品勳
台灣資料科學年會
 
[台灣人工智慧學校] 人工智慧技術發展與應用
[台灣人工智慧學校] 人工智慧技術發展與應用[台灣人工智慧學校] 人工智慧技術發展與應用
[台灣人工智慧學校] 人工智慧技術發展與應用
台灣資料科學年會
 
[台灣人工智慧學校] 執行長報告
[台灣人工智慧學校] 執行長報告[台灣人工智慧學校] 執行長報告
[台灣人工智慧學校] 執行長報告
台灣資料科學年會
 
[台灣人工智慧學校] 工業 4.0 與智慧製造的發展趨勢與挑戰
[台灣人工智慧學校] 工業 4.0 與智慧製造的發展趨勢與挑戰[台灣人工智慧學校] 工業 4.0 與智慧製造的發展趨勢與挑戰
[台灣人工智慧學校] 工業 4.0 與智慧製造的發展趨勢與挑戰
台灣資料科學年會
 
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
台灣資料科學年會
 
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
[台灣人工智慧學校] 開創台灣產業智慧轉型的新契機
台灣資料科學年會
 
[台灣人工智慧學校] 台北總校第三期結業典禮 - 執行長談話
[台灣人工智慧學校] 台北總校第三期結業典禮 - 執行長談話[台灣人工智慧學校] 台北總校第三期結業典禮 - 執行長談話
[台灣人工智慧學校] 台北總校第三期結業典禮 - 執行長談話
台灣資料科學年會
 
[TOxAIA台中分校] AI 引爆新工業革命,智慧機械首都台中轉型論壇
[TOxAIA台中分校] AI 引爆新工業革命,智慧機械首都台中轉型論壇[TOxAIA台中分校] AI 引爆新工業革命,智慧機械首都台中轉型論壇
[TOxAIA台中分校] AI 引爆新工業革命,智慧機械首都台中轉型論壇
台灣資料科學年會
 
[TOxAIA台中分校] 2019 台灣數位轉型 與產業升級趨勢觀察
[TOxAIA台中分校] 2019 台灣數位轉型 與產業升級趨勢觀察 [TOxAIA台中分校] 2019 台灣數位轉型 與產業升級趨勢觀察
[TOxAIA台中分校] 2019 台灣數位轉型 與產業升級趨勢觀察
台灣資料科學年會
 
[TOxAIA台中分校] 智慧製造成真! 產線導入AI的致勝關鍵
[TOxAIA台中分校] 智慧製造成真! 產線導入AI的致勝關鍵[TOxAIA台中分校] 智慧製造成真! 產線導入AI的致勝關鍵
[TOxAIA台中分校] 智慧製造成真! 產線導入AI的致勝關鍵
台灣資料科學年會
 
[台灣人工智慧學校] 從經濟學看人工智慧產業應用
[台灣人工智慧學校] 從經濟學看人工智慧產業應用[台灣人工智慧學校] 從經濟學看人工智慧產業應用
[台灣人工智慧學校] 從經濟學看人工智慧產業應用
台灣資料科學年會
 
[台灣人工智慧學校] 台中分校第二期開學典禮 - 執行長報告
[台灣人工智慧學校] 台中分校第二期開學典禮 - 執行長報告[台灣人工智慧學校] 台中分校第二期開學典禮 - 執行長報告
[台灣人工智慧學校] 台中分校第二期開學典禮 - 執行長報告
台灣資料科學年會
 
[台中分校] 第一期結業典禮 - 執行長談話
[台中分校] 第一期結業典禮 - 執行長談話[台中分校] 第一期結業典禮 - 執行長談話
[台中分校] 第一期結業典禮 - 執行長談話
台灣資料科學年會
 
[TOxAIA新竹分校] 工業4.0潛力新應用! 多模式對話機器人
[TOxAIA新竹分校] 工業4.0潛力新應用! 多模式對話機器人[TOxAIA新竹分校] 工業4.0潛力新應用! 多模式對話機器人
[TOxAIA新竹分校] 工業4.0潛力新應用! 多模式對話機器人
台灣資料科學年會
 
