SlideShare a Scribd company logo
The Data People
All Customers Are Not Equal‘‘80% of sales or profit will come from 20% ofcustomers’’
What We DoWe identify Your Best Customers
We Build Detailed Pictures of Your Best Customers  Profitability  Attitudes   Demographics   Lifestyle   LocationUsageA Marriage of all the Elements
Your Best Customers OnlineCombining online and       offline data
How We Do Itdata
Data InterpretationWhat Is Your Data Telling You?We will audit your current data and create interpretation from itthis often starts with the basics of quality and quantity
turning your data into timely, relevant and meaningful                                                  information
turning that information into marketing advantage
Helping you ‘see the wood for the trees’                                data
Data AnalyticsWhat could your data be telling you?We will undertake analysis on your data to build a fuller picture. For example:Basket analysis - identifies products likely to be purchased together, usually for cross-sellingPropensity models - help maximise Return on Investment (ROI) by targeting the most suitable audienceChurn modelling - predicting the likelihood to lapseLifetime value - quantifies the overall value of each customer at a revenue, gross or net profit level
Data StrategyWhat will your data allow you to do?We develop data led business and marketing strategies to maximise business growthCRM, Acquisition & Retention Strategies
Cross-sell & Up-sell Strategies
Data Collection & Data Partnerships Strategies
Creative Testing & Message HierarchiesData Planning Processshort. medium and long term needsdatasystemsbusiness, marketing and communications objectivesaccuracydata usageroiauditevaluationdatacollectionretentionlapsedata analysishygienestrategyacquisitiontrialdata qualitycrmdata enhancinganalysisdatabasesingle customer viewpredictivemodelsdata:profile,cluster,segmentdata needsadmin &reportsbuildstrategyfutureproofingdefine the objectivesdefine the problem
What We ManageThrough a network of third party partners we will source and manage Data EnhancementData CleaningDatabase Design & BuildList PurchaseData CollectionProcessing DataData Monetisation Web Analytics
Who We AreA data planning & analytics consultancyBased in Yorkshire5 core team members with a network of associate consultants & partnersWorking in the private and public sectorsPart of the Journey Group
Peter Rivett-Jones - Director20 years of data and marketing experienceSenior client services and planning positions in top DM agencies including Joshua, GGT Direct & EWAFounded DM agency Made With Love (MWL) in 1999 which was later sold to Chemistry in 2003Joined Poulters as Director & Shareholder in 2005 heading up all data and direct marketing accounts Co-founded The Data People in 2009
Steve Raper - DirectorA statistician with 25 years of data analysis and marketing experienceStarted career with British Gas in various sales and marketing positionsWent agency side in 1994 as Data Manager for Bedrock Communications independent consultant since 1996 providing data strategy & data analysis for agencies and clientsCo-founded The Data People in 2009
What Makes Us Different?We are marketeers first and data planners second
We turn numbers into words and pictures.
We answer the "so what?" of data and statistics
We have vast experience in data and all its touch points
We are independent consultants with nothing to sell apart from our time
We turn the complexity of data into strategies that make sense
We champion simplicity Sector ExperienceNHS & Health
FMCG
Automotive
Industrial
B2B
Travel & Tourism
Airlines
GovernmentRetail LeisureOffice EquipmentTelecomsFinancial ServicesMail OrderUtilitiesDrinks

More Related Content

What's hot (18)

Big Data, customer analytics and loyalty marketing
Big Data, customer analytics and loyalty marketingBig Data, customer analytics and loyalty marketing
Big Data, customer analytics and loyalty marketing
Kevin May
 
Best Metrics to Optimize B2B Demand Gen
Best Metrics to Optimize B2B Demand GenBest Metrics to Optimize B2B Demand Gen
Best Metrics to Optimize B2B Demand Gen
Asad Haroon
 
Customer analytics for Startup and SMEs
Customer analytics for Startup and SMEsCustomer analytics for Startup and SMEs
Customer analytics for Startup and SMEs
SWAGATO CHATTERJEE
 