[TOxAIA新竹分校] AI整合是重點! 竹科的關鍵轉型思維
[TOxAIA新竹分校] AI整合是重點! 竹科的關鍵轉型思維[TOxAIA新竹分校] AI整合是重點! 竹科的關鍵轉型思維
[TOxAIA新竹分校] AI整合是重點! 竹科的關鍵轉型思維
台灣資料科學年會
 
[TOxAIA新竹分校] 2019 台灣數位轉型與產業升級趨勢觀察
[TOxAIA新竹分校] 2019 台灣數位轉型與產業升級趨勢觀察[TOxAIA新竹分校] 2019 台灣數位轉型與產業升級趨勢觀察
[TOxAIA新竹分校] 2019 台灣數位轉型與產業升級趨勢觀察
台灣資料科學年會
 
[TOxAIA新竹分校] 深度學習與Kaggle實戰
[TOxAIA新竹分校] 深度學習與Kaggle實戰[TOxAIA新竹分校] 深度學習與Kaggle實戰
[TOxAIA新竹分校] 深度學習與Kaggle實戰
台灣資料科學年會
 
[台灣人工智慧學校] Bridging AI to Precision Agriculture through IoT
[台灣人工智慧學校] Bridging AI to Precision Agriculture through IoT[台灣人工智慧學校] Bridging AI to Precision Agriculture through IoT
[台灣人工智慧學校] Bridging AI to Precision Agriculture through IoT
台灣資料科學年會
 
[2018 台灣人工智慧學校校友年會] 產業經驗分享: 如何用最少的訓練樣本,得到最好的深度學習影像分析結果,減少一半人力,提升一倍品質 / 李明達
[2018 台灣人工智慧學校校友年會] 產業經驗分享: 如何用最少的訓練樣本,得到最好的深度學習影像分析結果,減少一半人力,提升一倍品質 / 李明達[2018 台灣人工智慧學校校友年會] 產業經驗分享: 如何用最少的訓練樣本,得到最好的深度學習影像分析結果,減少一半人力,提升一倍品質 / 李明達
[2018 台灣人工智慧學校校友年會] 產業經驗分享: 如何用最少的訓練樣本,得到最好的深度學習影像分析結果,減少一半人力,提升一倍品質 / 李明達
台灣資料科學年會
 
[2018 台灣人工智慧學校校友年會] 啟動物聯網新關鍵 - 未來由你「喚」醒 / 沈品勳
[2018 台灣人工智慧學校校友年會] 啟動物聯網新關鍵 - 未來由你「喚」醒 / 沈品勳[2018 台灣人工智慧學校校友年會] 啟動物聯網新關鍵 - 未來由你「喚」醒 / 沈品勳
[2018 台灣人工智慧學校校友年會] 啟動物聯網新關鍵 - 未來由你「喚」醒 / 沈品勳
台灣資料科學年會
 

Recently uploaded (20)

System Card: Claude Opus 4 & Claude Sonnet 4
System Card: Claude Opus 4 & Claude Sonnet 4System Card: Claude Opus 4 & Claude Sonnet 4
System Card: Claude Opus 4 & Claude Sonnet 4
Razin Mustafiz
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Lorenzo Miniero
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
SOFTTECHHUB
 
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 ProfessioMaster tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Kari Kakkonen
 
Supercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMsSupercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMs
Francesco Corti
 
Splunk Leadership Forum Wien - 20.05.2025
Splunk Leadership Forum Wien - 20.05.2025Splunk Leadership Forum Wien - 20.05.2025
Splunk Leadership Forum Wien - 20.05.2025
Splunk
 
"AI in the browser: predicting user actions in real time with TensorflowJS", ...
"AI in the browser: predicting user actions in real time with TensorflowJS", ..."AI in the browser: predicting user actions in real time with TensorflowJS", ...
"AI in the browser: predicting user actions in real time with TensorflowJS", ...
Fwdays
 
Security Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk CertificateSecurity Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk Certificate
VICTOR MAESTRE RAMIREZ
 
cloudgenesis cloud workshop , gdg on campus mita
cloudgenesis cloud workshop , gdg on campus mitacloudgenesis cloud workshop , gdg on campus mita
cloudgenesis cloud workshop , gdg on campus mita
siyaldhande02
 
Building Agents with LangGraph & Gemini
Building Agents with LangGraph &  GeminiBuilding Agents with LangGraph &  Gemini
Building Agents with LangGraph & Gemini
HusseinMalikMammadli
 
Break Down of Service Mesh Concepts and Implementation in AWS EKS.pptx
Break Down of Service Mesh Concepts and Implementation in AWS EKS.pptxBreak Down of Service Mesh Concepts and Implementation in AWS EKS.pptx
Break Down of Service Mesh Concepts and Implementation in AWS EKS.pptx
Mohammad Jomaa
 
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Nikki Chapple
 
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AISAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
Peter Spielvogel
 
Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptxFrom Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
Mohammad Jomaa
 
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCPMCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
Sambhav Kothari
 
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
James Anderson
 
Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...
pranavbodhak
 
System Card: Claude Opus 4 & Claude Sonnet 4
System Card: Claude Opus 4 & Claude Sonnet 4System Card: Claude Opus 4 & Claude Sonnet 4
System Card: Claude Opus 4 & Claude Sonnet 4
Razin Mustafiz
 
European Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility TestingEuropean Accessibility Act & Integrated Accessibility Testing
European Accessibility Act & Integrated Accessibility Testing
Julia Undeutsch
 
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Multistream in SIP and NoSIP @ OpenSIPS Summit 2025
Lorenzo Miniero
 
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure ModesCognitive Chasms - A Typology of GenAI Failure Failure Modes
Cognitive Chasms - A Typology of GenAI Failure Failure Modes
Dr. Tathagat Varma
 
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
With Claude 4, Anthropic redefines AI capabilities, effectively unleashing a ...
SOFTTECHHUB
 
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 ProfessioMaster tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Master tester AI toolbox - Kari Kakkonen at Testaus ja AI 2025 Professio
Kari Kakkonen
 
Supercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMsSupercharge Your AI Development with Local LLMs
Supercharge Your AI Development with Local LLMs
Francesco Corti
 
Splunk Leadership Forum Wien - 20.05.2025
Splunk Leadership Forum Wien - 20.05.2025Splunk Leadership Forum Wien - 20.05.2025
Splunk Leadership Forum Wien - 20.05.2025
Splunk
 
"AI in the browser: predicting user actions in real time with TensorflowJS", ...
"AI in the browser: predicting user actions in real time with TensorflowJS", ..."AI in the browser: predicting user actions in real time with TensorflowJS", ...
"AI in the browser: predicting user actions in real time with TensorflowJS", ...
Fwdays
 
Security Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk CertificateSecurity Operations and the Defense Analyst - Splunk Certificate
Security Operations and the Defense Analyst - Splunk Certificate
VICTOR MAESTRE RAMIREZ
 
cloudgenesis cloud workshop , gdg on campus mita
cloudgenesis cloud workshop , gdg on campus mitacloudgenesis cloud workshop , gdg on campus mita
cloudgenesis cloud workshop , gdg on campus mita
siyaldhande02
 
Building Agents with LangGraph & Gemini
Building Agents with LangGraph &  GeminiBuilding Agents with LangGraph &  Gemini
Building Agents with LangGraph & Gemini
HusseinMalikMammadli
 
Break Down of Service Mesh Concepts and Implementation in AWS EKS.pptx
Break Down of Service Mesh Concepts and Implementation in AWS EKS.pptxBreak Down of Service Mesh Concepts and Implementation in AWS EKS.pptx
Break Down of Service Mesh Concepts and Implementation in AWS EKS.pptx
Mohammad Jomaa
 
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Protecting Your Sensitive Data with Microsoft Purview - IRMS 2025
Nikki Chapple
 
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AISAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
SAP Sapphire 2025 ERP1612 Enhancing User Experience with SAP Fiori and AI
Peter Spielvogel
 
Introducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRCIntroducing the OSA 3200 SP and OSA 3250 ePRC
Introducing the OSA 3200 SP and OSA 3250 ePRC
Adtran
 
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptxFrom Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
From Legacy to Cloud-Native: A Guide to AWS Modernization.pptx
Mohammad Jomaa
 