Sebastian Amtage - Beyond Marketing Automation: DMP, CDP, CMP. Who Can Still ...
Sebastian Amtage - Beyond Marketing Automation: DMP, CDP, CMP. Who Can Still ...Sebastian Amtage - Beyond Marketing Automation: DMP, CDP, CMP. Who Can Still ...
Sebastian Amtage - Beyond Marketing Automation: DMP, CDP, CMP. Who Can Still ...
Heroes of CRM Conference
 
Acquire Grow & Retain customers - The business imperative for Big Data
Acquire Grow & Retain customers - The business imperative for Big DataAcquire Grow & Retain customers - The business imperative for Big Data
Acquire Grow & Retain customers - The business imperative for Big Data
IBM Software India
 
Architecting A Platform For Big Data Analytics
Architecting A Platform For Big Data AnalyticsArchitecting A Platform For Big Data Analytics
Architecting A Platform For Big Data Analytics
Arun Chinnaraju MBA, PMP, CSM, CSPO, SA
 
BRIDGEi2i Whitepaper - The Science of Customer Experience Management
BRIDGEi2i Whitepaper - The Science of Customer Experience ManagementBRIDGEi2i Whitepaper - The Science of Customer Experience Management
BRIDGEi2i Whitepaper - The Science of Customer Experience Management
BRIDGEi2i Analytics Solutions
 
The Hidden Gems: Optimizing your DNB Credit Reports
The Hidden Gems: Optimizing your DNB Credit ReportsThe Hidden Gems: Optimizing your DNB Credit Reports
The Hidden Gems: Optimizing your DNB Credit Reports
Dun & Bradstreet
 
Bi24 whitepaper Bi24 - How legal firms can harness the power of analytics
Bi24 whitepaper Bi24 - How legal firms can harness the power of analyticsBi24 whitepaper Bi24 - How legal firms can harness the power of analytics
Bi24 whitepaper Bi24 - How legal firms can harness the power of analytics
David Ricketts
 
Connecting the Customer Data Dots
Connecting the Customer Data DotsConnecting the Customer Data Dots
Connecting the Customer Data Dots
Treasure Data, Inc.
 
Customer Data Management: The Time is Now
Customer Data Management: The Time is Now Customer Data Management: The Time is Now
Customer Data Management: The Time is Now
Dun & Bradstreet
 
Data-Driven Marketing
Data-Driven MarketingData-Driven Marketing
Data-Driven Marketing
Mighty Guides, Inc.
 
Lose the Crystall Ball - FOM Jam slides
Lose the Crystall Ball - FOM Jam slidesLose the Crystall Ball - FOM Jam slides
Lose the Crystall Ball - FOM Jam slides
RedEye
 
Best Metrics to Optimize B2B Demand Gen
Best Metrics to Optimize B2B Demand GenBest Metrics to Optimize B2B Demand Gen
Best Metrics to Optimize B2B Demand Gen
FrankAliyar
 
Right Message, Right Time: The Secrets to Scaling Email Success
Right Message, Right Time: The Secrets to Scaling Email Success Right Message, Right Time: The Secrets to Scaling Email Success
Right Message, Right Time: The Secrets to Scaling Email Success
Teradata
 
Predictive Modelling, not magic - FOM Jam slides
Predictive Modelling, not magic - FOM Jam slidesPredictive Modelling, not magic - FOM Jam slides
Predictive Modelling, not magic - FOM Jam slides
RedEye
 
Ebook definitive guide to attribution final
Ebook definitive guide to attribution finalEbook definitive guide to attribution final
Ebook definitive guide to attribution final
Nicolas Valenzuela
 
How Data, Relevance and Content are transforming B2B marketing
How Data, Relevance and Content are transforming B2B marketingHow Data, Relevance and Content are transforming B2B marketing
How Data, Relevance and Content are transforming B2B marketing
Marketing Graham
 
Big Data, customer analytics and loyalty marketing
Big Data, customer analytics and loyalty marketingBig Data, customer analytics and loyalty marketing
Big Data, customer analytics and loyalty marketing
Kevin May
 
Best Metrics to Optimize B2B Demand Gen
Best Metrics to Optimize B2B Demand GenBest Metrics to Optimize B2B Demand Gen
Best Metrics to Optimize B2B Demand Gen
Asad Haroon
 
Customer analytics for Startup and SMEs
Customer analytics for Startup and SMEsCustomer analytics for Startup and SMEs
Customer analytics for Startup and SMEs
SWAGATO CHATTERJEE
 
Sebastian Amtage - Beyond Marketing Automation: DMP, CDP, CMP. Who Can Still ...
Sebastian Amtage - Beyond Marketing Automation: DMP, CDP, CMP. Who Can Still ...Sebastian Amtage - Beyond Marketing Automation: DMP, CDP, CMP. Who Can Still ...
Sebastian Amtage - Beyond Marketing Automation: DMP, CDP, CMP. Who Can Still ...
Heroes of CRM Conference
 
Acquire Grow & Retain customers - The business imperative for Big Data
Acquire Grow & Retain customers - The business imperative for Big DataAcquire Grow & Retain customers - The business imperative for Big Data
Acquire Grow & Retain customers - The business imperative for Big Data
IBM Software India
 
BRIDGEi2i Whitepaper - The Science of Customer Experience Management
BRIDGEi2i Whitepaper - The Science of Customer Experience ManagementBRIDGEi2i Whitepaper - The Science of Customer Experience Management
BRIDGEi2i Whitepaper - The Science of Customer Experience Management
BRIDGEi2i Analytics Solutions
 
The Hidden Gems: Optimizing your DNB Credit Reports
The Hidden Gems: Optimizing your DNB Credit ReportsThe Hidden Gems: Optimizing your DNB Credit Reports
The Hidden Gems: Optimizing your DNB Credit Reports
Dun & Bradstreet
 
Bi24 whitepaper Bi24 - How legal firms can harness the power of analytics
Bi24 whitepaper Bi24 - How legal firms can harness the power of analyticsBi24 whitepaper Bi24 - How legal firms can harness the power of analytics
Bi24 whitepaper Bi24 - How legal firms can harness the power of analytics
David Ricketts
 
Connecting the Customer Data Dots
Connecting the Customer Data DotsConnecting the Customer Data Dots
Connecting the Customer Data Dots
Treasure Data, Inc.
 
Customer Data Management: The Time is Now
Customer Data Management: The Time is Now Customer Data Management: The Time is Now
Customer Data Management: The Time is Now
Dun & Bradstreet
 
Lose the Crystall Ball - FOM Jam slides
Lose the Crystall Ball - FOM Jam slidesLose the Crystall Ball - FOM Jam slides
Lose the Crystall Ball - FOM Jam slides
RedEye
 
Best Metrics to Optimize B2B Demand Gen
Best Metrics to Optimize B2B Demand GenBest Metrics to Optimize B2B Demand Gen
Best Metrics to Optimize B2B Demand Gen
FrankAliyar
 
Right Message, Right Time: The Secrets to Scaling Email Success
Right Message, Right Time: The Secrets to Scaling Email Success Right Message, Right Time: The Secrets to Scaling Email Success
Right Message, Right Time: The Secrets to Scaling Email Success
Teradata
 
Predictive Modelling, not magic - FOM Jam slides
Predictive Modelling, not magic - FOM Jam slidesPredictive Modelling, not magic - FOM Jam slides
Predictive Modelling, not magic - FOM Jam slides
RedEye
 
Ebook definitive guide to attribution final
Ebook definitive guide to attribution finalEbook definitive guide to attribution final
Ebook definitive guide to attribution final
Nicolas Valenzuela
 
How Data, Relevance and Content are transforming B2B marketing
How Data, Relevance and Content are transforming B2B marketingHow Data, Relevance and Content are transforming B2B marketing
How Data, Relevance and Content are transforming B2B marketing
Marketing Graham
 

Viewers also liked (9)