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCPMCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
MCP Dev Summit - Pragmatic Scaling of Enterprise GenAI with MCP
Sambhav Kothari
 
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
GDG Cloud Southlake #43: Tommy Todd: The Quantum Apocalypse: A Looming Threat...
James Anderson
 
Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...Cyber security cyber security cyber security cyber security cyber security cy...
Cyber security cyber security cyber security cyber security cyber security cy...
pranavbodhak
 

Google TensorFlow Tutorial

  • 1. Tensor Flow Tensors: n-dimensional arrays A sequence of tensor operations Deep learning process are flows of tensors Vector: 1-D tensor Matrix: 2-D tensor Can represent also many machine learning algorithms
  • 2. A simple ReLU network a1 b1 c1 a0 b0 c0 w a1=a0wa,a+b0wb,a+c0wc,a b1=a0wa,b+b0wb,b+c0wc,b c1=a0wa,c+b0wb,c+c0wc,c Apply relu(…) on a1, b1, c1 Slower approach Per-neuron operation More efficient approach Matrix operation
  • 3. As matrix operations a0 a1 b1 c1 a0 b0 c0 w . = =relu( ) b0 c0 a1 b1 c1 a1a1 =relu( )b1b1 =relu( )c1c1 wa,a wb,a wc,a wa,b wb,b wc,b wa,c wb,c wc,c
  • 4. With TensorFlow a1 b1 c1 a0 b0 c0 w out = tf.nn.relu(y) y = tf.matmul(x, w) x w a0 . =b0 c0 wa,a wb,a wc,a wa,b wb,b wc,b wa,c wb,c wc,c a1 b1 c1 =relu( )a1a1 =relu( )b1b1 =relu( )c1c1 import tensorflow as tf
  • 5. Define Tensors xa,a xb,a xc,a xa,b xb,b xc,b xa,c xb,c xc,c w Variable(<initial-value>, name=<optional-name>) w = tf.Variable(tf.random_normal([3, 3]), name='w') import tensorflow as tf y = tf.matmul(x, w) relu_out = tf.nn.relu(y) Variable stores the state of current execution Others are operations
  • 6. TensorFlow Code so far defines a data flow graph MatMul ReLU Variable x w = tf.Variable(tf.random_normal([3, 3]), name='w') import tensorflow as tf y = tf.matmul(x, w) relu_out = tf.nn.relu(y) Each variable corresponds to a node in the graph, not the result Can be confusing at the beginning
  • 7. TensorFlow Code so far defines a data flow graph Needs to specify how we want to execute the graph MatMul ReLU Variable x Session Manage resource for graph execution w = tf.Variable(tf.random_normal([3, 3]), name='w') sess = tf.Session() y = tf.matmul(x, w) relu_out = tf.nn.relu(y) import tensorflow as tf result = sess.run(relu_out)
  • 8. Graph Fetch Retrieve content from a node w = tf.Variable(tf.random_normal([3, 3]), name='w') sess = tf.Session() y = tf.matmul(x, w) relu_out = tf.nn.relu(y) import tensorflow as tf print sess.run(relu_out) MatMul ReLU Variable x Fetch We have assembled the pipes Fetch the liquid
  • 9. Graph sess = tf.Session() y = tf.matmul(x, w) relu_out = tf.nn.relu(y) import tensorflow as tf print sess.run(relu_out) sess.run(tf.initialize_all_variables()) w = tf.Variable(tf.random_normal([3, 3]), name='w') InitializeVariable Variable is an empty node MatMul ReLU Variable x Fetch Fill in the content of a Variable node
  • 10. Graph sess = tf.Session() y = tf.matmul(x, w) relu_out = tf.nn.relu(y) import tensorflow as tf print sess.run(relu_out) sess.run(tf.initialize_all_variables()) w = tf.Variable(tf.random_normal([3, 3]), name='w') x = tf.placeholder("float", [1, 3]) Placeholder How about x? MatMul ReLU Variable x Fetch placeholder(<data type>, shape=<optional-shape>, name=<optional-name>) Its content will be fed
  • 11. Graph import numpy as np import tensorflow as tf sess = tf.Session() x = tf.placeholder("float", [1, 3]) w = tf.Variable(tf.random_normal([3, 3]), name='w') y = tf.matmul(x, w) relu_out = tf.nn.relu(y) sess.run(tf.initialize_all_variables()) print sess.run(relu_out, feed_dict={x:np.array([[1.0, 2.0, 3.0]])}) Feed MatMul ReLU Variable x FetchPump liquid into the pipe Feed