Creds Latest
Creds LatestCreds Latest
Creds Latest
Peter Rivett-Jones
 
Cancer Slideshow.Ppt [Compatibility Mode]
Cancer Slideshow.Ppt [Compatibility Mode]Cancer Slideshow.Ppt [Compatibility Mode]
Cancer Slideshow.Ppt [Compatibility Mode]
Lori1968
 
Creds 030409
Creds 030409Creds 030409
Creds 030409
Peter Rivett-Jones
 
Icac 2 Rev
Icac 2 RevIcac 2 Rev
Icac 2 Rev
Hariharan Murugesan
 
Diabetes Alex
Diabetes AlexDiabetes Alex
Diabetes Alex
Lori1968
 
Icac 2009 1
Icac 2009 1Icac 2009 1
Icac 2009 1
Hariharan Murugesan
 
Evolving Long Term Price For Indian Iron Ore (2)
Evolving Long Term Price For Indian Iron Ore (2)Evolving Long Term Price For Indian Iron Ore (2)
Evolving Long Term Price For Indian Iron Ore (2)
Kishore Kumar Kamisetti
 
Writers Paintbrush
Writers PaintbrushWriters Paintbrush
Writers Paintbrush
edaniels00002
 
Tim Ppt
Tim PptTim Ppt
Tim Ppt
Lori1968
 

Similar to The Data People (20)

TDP Case Studies
TDP Case StudiesTDP Case Studies
TDP Case Studies
Peter Rivett-Jones
 
Crm
CrmCrm
Crm
Vishal Wadekar
 
Online Test, Target and Measurement - Nancy Shaver, Experian Marketing Services
Online Test, Target and Measurement - Nancy Shaver, Experian Marketing ServicesOnline Test, Target and Measurement - Nancy Shaver, Experian Marketing Services
Online Test, Target and Measurement - Nancy Shaver, Experian Marketing Services
Online Marketing Summit
 
Unlocking the True Potential of Data on Mobile
Unlocking the True Potential of Data on MobileUnlocking the True Potential of Data on Mobile
Unlocking the True Potential of Data on Mobile
InMobi
 
Learn about consumer intelligence to enhance consumer experience
Learn about consumer intelligence to enhance consumer experience Learn about consumer intelligence to enhance consumer experience
Learn about consumer intelligence to enhance consumer experience
Jaiveer Singh
 
BRIDGEi2i Analytics Solutions - B2C Customer Intelligence
BRIDGEi2i Analytics Solutions - B2C Customer IntelligenceBRIDGEi2i Analytics Solutions - B2C Customer Intelligence
BRIDGEi2i Analytics Solutions - B2C Customer Intelligence
BRIDGEi2i Analytics Solutions
 
Database marketing
Database marketingDatabase marketing
Database marketing
Paul Uthup
 
WeBlend, Data-Driven marketing partner
WeBlend, Data-Driven marketing partnerWeBlend, Data-Driven marketing partner
WeBlend, Data-Driven marketing partner
weBlend
 
Increase sales volumes with data driven marketing
Increase sales volumes with data driven marketingIncrease sales volumes with data driven marketing
Increase sales volumes with data driven marketing
Argo Team 2004 s.r.o.
 
[Webinar] The Scalable Way: Unlocking Data To Drive Great Customer Experience...
[Webinar] The Scalable Way: Unlocking Data To Drive Great Customer Experience...[Webinar] The Scalable Way: Unlocking Data To Drive Great Customer Experience...
[Webinar] The Scalable Way: Unlocking Data To Drive Great Customer Experience...
VWO
 
Data Driven Commerce Event | metapeople Kristoffer Ewald
Data Driven Commerce Event | metapeople Kristoffer EwaldData Driven Commerce Event | metapeople Kristoffer Ewald
Data Driven Commerce Event | metapeople Kristoffer Ewald
metapeople NL
 
Mikaili Lilly
Mikaili LillyMikaili Lilly
Mikaili Lilly
FNian
 
Presentation
PresentationPresentation
Presentation
David Favari
 
The Scalable Way: Unlocking Data To Drive Great Customer Experience and Conve...
The Scalable Way: Unlocking Data To Drive Great Customer Experience and Conve...The Scalable Way: Unlocking Data To Drive Great Customer Experience and Conve...
The Scalable Way: Unlocking Data To Drive Great Customer Experience and Conve...
VWO
 