  • 12. Session management Needs to release resource after use sess.close() Common usage with tf.Session() as sess: … Interactive sess = InteractiveSession()
  • 13. Prediction import numpy as np import tensorflow as tf with tf.Session() as sess: x = tf.placeholder("float", [1, 3]) w = tf.Variable(tf.random_normal([3, 3]), name='w') relu_out = tf.nn.relu(tf.matmul(x, w)) softmax = tf.nn.softmax(relu_out) sess.run(tf.initialize_all_variables()) print sess.run(softmax, feed_dict={x:np.array([[1.0, 2.0, 3.0]])}) Softmax Make predictions for n targets that sum to 1
  • 14. Prediction Difference import numpy as np import tensorflow as tf with tf.Session() as sess: x = tf.placeholder("float", [1, 3]) w = tf.Variable(tf.random_normal([3, 3]), name='w') relu_out = tf.nn.relu(tf.matmul(x, w)) softmax = tf.nn.softmax(relu_out) sess.run(tf.initialize_all_variables()) answer = np.array([[0.0, 1.0, 0.0]]) print answer - sess.run(softmax, feed_dict={x:np.array([[1.0, 2.0, 3.0]])})
  • 15. Learn parameters: Loss Define loss function Loss function for softmax softmax_cross_entropy_with_logits( logits, labels, name=<optional-name>) labels = tf.placeholder("float", [1, 3]) cross_entropy = tf.nn.softmax_cross_entropy_with_logits( relu_out, labels, name='xentropy')
  • 16. Learn parameters: Optimization Gradient descent class GradientDescentOptimizer GradientDescentOptimizer(learning rate) labels = tf.placeholder("float", [1, 3]) cross_entropy = tf.nn.softmax_cross_entropy_with_logits( relu_out, labels, name='xentropy') optimizer = tf.train.GradientDescentOptimizer(0.1) train_op = optimizer.minimize(cross_entropy) sess.run(train_op, feed_dict= {x:np.array([[1.0, 2.0, 3.0]]), labels:answer}) learning rate = 0.1
  • 17. Iterative update labels = tf.placeholder("float", [1, 3]) cross_entropy = tf.nn.softmax_cross_entropy_with_logits( relu_out, labels, name=‘xentropy') optimizer = tf.train.GradientDescentOptimizer(0.1) train_op = optimizer.minimize(cross_entropy) for step in range(10): sess.run(train_op, feed_dict= {x:np.array([[1.0, 2.0, 3.0]]), labels:answer}) Gradient descent usually needs more than one step Run multiple times
  • 18. Add parameters for Softmax … softmax_w = tf.Variable(tf.random_normal([3, 3])) logit = tf.matmul(relu_out, softmax_w) softmax = tf.nn.softmax(logit) … cross_entropy = tf.nn.softmax_cross_entropy_with_logits( logit, labels, name=‘xentropy') … Do not want to use only non-negative input Softmax layer
  • 19. Add biases … w = tf.Variable(tf.random_normal([3, 3])) b = tf.Variable(tf.zeros([1, 3])) relu_out = tf.nn.relu(tf.matmul(x, w) + b) softmax_w = tf.Variable(tf.random_normal([3, 3])) softmax_b = tf.Variable(tf.zeros([1, 3])) logit = tf.matmul(relu_out, softmax_w) + softmax_b softmax = tf.nn.softmax(logit) … Biases initialized to zero
  • 20. Make it deep … x = tf.placeholder("float", [1, 3]) relu_out = x num_layers = 2 for layer in range(num_layers): w = tf.Variable(tf.random_normal([3, 3])) b = tf.Variable(tf.zeros([1, 3])) relu_out = tf.nn.relu(tf.matmul(relu_out, w) + b) … Add layers
  • 21. Visualize the graph TensorBoard writer = tf.train.SummaryWriter( '/tmp/tf_logs', sess.graph_def) tensorboard --logdir=/tmp/tf_logs
  • 22. Improve naming, improve visualization name_scope(name) Help specify hierarchical names … for layer in range(num_layers): with tf.name_scope('relu'): w = tf.Variable(tf.random_normal([3, 3])) b = tf.Variable(tf.zeros([1, 3])) relu_out = tf.nn.relu(tf.matmul(relu_out, w) + b) … Will help visualizer to better understand hierarchical relation Move to outside the loop?