Inbox Introduction Ss
Inbox   Introduction   SsInbox   Introduction   Ss
Inbox Introduction Ss
Lootens
 
10. FMCG Analytics.pdf
10. FMCG Analytics.pdf10. FMCG Analytics.pdf
10. FMCG Analytics.pdf
PrasadPatil642741
 
Developing a customer data platform
Developing a customer data platformDeveloping a customer data platform
Developing a customer data platform
Tredence Inc
 
Machine learning for customer classification
Machine learning for customer classificationMachine learning for customer classification
Machine learning for customer classification
Andrew Barnes
 
Dat analytics all verticals
Dat analytics all verticalsDat analytics all verticals
Dat analytics all verticals
Digital Analyst Team
 
Effectiveness of CRM programme in sbi
Effectiveness of CRM programme in sbiEffectiveness of CRM programme in sbi
Effectiveness of CRM programme in sbi
Eguardian India
 
Online Test, Target and Measurement - Nancy Shaver, Experian Marketing Services
Online Test, Target and Measurement - Nancy Shaver, Experian Marketing ServicesOnline Test, Target and Measurement - Nancy Shaver, Experian Marketing Services
Online Test, Target and Measurement - Nancy Shaver, Experian Marketing Services
Online Marketing Summit
 
Unlocking the True Potential of Data on Mobile
Unlocking the True Potential of Data on MobileUnlocking the True Potential of Data on Mobile
Unlocking the True Potential of Data on Mobile
InMobi
 
Learn about consumer intelligence to enhance consumer experience
Learn about consumer intelligence to enhance consumer experience Learn about consumer intelligence to enhance consumer experience
Learn about consumer intelligence to enhance consumer experience
Jaiveer Singh
 
BRIDGEi2i Analytics Solutions - B2C Customer Intelligence
BRIDGEi2i Analytics Solutions - B2C Customer IntelligenceBRIDGEi2i Analytics Solutions - B2C Customer Intelligence
BRIDGEi2i Analytics Solutions - B2C Customer Intelligence
BRIDGEi2i Analytics Solutions
 
Database marketing
Database marketingDatabase marketing
Database marketing
Paul Uthup
 
WeBlend, Data-Driven marketing partner
WeBlend, Data-Driven marketing partnerWeBlend, Data-Driven marketing partner
WeBlend, Data-Driven marketing partner
weBlend
 
Increase sales volumes with data driven marketing
Increase sales volumes with data driven marketingIncrease sales volumes with data driven marketing
Increase sales volumes with data driven marketing
Argo Team 2004 s.r.o.
 
[Webinar] The Scalable Way: Unlocking Data To Drive Great Customer Experience...
[Webinar] The Scalable Way: Unlocking Data To Drive Great Customer Experience...[Webinar] The Scalable Way: Unlocking Data To Drive Great Customer Experience...
[Webinar] The Scalable Way: Unlocking Data To Drive Great Customer Experience...
VWO
 
Data Driven Commerce Event | metapeople Kristoffer Ewald
Data Driven Commerce Event | metapeople Kristoffer EwaldData Driven Commerce Event | metapeople Kristoffer Ewald
Data Driven Commerce Event | metapeople Kristoffer Ewald
metapeople NL
 
Mikaili Lilly
Mikaili LillyMikaili Lilly
Mikaili Lilly
FNian
 
The Scalable Way: Unlocking Data To Drive Great Customer Experience and Conve...
The Scalable Way: Unlocking Data To Drive Great Customer Experience and Conve...The Scalable Way: Unlocking Data To Drive Great Customer Experience and Conve...
The Scalable Way: Unlocking Data To Drive Great Customer Experience and Conve...
VWO
 
Inbox Introduction Ss
Inbox   Introduction   SsInbox   Introduction   Ss
Inbox Introduction Ss
Lootens
 