  • 23. Add name_scope for softmax Before After
  • 24. Add regularization to the loss eg. L2 regularize on the Softmax layer parameters … l2reg = tf.reduce_sum(tf.square(softmax_w)) loss = cross_entropy + l2reg train_op = optimizer.minimize(loss) … print sess.run(l2reg) … Add it to the loss Automatic gradient calculation
  • 26. Use activation as bias Everything is a tensor
  • 27. Residual learning ILSVRC 2015 classification task winer He et al. 2015
  • 28. Visualize states Add summaries scalar_summary histogram_summary merged_summaries = tf.merge_all_summaries() results = sess.run([train_op, merged_summaries], feed_dict=…) writer.add_summary(results[1], step)
  • 29. Save and load models tf.train.Saver(…) Default will associate with all variables all_variables() save(sess, save_path, …) restore(sess, save_path, …) Replace initialization That’s why we need to run initialization separately
  • 30. Convolution conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)
  • 31. LSTM # Parameters of gates are concatenated into one multiply for efficiency. c, h = array_ops.split(1, 2, state) concat = linear([inputs, h], 4 * self._num_units,True) # i = input_gate, j = new_input, f = forget_gate, o = output_gate i, j, f, o = array_ops.split(1, 4, concat) new_c = c * sigmoid(f + self._forget_bias) + sigmoid(i) * tanh(j) new_h = tanh(new_c) * sigmoid(o) BasicLSTMCell
  • 32. Word2Vec with TensorFlow # Look up embeddings for inputs. embeddings = tf.Variable( tf.random_uniform([vocabulary_size, embedding_size], -1.0, 1.0)) embed = tf.nn.embedding_lookup(embeddings, train_inputs) # Construct the variables for the NCE loss nce_weights = tf.Variable( tf.truncated_normal([vocabulary_size, embedding_size], stddev=1.0 / math.sqrt(embedding_size))) nce_biases = tf.Variable(tf.zeros([vocabulary_size])) # Compute the average NCE loss for the batch. # tf.nce_loss automatically draws a new sample of the negative labels each # time we evaluate the loss. loss = tf.reduce_mean( tf.nn.nce_loss(nce_weights, nce_biases, embed, train_labels, num_sampled, vocabulary_size))
  • 33. Reuse Pre-trained models Image recognition Inception-v3 military uniform (866): 0.647296 suit (794): 0.0477196 academic gown (896): 0.0232411 bow tie (817): 0.0157356 bolo tie (940): 0.0145024
  • 34. Try it on your Android github.com/tensorflow/tensorflow/tree/master/tensorflow/ examples/android Uses a Google Inception model to classify camera frames in real-time, displaying the top results in an overlay on the camera image. Tensorflow Android Camera Demo
  • 36. github.com/asrivat1/DeepLearningVideoGames Using Deep Q Networks to LearnVideo Game Strategies
  • 42. Google Brain Residency Program Learn to conduct deep learning research w/experts in our team Fixed one-year employment with salary, benefits, ... Interesting problems,TensorFlow, and access to computational resources Goal after one year is to have conducted several research projects New one year immersion program in deep learning research
  • 43. Google Brain Residency Program Who should apply? People with BSc, MSc or PhD, ideally in CS, mathematics or statistics Completed coursework in calculus, linear algebra, and probability, or equiv. Motivated, hard working, and have a strong interest in deep learning Programming experience
  • 44. Google Brain Residency Program Program Application & Timeline DEADLINE: January 15, 2016 Thanks for your attention!