Developing a customer data platform
Developing a customer data platformDeveloping a customer data platform
Developing a customer data platform
Tredence Inc
 
Machine learning for customer classification
Machine learning for customer classificationMachine learning for customer classification
Machine learning for customer classification
Andrew Barnes
 
Effectiveness of CRM programme in sbi
Effectiveness of CRM programme in sbiEffectiveness of CRM programme in sbi
Effectiveness of CRM programme in sbi
Eguardian India
 

The Data People

  • 2. All Customers Are Not Equal‘‘80% of sales or profit will come from 20% ofcustomers’’
  • 3. What We DoWe identify Your Best Customers
  • 4. We Build Detailed Pictures of Your Best Customers Profitability Attitudes Demographics Lifestyle LocationUsageA Marriage of all the Elements
  • 5. Your Best Customers OnlineCombining online and offline data
  • 6. How We Do Itdata
  • 7. Data InterpretationWhat Is Your Data Telling You?We will audit your current data and create interpretation from itthis often starts with the basics of quality and quantity
  • 8. turning your data into timely, relevant and meaningful information
  • 9. turning that information into marketing advantage
  • 10. Helping you ‘see the wood for the trees’ data
  • 11. Data AnalyticsWhat could your data be telling you?We will undertake analysis on your data to build a fuller picture. For example:Basket analysis - identifies products likely to be purchased together, usually for cross-sellingPropensity models - help maximise Return on Investment (ROI) by targeting the most suitable audienceChurn modelling - predicting the likelihood to lapseLifetime value - quantifies the overall value of each customer at a revenue, gross or net profit level
  • 12. Data StrategyWhat will your data allow you to do?We develop data led business and marketing strategies to maximise business growthCRM, Acquisition & Retention Strategies
  • 13. Cross-sell & Up-sell Strategies
  • 14. Data Collection & Data Partnerships Strategies
  • 15. Creative Testing & Message HierarchiesData Planning Processshort. medium and long term needsdatasystemsbusiness, marketing and communications objectivesaccuracydata usageroiauditevaluationdatacollectionretentionlapsedata analysishygienestrategyacquisitiontrialdata qualitycrmdata enhancinganalysisdatabasesingle customer viewpredictivemodelsdata:profile,cluster,segmentdata needsadmin &reportsbuildstrategyfutureproofingdefine the objectivesdefine the problem
  • 16. What We ManageThrough a network of third party partners we will source and manage Data EnhancementData CleaningDatabase Design & BuildList PurchaseData CollectionProcessing DataData Monetisation Web Analytics
  • 17. Who We AreA data planning & analytics consultancyBased in Yorkshire5 core team members with a network of associate consultants & partnersWorking in the private and public sectorsPart of the Journey Group
  • 18. Peter Rivett-Jones - Director20 years of data and marketing experienceSenior client services and planning positions in top DM agencies including Joshua, GGT Direct & EWAFounded DM agency Made With Love (MWL) in 1999 which was later sold to Chemistry in 2003Joined Poulters as Director & Shareholder in 2005 heading up all data and direct marketing accounts Co-founded The Data People in 2009
  • 19. Steve Raper - DirectorA statistician with 25 years of data analysis and marketing experienceStarted career with British Gas in various sales and marketing positionsWent agency side in 1994 as Data Manager for Bedrock Communications independent consultant since 1996 providing data strategy & data analysis for agencies and clientsCo-founded The Data People in 2009
  • 20. What Makes Us Different?We are marketeers first and data planners second
  • 21. We turn numbers into words and pictures.
  • 22. We answer the "so what?" of data and statistics
  • 23. We have vast experience in data and all its touch points
  • 24. We are independent consultants with nothing to sell apart from our time
  • 25. We turn the complexity of data into strategies that make sense
  • 26. We champion simplicity Sector ExperienceNHS & Health
  • 27. FMCG
  • 30. B2B
  • 34. Case Study 1Alliance & Leicester
  • 35. The BriefAlliance & Leicester had been using cold contact lists to direct potential customers to their web site, with limited successRegistered users of the site were segmented by answers to basic financial questions only upon registrationCommunications to registered users had minimal tailoringWith results from nearly 2 years’ activity now available, our brief was to optimise results – Increase visits to the site from dm activityMaximise the potential value of visitors to the site
  • 36. The SolutionThe first step was to take the client’s database of registered users, plus a sample file of non-respondents, and append lifestyle and demographic overlays to the dataCHAID modelling based on each set of overlays was carried out and gains charts compared to improve targeting The client’s registered user base was segmented in terms of their long-term behaviour in relation to the siteThe resulting 6 clusters were profiled in terms of their likely financial requirements and long-term value potentialThe rules for optimum allocation to segments were modelled using discriminant analysis
  • 37. The SolutionA series of new questions at registration were identified to give the client data to allocate the new user immediately to the appropriate segment
  • 38. The ResultsThere was an immediate increase of over 100% in site visits generated from direct mail through the improved targetingValue models within the segmentation allowed the client to estimate long-term potential valueThus determining the products advertised and marketing investment for each segmentIn addition, extra information about customers’ potential value are being added to the model as experience gives us more accurate information about the web-site’s longer term usage patterns and sales values
  • 40. The BriefLike many of its competitors, Holmes Place concentrated on acquisition during the unprecedented growth phase of the industryCustomer retention and improved targeting for acquisition were recognised as important business drivers as:competition increased cost of acquisition increasedattrition rates exceeded 50% per annumLittle was known about the customer, and no estimates of customer value and what drives it had been evaluatedThe brief was to understand the customer better to allow for smarter and more efficient marketing activity
  • 41. The SolutionThe first step was to take the client’s membership and transaction databases and combine themAppend demographic and lifestyle informationIdentify valuable customers through data modelling – including length of membership and additional spend (e.g. personal training)Profiles for each club by value band were compiledKey variables – transactional and lifestyle - for predicting closure of membership were identifiedThe resulting churn model was applied to the customer base to predict the likelihood of attrition
  • 42. The SolutionAlthough there are many factors affecting renewal of membership (such as moving away from the area), many members do not renew because of their lack of usage of the facilities availableThe models allowed us to identify the probability of each member renewing, and allows communication strategies to be put into practice for valuable but potentially disloyal customers
  • 43. The ResultsTargeting for new customers has been revitalised After years of reducing returns from marketing targeted by demographics only, the new models coupled with data cleaning processes have resulted in a five-fold increase in response ratesCosts per new member have been reducedAverage value of each new member acquired was increasedEarly indications are that the modelling of likely defectors, coupled with communications designed to retain them, is starting to reduce churn rates
  • 45. The Brief A major development in the Nescafe Ultra Premium brand strategy was to narrow the target audience that for marketing communicationsExtensive work by the brand team had re-defined the audience that Nescafe UP would targetTwo target audiences called Roast & Ground Dippers and Instant Dippers had been identified – c1.7m HH’sThe brief was how, from a data perspective, do we find this audience to allow a major dm sampling campaign to take place
  • 46. The SolutionNescafe did not have marketing data of their ownThere was not sufficient volumes of external data to purchase that identified ‘dipping’In order to get the quantity and quality of data needed we proposed data modellingIn simple terms, this meant creating a profile of the people we wanted and then finding lookalikesThe secret lay in having the most accurate profile at the start
  • 47. The SolutionWe recommended using Tesco Clubcard data to create the profile that the data model would be built aroundThe model were built using CHAID and then applied to external lifestyle data sources
  • 48. The ResultsThe data model used in the direct marketing campaign proved to be highly successfulThe mailing delivered £280k uplift in the first three months aloneThe mailing had an impact on customers behaviour resulting in sustained change over a year – once customers had tried it they remained loyalCustomers moved from the targeted product areas of Freeze Dried and R&G proving the model’s accuracyAt a brand level customers were most likely to have moved from Kenco Ultra Premium and other Premium freeze dried coffees
  • 49. The Data People turn customer data into greater profits